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Abstract

The following important question is frequenctly overlooked: Which variables should we select to control?
It is shown that the idea of selecting the variables that achieve “self-optimizing control” provides a link between

steady-state optimization, feedback control, time scale separation and uncertainty. In summary, the basic idea is to
turn the optimization problem into a setpoint problem, and we show that a good candidate variable for a controlled
output should have the following properties:

1. Its optimal value is insensitive to disturbances.

2. On the other hand, the variable itself should be sensitive to changes in the manipulated variables (inputs).

3. It should be easy to control accurately.
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1 Introduction

If we formulate an optimal control problem in the usual mathematical fashion, where we define a scalar
cost function J to be minimized, then we generally find that a centralized solution is the optimal choice.
However, in many cases we want to decompose the control system into at least two layers: a setpoint
optimizer and a feedback control layer which implements the optimal setpoints. The two parts interact
through the controlled variables c; the optimizer computes their optimal setpointscs, and the control layer
attempts to implement then in practice, i.e. to get c � cs. In practice, the control system is usually divided
into more than an optimization and a control layer. Typically, layers include include scheduling (weeks),
site-wide optimization (day), local optimization (hour), supervisory/predictivecontrol (minutes) and reg-
ulatory control (seconds); see Figure 1.

?

Scheduling
(weeks)

Site-wide optimization
(day)

A
A
A
A
AU

Local optimization
(hour)

?

�
��	

?
Supervisory

control
(minutes)







�

������

C
C
C
C
CW

Regulatory
control

(seconds)

�
�
��


�
�

��+

�����9Control
layer

Figure 1: Typical control hierarchy in a chemical plant.

The reason for separating the control system into different layers is mainly to break the problem into
more manageable subtasks. We usually do this by designing the control system in a hiearchical manner
by requiring time-scale separation.

Definition of time-scale separation. The control system at a given layer can be designed
without the need to know the detailed controller parameters (tunings)used in the lower (faster)
layers.

This means that we can assume “perfect control” in the lower layer when designing the controller for
the next layer. To be able to make this assumption, the bandwith of the lower layer, !B2, must be at least
a factor 2-3 higher than the bandwith in the next layer, !B1.
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The loss is defined as the difference between the actual cost and the truly optimal value of the cost
function.

Self-optimizing control is when we can achieve acceptable loss with constant setpointvalues
for the controlled variables

Although our background is in process control, and we make some references to that area, we are
confident that the idea of “self-optimizing” control has applicability in most other fields of control.

1.1 Control structure design

More generally, the issue of selecting controlled outputs is one of the subtasks in the control structure
design problem (Foss 1973); (Morari 1982); (Skogestad and Postlethwaite 1996)

1. Selection of controlled outputs c (variables with setpoints)

2. Selection of manipulated inputs m

3. Selection of measurements v (for control purposes including stabilization)

4. Selection of control configuration (a structure interconnecting measurements/setpoints and manip-
ulated variables, i.e. the structure of the controller K which interconnects the variables cs and v
(controller inputs) with the variables m)

5. Selection of controller type (control law specification, e.g., PID, decoupler, LQG, etc.).

Note that these structural decisions need to be made before we can start the actual design the controller.
In most cases the control structure is solved by a mixture between a top-down consideration of control
objectives and which degrees of freedom are available to meet these (tasks 1 and 2), combined with a
bottom-up design of the control system, starting with the stabilization of the process (tasks 3,4 and 5). In
most cases the problem is solved without the use of any theoretical tools.

Of course, the control field has made many advances over these years, for example, in methods for
and applications of on-line optimization and predictive control. Advances has also been made in control
theory and in the formulation of tools for analyzing the controllability of a plant. These latter tools can
be most helpful in screening alternative control structures. However, a systematic method for generating
promising alternative structures has been lacking. This is related to the fact the control structure design
problem has not been well understood, has not been well defined, or even acknowledged as being an
important issue.

The realization that the field of control structure design is underdeveloped is not new. In the 1970’s
several “critique” articles where written on the gap between theory and practice in the area of process con-
trol. The most famous is the one of (Foss 1973) who made the observation that in many areas application
was ahead of theory, and he stated that

The central issue to be resolved by the new theories is the determination of the control sys-
tem structure. Which variables should be measured, which inputs should be manipulated and
which links should be made between the two sets. ... The gap is present indeed, but con-
trary to the views of many, it is the theoretician who must close it.

A similar observation that applications seems to be ahead of formal theory was made by Findeisen et al.
(1980) in their book on hierarchical systems (p. 10).

1.2 Related work

Parts of this paper are based on Chapter 10 in the book of Skogestad and Postlethwaite (1996). In addition,
we have made use of some unpublished work by Skogestad and coworkers on self-optimizing control.
The latter work is planned to be published as a series of papers with the following tentative titles:
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Part 1. The basic issues in self-optimizing control (selection of controlled outputs to make implemen-
tation of the optimal solution insensitive to uncertainty).

Part 2. Taylor series analysis.

Part 3. Theoretical basis for using the minimum singular value for output selection.

Part 4. Partial and indirect control with application to selection of temperature measurements in distil-
lation.

Part 5. Constraints and feasibility.

Except for the book of Skogestad and Postlethwaite (1996), preliminary versions of the above work are
available in the Ph.D. theses of Morud (1995), Glemmestad (1997) and Havre (1998), as well as in a
number of conference publications. These references are available on the Internet1.

Of earlier work, Morari et al. (1980) come closest to the ideas presented in this paper. Morari et al.
(1980) write that in attempting to synthesize a feedback optimizing control structure, our main objective
is to translate the economic objectives into process control objectives. In other words, we want to find
a function c of the process variables which when held constant, leads automatically to the optimal ad-
justments of the manipulated variables, and with it, the optimal operating conditions. [...] This means
that by keeping the function c(u; d) at the setpoint cs, through the use of the manipulated variables u,
for various disturbances d, it follows uniquely that the process is operating at the optimal steady-state
J = Jopt. This is a actually precise description of the best self-optimizing control structure, except that
they do not consider the effect of implementation error e = c � cs. Unfortunately, they did not attempt
to further formalize the idea, and it seems that very few people, including the authors themselves, have
picked up on it later.

Although at first sight it may seem quite different, another related work is that of Shinnar (Shinnar
1981) (Arbel et al. 1996). Maarleveld and Rijnsdrop (1970) state that the steady-state optimum usually
is constrained, and that we therefore should control the constrained variable. Arkun and Stephanopoulos
(1980) reach the same conclusion and provide a good discussion on the advantages of active constraint
control. Luyben and coworkers (e.g. Luyben (1975), Yi and Luyben (1995), Luyben (1988)) have stud-
ied unconstrained problems, and some of the examples presented point in the direction of the selection
methods presented in this paper. However, Luyben proposes to select controlled ouputs which minimizes
the steady-state sensitive of the independent variable (u) to disturbances, i.e. to select controlled out-
puts (c) such that (@u=@d)c is small, whereas we really want to minimize the steady-state sensitivity of
the economic loss (L) to disturbances, i.e. to select controlled outputs (c) such that (@L=@d)c is small.
Fisher et al. (1988) discuss plant economics in relation to control. Narraway and Perkins ((Narraway et
al. 1991), (Narraway and Perkins 1993) and (Narraway and Perkins 1994)) strongly stess the need to base
the selection of the control structure on economics. Finally, Marlin and Hrymak (1997) stress the need to
find a good way of implementing the optimal solution in terms how the control system should respond to
disturbances, “i.e. the key constraints to remain active, variables to be maximized or minimized, priority
for adjusting manipulated variables, and so forth.” They suggest that an issue for improvement in today’s
real-time optimization systems is to select the control system that yields the highest profit for a range of
disturbances that occur between each execution of the optimization.

For a more detailed literature review and a more precise defintion of terms, the reader is referred to
the following internal report

S. Skogestad and T. Larsson, “A review of plantwide control”. Available at: http://www.chembio.ntnu.no/us

1http://www.chembio.ntnu.no/users/skoge/
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2 Optimization and control

The focus on this paper on selection of controlled outputs (task 1), which is probably the least studied of
the structural decisions. But ask the question:

Why are we controlling hundreds of temperatures, pressures and compositions in a chemical
plant, when there is no specification on most of these variables? Is it just because we can
measure them or is there some deeper reason?

To answer this problem we need think more carefully about why we do control. First, there is the
issue of stabilization and then of keeping the operation within given constraints. These issues may con-
sume some degrees of freedom (e.g. to stabilize levels with no steady-state effect and to satisfy product
specifications), but there will genereally be many degrees of freedom left. What should these be used
for?

Loosely speaking, they should be used to “optimize the operation”. There may be many issues in-
volved, and to trade them off against each other in a systematic manner we usually quantify a scalar
performance (cost) index J which should be minimized. In many cases this index is an economic mea-
sure, e.g. the operation cost. Since the economics of plant operation usually are determined mainly by
steady-state issues, the analysis of how to use the remaining degrees of freedom can often be based on
steady-state considerations, and their optimal values may be found using steady-state optimization. The
resulting optimization problem may be very large, with hundreds of thousands of equations, and hun-
dreds of degrees of freedom. However, with todays computers and optimization methods this problem is
easily solvable, and it is indeed solved routinely in some plants, such as ethylene plants.

However, it is often much less clear how the optimal solution should actually be implemented in prac-
tice. Three alternative solutions are shown in Figure 2:

(a) Open-loop optimization.

(b) Closed-loop implementation with a separate control layer.

(c) Integrated optimization and control.

It should be stressed that in all the cases the “optimization” may be performed manually (by operators or
engineers).

In Figure 2 the “process” denotes the process as seen from the optimization layer, so it may actually be
a partially controlled plant. Correspondingly, the variables u denote the independent variables (degrees
of freedom) as seen from the optimization layer, and typically consists of setpoint for the lower-layer
controlelrs. that is different from m, and we will use the symbol u to denote this set which includes
setpoints for the lower layers. Only at the lowest layer do we have u = m;

The open-loop implementation (a) where we directly manipulatem can generally not be used because
of sensitivity to uncertainty.

From a theoretical point of view, the centralized scheme in (c) should be the best implementation.
Here, the optimizing controller stabilizes the process and also updates the model (using feedback) and at
the same time perfectly coordinates all the manipulated inputs based on dynamic on-line optimization.
However, there are fundamental reasons why such a solution is not the best, even with todays and tomor-
rows computing power. The main reason is probably the cost of modeling; in the centralized controller
there are no predetermined links, so the controller must rely only on the model to take the right action.

On the other hand, if we use local controllers (which use only a subset of the measurements and ma-
nipulators), then the task of each controller is well-defined (e.g. keep the temperature at its setpoint) and
we can often tune the controllers with a minimum of modelling efforts. In fact, by cascading feedback
loops, it is possible to control large plants with thousands of variables without the actual need to develop
any models. In any case, we find that in practice the hierarchical feedback implementation (b) is pre-
ferred. It consists of

� optimization layer — computes setpoints cs for the controlled variables c
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Figure 2: Alternative structures for optimization and control.

� control layer — implements this in practice, with the aim of achieving c � cs (in practice we
achieve c = cs + e where e is the control error; at steady-state and with integral action e = n
where n is the measurement noise).

In process control applications, the optimization layer typically recomputes new setpoints cs only about
every hour or so, whereas the feedback layer operates continuously. Since the data and model used by
the optimizer are uncertain and there are disturbances entering the plant between each re-optimization,
the objective of the feedback layer is to keep the plant close to its optimal operating point in spite of this
uncertainty.

Why do we select a particular set c of controlled variables? (e.g., why specify (control) the top com-
position in a distillation column, which does not produce final products, rather than just specifying its
reflux?) The answer to this question is not obvious, because at first it seems like it does not really mat-
ter which variables we specify (as long as all degrees of freedom are consumed, because the remaining
variables are then uniquely determined). However, this is true only when there is no uncertainty (distur-
bances, noise or model uncertainty). When there is uncertainty then it does make a difference how the
solution is implemented, that is, which variables we select to control at their setpoints.

We also stress that the analysis below is based on steady-state considerations. The main justification
for this is, as mentioned above, that the economic performance is mainly determined by steady-state con-
siderations. Of course, one could extend the analysis on a frequency-by-frequency basis, and include in
the variable e information about how well a variable can be controlled at a given frequency. However,
this would complicate the analysis, and should therefore be used only when needed, and is not considered
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any further here.

3 Selecting controlled variables for optimal operation

3.1 The performance index (cost) J

We assume that the optimal operation problem can be quantified in terms of a scalar performance index
(cost) J , such that the objective of the operation is to minimize J with respect to the available degrees
of freedom. J may be a purely economic objective, but is more generally a weighted sum of the various
control objectives. For the optimization itself it does not really matter which variables we use as degrees
of freedom as long as they form an independent set. Let the “base set” for the degrees of freedom be
denoted u (these may consist, for example, of a subset the physical manipulatorsm). In addition, the cost
will depend on the unknown disturbances d (which here is assumed to include uncertainty in the model
and uncertainty in the optimizer). We can then write J(u; d). The nominal value of the disturbances is
denoted d0, and we can solve the nominal operating problem and obtain uopt(d0) for which

minuJ(u; d0) = Jopt(d0) = J(uopt(d0); d0)

From this we can obtain a table with the corresponding optimal value of any other dependent variable,
including copt(d0).

The issue is now to decide how to best implement the optimal policy in the presence of uncertainty by
selecting the right set of controlled variables cwith constants setpoints cs = copt(d0). Here it is assumed
that the number of controlled variables y equals the number of independent variables u, or more exactly
that we starting from c = f(u; d) can derive the inverse relationship

u = f�1(c; d)

where the function f�1 exists and is unique.
Instead of evaluating the mean value of the performance index, it may be better to evaluate the always

positive loss function. The loss function expresses the difference between the actual operating costs (e.g.
obtained when we adjust u in order to keep c at a given setpoint) and the optimal operating cost (obtained
with u = uopt(d)),

L(u; d) = J(u; d)� Jopt(d) (1)

The objective of the operation is to minimize J (or some average of J), or equivalently to minimize the
loss L. The loss function is zero if we use the optimal policy u = uopt(d). The loss has the advantage
of providing a better “absolute scale” on which to judge whether a given set of controlled variables c is
“good enough”, and thus is self-optimizing.

3.2 Open-loop implementation

Let us first consider an open-loop implementation where we attempt to keep u constant at the value us.
With this implementation the operation may be non-optimal (with a positive loss) due to the following
reasons

1. The value of us is different from the optimal value uopt(d).

2. The actual value of u is different from us (due to an implementation error caused by imperfect
control).

This can be seen more clearly if we write the actual input as

u = us + u� us| {z }
eu

(2)
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where eu is the implementation error for u. In process control, u is often a flowrate, and it is difficult in
practice to obtain exactly the desired value us, so eu may be large. 2

Introduce the optimization error

eu;opt(d) = us � uopt(d)

Then the difference between the actual and optimal input, which causes a positive loss, can be written

u� uopt(d) = us � uopt(d) + eu = eu;opt(d) + eu (3)

i.e. it is the sum of the optimization error and the control error. In summary, the open-loop policy is often
poor; both because the optimal input value often depends strongly on the disturbance (so eu;opt is large),
and because we are not able to implement u accurately (so eu is large).

3.3 Closed-loop implementation

As already mentioned, in theory, the truly optimal solution would be to use some “optimizing controller”
which uses the measurements information (feedback) to correct the model and estimate the disturbance
d, and based on this computes a new optimal value uopt(d). The main problem with this approach is the
modelling effort, and the lack of theoretical tools to ensure robustness (insensitivity to uncertainty).

In practice, a simpler closed-loop implementation is preferred if it yields acceptable operation (loss).
This is to use directly the measurements cm of the selected controlled variables and adjust u in an inner
feedback loop to achieve cm � cs, where in most cases cs = copt(d0), i.e. cs comes from solving the
nominal optimization problem. The idea is that by keeping cm � cs we achieve an operation where
the deviation u � uopt(d) is smaller than for the open-loop policy (in the open-loop policy we keep u
constant, but this is not optimal in the face of disturbances). This may happen because copt(d) is relatively
insensitive to d and/or because c may more accurately controlled. We next formalize these ideas.

We here rewrite the problem with the variables c as independent variables rather than the original
independent variables (inputs) u. However, note that we as a special case may choose c = u, or some of
the elements in the vector c may be the original input variables. Thus, the open-loop implementation is
included as a special case.

If we compare the open-loop and closed-loop policies then the question is:

Is it best adjust the input variables u such that u = us + eu (where eu is the implementation
error for the input u), or is it better to adjust u = f�1(c; d) in feedback fashion such that
c = cs + e (where e is the implementation error for control of c) ?

More generally, if there are many alternative sets of variables cwhich can be measured and controlled,
which set should be used? If we let ym represent all the candidate measured variables then we can write

c = g(ym; u) (4)

where the function g is free to select. An open-loop policy is obtained with g(ym; u) = u. Linearized in
terms of deviation variables (4) becomes

�c = C1�ym + C2�u (5)

The issue is then to find the optimal choice for the matrices C1 and C2, but under the restriction that
the number of controlled variables (c’s) equals the number of independent inputs (u’s). If we use only
feedback then C2 = 0. If we disallow “combined” controlled variables, then the matrix C = (C1 C2 )
is a a “selection matrix” with only one nonzero element (a 1) in each row.

2The implementation error eu may be reduced in some cases if we measure the variable u and implement an inner control
loop with setpoint us. However, also in this case there will be a control and a measurement error; if we use integral action then
at steady-state eu will equal the steady-state measurement error (noise).
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To compare the alternative choices we then evaluate the objective function, or equivalently the loss
function, for alternative values of the disturbanced and the implementation error ec. The optimal choice
for of controlled variables c (i.e. optimal choice of the matrix C) is then the one that minimizes some
average value of the loss

L(u; d) = L(f�1(cs + e; d); d) (6)

for the expected set of disturbances d 2 D, and expected set of implementation (control) errors e 2 E .
In the simplest case we select the setpoints as cs = copt(d0), but the value of cs may also be the subject
to an optimization.

The difference between the actual and optimal outputs, which causes a positive loss, can be written

c� copt(d) = cs + e� copt(d) = eopt(d) + e (7)

i.e. it is the sum of the optimization error eopt(d) = cs � copt(d) and the control error e.
As already mentioned, if there where no uncertainty (i.e. d = d0 and ec = 0), then it would make no

difference which variable c that were chosen.

3.4 A procedure for output selection (Method 1)

We are now in a position to formulate a procedure for selecting controlled outputs c. Preferably, one
should find several candidate sets of candidate outputs, which could be further analyzed to see if they
are adequate with respect to other criteria that may be relevant, such that the input-output controllability
(including the presence of RHP-zeros).

1. Define the optimal operation problem (including specifying the cost function J to be minimized)

2. Solve the optimization problem at a given nominal operating point. That is, finduopt(d0) by solving
the nominal optimization problem

minuJ(u; d0)

where

u – “base set” for the Nu degrees of freedom

d0 – nominal value of the parameters (disturbances)

3. This yields a table with the nominal optimal values of all variables, copt(d0)).

4. Define the uncertainty:

(a) For the optimization: Define the magnitude or set of unknown disturbances (d 2 D) (including
any changes that occur between each reoptimization). Treat also errors in the data and model
for the optimizer as disturbances.

(b) For each candidate output variable (y): Define the magnitude or set of control error (e 2 E
(e.g. due to measurement error)

5. Repeat for each candidate set of Nu output variables (y’s)

(a) Evaluate the cost function J(c; d) with fixed setpoints

c = cs + e

where cs = c0 � copt(d0) is taken from the above table.

Do this for all disturbances (d 2 D) and all control errors (e 2 E).

(b) Compute the “mean” cost, Jmean (or equivalently, the mean loss)

6. Select as the controlled outputs the candidate set with the lowest “average” cost (or retain all the
sets with an acceptable loss for further screening)

Comments
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1. Instead of evaluating the cost J we may equivalently evaluate the loss L.

2. There are many possibilites for defing the mean cost , Jmean., for example,

(a) Mean cost over a finite set (e.g., max, nominal, min for each disturbance and each control
error)

(b) Mean cost from “Monte-Carlo” evaluation of given distribution of d and e

(c) Worst-case loss (compared to true optimal)

3. The computation load can be significantly reduced if we use a local analysis based on a Taylor series
expansion of J or L. This is discussed in section 4.7.

4 Taylor series analysis
In this section we study the problem of selecting controlled outputs by expanding the cost function around
a nominal optimal operating point. To this end, we here assume that the cost functionJ is smooth, or more
precicely twice differentiable, at the operating point we are considering.

We assume that the nominal disturbance is d0 and that the nominal operating point is optimal, i.e.

u0 = uopt(d0) and c0 = copt(d0)

so that we have J(u0; d0) = Jopt. We next consider a disturbance and input change so that the new
disturbance is

d = d0 + �d

and the new input is
u = u0 + �u

where �u is the input change. The input u will generally be different from the optimal input, uopt(d),
and we define the deviation from the optimal value as

�u0 = u� uopt(d)

(Similarly, we define �c0 = c� copt(d), etc.). The issue is now what effect a nonzero value of �u0 will
have on the operation (as quantified by the value of the loss function L).

4.1 Expansion of the cost function

A second order Taylor series expansion of the cost function gives

J(u; d) = J(u0; d0) + JTu (u� u0) + JTd (d� d0) +
1

2
(u� u0)

TJuu(u� u0)

+
1

2
(d� d0)

TJdd(d� d0) + (d� d0)
TJud(u� u0) + O3 (8)

where all derivatives are evaluated at the optimal nominal operating point (with d = d0 and u = u0 =
uopt(d0)), as indicated by using the subscript 0. We have

Ju =

�
@J

@u

�
0

= 0

Jd =

�
@J

@d

�
0

Juu =

 
@2J

@u2

!
0
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Jdd =

 
@2J

@d2

!
0

Jud =

 
@2J

@u@d

!
0

Note that Ju = 0 because the Jacobian with respect to the independent variables must be zero at the
optimum. We can write the expansion in (8) more compactly as

J(u; d) = J(u0; d0) +

�
Ju|{z}
=0

Jd
�T ��u

�d

�
+

1

2

�
�u
�d

�T
H

�
�u
�d

�
(9)

where H is the Hessian matrix of J with respect to
�
�u
�d

�T
,

H =

�
Juu Jud
Jdu Jdd

�

The Hessian matrix is always symmetric, so Juu and Jdd are symmetric and Jud = JTdu. Since the ex-
pansion is performed at the point where J has a minimum, we have that �uTJuu�u is positive for any
nonzero vector �u, i.e. Juu is positiv definite, Juu > 0 (if the minimum is a saddle the �uTJuu�u is
zero in some direction and Juu is positive semidefinite, Juu � 0).

4.2 The optimal input

The nominal operating point (u0; d0) is assumed to be optimal se we have u0 = uopt(d0), and as noted
the Jacobian must be zero,

Ju =
@J

@u
(u0; d0) = 0

Next, consider a disturbance and input change so that the new operating point is (u; d) and the new Ja-
cobian is

J 0u =
@J

@u
(u; d)

An first-order expansion of the Jacobian gives

J 0u = Ju + Juu(u� u0) + JTud(d� d0)

We assume that we change the input so that also the new operating point is optimal, i.e. u = uopt(d).
Then we must also here have that the Jacobian is zero, i.e. J 0u = 0, and we get

0 = Juu(uopt(d)� uopt(d0)) + JTud(d� d0)

and we find that that a first-order accurate approximation of the optimal input iwhen there is a disturbance
change is

uopt(d) = uopt(d0)| {z }
u0

�J�1uu Jdu(d� d0) (10)

4.3 Expansion of the loss function

Let us now consider the loss function

L(u; d) = J(u; d)� J(uopt(d); d)
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Expand J(u; d) around the perturbed point (uopt(d); d) (which is close to but not the same as the nominal
point (uopt(d0); d0). We get

J(u; d) � J(uopt(d); d) + J 0u
T
(u� uopt(d)) +

1

2
(u� uopt(d))

TJ 0uu(u� uopt(d)) (11)

where the 0 denotes that the derivatives are evaluated at the perturbed point. However, it turns out this
does not matter. First, since also the perturbed point is optimal, we must have that J 0u = 0. Second, J 0uu
can be expanded in terms of Juu ,

J 0uu = Juu + JTuud(d� d0) + JTuuu(uopt(d)� uopt(d0))

but the resulting third order terms can be neglected upon substitution into (11), which then gives the fol-
lowing second order accurate expansion for the loss function in terms of the deviation from the optimal
input, �u0 = u� uopt(d),

L =
1

2
(u� uopt(d))

TJuu(u� uopt(d)) =
1

2
�u0TJuu�u

0 (12)

which is a very useful expression.
Comment. To confirm that the approach taken when deriving (12) is acceptable, we shall rederive (8) by expanding
in only “one” variable (u or d) at a time. Let here a double prime (00) denote that the derivative is evaluated at the
point (u0; d). We then have by first expanding in u (with d constant)

J(u; d) = J(u0; d) + J 00

u

T
(u� u0) +

1

2
(u � u0)

T J 00

uu
(u� u0) (13)

We then expand in d the terms that were not at the nominal operating point,

J(u0; d) � J(u0; d0) + JTu (d� d0) +
1

2
(d� d0)

TJdd(d� d0)

J 00

u = Ju(u0; d) � Ju + JTud(d� d0)

and with J 00

uu � Juu and substituting into (13) we rederive (8).

4.4 Loss with constant inputs

Assume there is a disturbance change, but we attempt to keep the input fixed at its nominally optimal
value u0, i.e.

us = u0

where u0 = uopt(d0). We use the word “attempt”, since in practice there will be an implementation error
so the actual input will be

u = us + eu

where eu is the implementation error for the input. Then from (10) the deviation from the optimal input
is

�u0 = u� uopt = J�1uu Jdu�d+ eu (14)

and we can evaluate the resulting loss from (12).

4.5 Loss with constant controlled outputs

As already mentioned, the outputs c are related to the inputs and disturbances by the relationship

c = f(u; d)
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The corresponding linearized relationship in terms of deviation variables (�c = c� c0, etc.) is

�c = G�u+ Gd�d (15)

where G = (@f=@u)T and Gd = (@f=@d)T .
Assume there is a disturbance change, but we attempt to keep the control output fixed at its nominally

optimal value c0, i.e.
cs = c0

where c0 = copt(d0). We use the word “attempt”, because, in practice, there will be an implementation
error so the actual controlled output will be

c = cs + e (16)

where e is the implementation error (typically, the sum of the measurement error and the control error).
We have in this case �c = e, so from (15) the corresponding input change is

�u = �G�1Gd�d+ G�1e

and from (10) the resulting deviation from the optimal input is

�u0 = u� uopt =
�
J�1uu Jdu �G�1Gd

�
�d+G�1e (17)

The optimal choice for the controlled outputs is the one that minimizes the “mean” value of the loss

L =
1

2
�u0TJuu�u

0

for the expected disturbances (as expressed by the magnitude �d) and the expected control error (as ex-
pressed by the magnitude of e). Note that the matrices Juu and J�1uu Jdu are independent of the choice of
controlled outputs.

4.5.1 Alternative form

An alternative form is to express the loss directly in terms of the controlled outputs. A similar derivation
as for the inputs, see (12), gives

L =
1

2
�c0TJcc�c

0 (18)

where �c0 = c� copt(d) and

Jcc = G�1TJuuG
�1

(the latter follows from �c0 = G�u0)., We see that Jcc depends directly on the choice of the controlled
outputs through the matrix G�1), and to keep Jcc and thus L small, we want G�1 small. The deviation
between the actual and optimal output, �c0, will be nonzero due to the presence of two generally inde-
pendent terms,

�c0 = eopt + e (19)

where eopt = cs � copt(d) is the optimization error (introduced by attempting to keep c at cs rather than
at copt(d)), and e = c� cs is the implementation or control error (introduced by incorrect measurement
and poor control of c).

We may also express the optimization error directly in terms of the disturbance. Using the linearized
model in (15)

�eopt = copt(d)� c0| {z }
�c

= G (uopt(d)� u0)| {z }
�u

+Gd�d
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where from (10)
uopt(d)� u0 = �J�1uu Jdu (d� d0)| {z }

�d

and we find

eopt(d) = cs � copt(d) =
�
GJ�1uu Jdu �Gd

�
�d (20)

where cs = c0. We will return to this expression shortly.
Remark. Obviously, substitution of (20) and (19) into (18) gives the same expression for the loss L as a
function of e and �d, as the one we obtain by substituting (17) into (12).

4.6 “Ideal” choice of controlled outputs

If we for the moment disregard the control error e, then the ideal choice of controlled outputs would be
to have eopt(d) = cs � copt(d) = 0 for any value of d. Here cs = c0 is constant, so to achieve this,
we need the optimal value of output to be independent of the disturbance. An example of such an ideal
output would be to have a direct measurement of the gradient of the cost function with respect to the input
(since it is optimal for any disturbance to have this gradient zero, we could directly specify its setpoint
at zero). In particular, consider the following output

c = f(u; d) = c1
@J(u; d)

@u
+ c0 = c1Ju + c0 (21)

where c0 and c1 are constants. To see that this output would be “ideal”, we linearize (21) to get

�c = Juu�u+ JTud�d

i.e. we find that G = Juu and Gd = JTud = Jdu, which upon substitution into (20) gives eopt = 0.
However, as we see when studying, for example, selection of measurement locations in a distillation

column, the implementation error e may be a very important factor, and the “ideal” output may not be
the best after all.

4.7 A procedure for output selection (Taylor-version of Method 1)

The computations for the procedure (method 1) given in the previous section can be very time-consuming,
but they can be reduced significantly if we use the local Taylor series approximations derived above.

Upon substitution of (17) into (12) we can write

L =
1

2
zT z =

1

2
kzk22 (22)

where kzk2 denotes the 2-norm of the vector z and by

z = J1=2uu

h�
J�1uu Jdu �G�1Gd

�
�d+G�1e

i
(23)

Let the elements in the positive diagonal matrices Wd and We represent the expected magnitudes of
the disturbances and the control errors, i.e. let

�d = Wd
~�d

e =We~e

where we assume
k ~�dk2 � 1; k~ek2 � 1
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Minimization of the loss L for any (worst-case) combination of disturbances and control errors is then
equivalent to minimizing induced 2-norm (maximimum singular value) of the matrix

M = (M1 M2 ) (24)

where
M1 = J1=2uu

�
J�1uu Jdu �G�1Gd

�
Wd

M2 = J1=2uu G�1We

where J1=2uu J
1=2
uu = Juu

Thus, if we assume that the disturbances and control errors are two-norm bounded then we have that

L =
1

2
��(M) (25)

and the procedure becomes

1. Define the optimal operation problem (specify the cost function J).

2. Solve the optimization problem at the given nominal operating point and find the second-order
derivatives of the cost, Juu and Jud, at this nominal optimal operation point.

3. For each candidate set of controlled variables obtain the linear model �c = G�u+Gd�d.

4. Define the uncertainty:

(a) The elements in the diagonal matrix Wd represents the magnitude of each disturbance

(b) The elements in the diagonal matrixWe represents the magnitude of the control error for each
output c (e.g. due to measurement error)

5. For each candidate set compute the singular value of the matrix M , ��(M).

6. Select as the controlled outputs the candidate set with the lowest value of the loss L = 1
2
��(M).

Comment. We can easily use this approach to search for the best linear combination of measurements ym
and independent inputs u to control,

�c = C1�ym + C2�u

where the matricesC1 andC2 are free to choose, but we make the restriction that the number of controlled
variables (c’s) equals the number of independent inputs (u’s) (recall the comments following (5)).

We first identify all the candidate measurements ym and obtain the linear model

�ym = Gm�u+ Gm
d �d

We also need to identify (or at least estimate) the control error (measurement noise) associated with con-
trolling the measurements and inputs, and collect these in the diagonal matrices Wem and Weu.

The matrices used in the procedure above then become

G = C2 + C1G
m

Gd = C1G
m
d

and the j’th diagonal element in the matrix control error matrix We is given by

We;jj =

sX
i

C2
ijW

2
m;ii

where C = (C1 C2 ) and Wm = diagfWem;Weug.
It is then possible to find the choice for C which minimizes L.
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5 Relationship to indirect and partial control

Here we consider a special problem which from the outset is a setpoint problem

J =
1

2
(y1 � y1s)

TW (y1 � y1s) =
1

2
eT1We1 (26)

where W > 0 is a weighting matrix, and y1 are the primary output variables. In this case the optimal
cost for any disturbanc is to have Jopt = 0, so we have that the loss equals the cost, L = J .

Note that y1;opt = y1s, and we may write

e1 = y1 � y1s = (y1 � y10)� (y1s � y10) = �y1 ��y1s

where we have selected the nominal operating point such that y10 = y1s. To make the problem interesting
we assume that the “ideal” choice of outputs c = y1 can or should not be used because direct control of
y1 is difficult or impossible. We therefore instead consider controlling the secondary outputs y2 (i.e. we
choose c = y2). The idea is to find a set of variables y2, such that keeping y2 close to the setpoint y2s,
indirectly achieves good control of y1 (i.e. y1 is kept close to y1s).

The linear model relating the variables is

�y1 = G1�u+Gd1�d (27)

�y2 = G2�u+Gd2�d (28)

where �u = u�u0, etc. We assume that the nominal operating point (u0; d0) is optimal, i.e. y10 = y1s.

1. Let us first use our derived relationships to confirm that the outputs c = y1 would be ideal (this
is really just a check of our derived formulas). We assume here that the setpoints y1s are constant
(since we assumed in the derivation above that cs is constant), i.e. we have �y1s = 0 and e1 =
�y1. We get

J =
1

2
�yT1W�y1 = (G1�u+Gd1�d)

TW (G1�u+Gd1�d)

and we get that
Ju = (G1�u+Gd1�d)

TWG1

Juu = GT
1WG1

JTud = GT
1WGd

and from (20) we get as expected

eopt = cs � copt(d) = (G1J
�1
uu Jdu �Gd1)�d = 0

2. Let us next consider the more interesting case of selecting c = y2, where we keep the setpoints
constant, y2s = y20. Rewriting the linear model gives

e1 = G1G
�1
2| {z }

Py

e2 + (Gd1 � G1G
�1
2 Gd2)| {z }

Pd

�d��y1s (29)

where P are called the partial control gains. (To derive this we first solve (28) with respect to u

�u = G�1
2 �y2 � G�1

2 Gd2�d

and then substitute this into (27) and use the fact that �y2 = e2 and �y1 = e1+�y1s to get (29)).

To minimize the cost function J we want e1 = y1 � y1s small. (29) shows how e1 is affected by
disturbances d, by the control error for the secondary variables, e2, and by changes in the setpoints
y1s.

Let us here disregard setpoint changes for the primary outputs, i.e. let�y1s = 0. If we furthermore
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� scale the outputs y1 such that W = I

� scale the outputs y2 sich that the expected control error e2 is of magnitude 1

� scale the disturbances such that the expected disturbance change �d is of magnitude 1

then we see from (29) that to minimize e1 (and J) we should attempt to minimize the combined
norm of the matrices Py and Pd (appropriately scaled).

This simple approach has been used on a distillation case study (Havre 1998). Here we find that
we can not use temperature measurements located at the end of the column because of sensitivity
to control error e2 (measurement noise) (as seen since the scaled matrix Py is large), and we can
not use measurements close to the middle at the column yield because of sensitivity to disturbances
(as seen since the scaled matrix Pd is large). The best balance between sensitivity to measurement
noise and disturbances is found when the measurements are located somewhere between the end
and the middle of the column.

3. An alternative form of (29) is

e1 = y1 � y1s = Py(e2 + e2;opt) (30)

where by definition
e2;opt = y2s � y2;opt(d; y1s)

is the difference between the chosen constant setpoint for y2, y2s = y20, and the optimal value
y2;opt(d; y1s) that corrsponds to e1 = y1� y1s = 0. We may obtain e2;opt by setting e1 = 0 in (29)
and solving for e2. We get

Pye2;opt = �y1s � Pd�d

and substituting this into (29) gives (30).

Expression (30) is rather obvious, but it is nevertheless very useful in some cases, and forms the
basis for the common rule of minimizing the minimum singular value (see below).

Comment: Another way of deriving (30) is to use (for any d)

y1 � y1opt = G1(u� uopt)

y2 � y2opt = G2(u� uopt)

which since y1 � y1opt = y1� y1s = e1 and y2 � y2opt = (y2� y2s) + (y2s � y2opt) = e2 � e2opt
directly gives (30).

4. By replacing Py and Pd by the corresponding transfer function matrices, Py(s) and Pd(s), we can
extend these results to nonzero frequencies.

6 Maximizing the minimum singular value (Method 2)
Let the matrix G represent the effect on the controlled variables c of a small change in the “base set” of
independent variables u, i.e..

�c = G ��u

Then, a common criterion (rule) in control structure design is to select the set of controlled outputs that
maximizes the minimum singular value of the gain matrix, �(G) (Yu and Luyben (1986) refer to this as
the “Morari Resiliency Index”). Previously, this rule has had little theoretical justification, and it has not
been clear how to scale the variables. However, as indicated by Skogestad and Postlethwaite (1996) the
rule may be derived by considering a local approximation of the loss function.
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It is desirable to select the controlled variables such that the loss is minimized. For a given disturbance
d, a Taylor series expansion of the loss at the optimal point (where u = uopt(d)) gives

�L = J(u; d)� J(uopt; d) =
1

2
(u� uopt)

T

 
@2J

@u2

!
opt

(u� uopt) (31)

(where we have assumed that the problem is unconstrained, so that the first-order term @J=@u is zero.)
Thus, the loss depends on the quantity u� uopt which we obviously want as small as possible. Now, for
small deviations from the optimal operating point we have that the candidate output variables are related
to the independent variables by c� copt = G(u� uopt), or

u� uopt = G�1(c� copt) (32)

Since we want u�uopt as small as possible, it therefore follows that we should select the set of controlled
outputs c such that the product of G�1 and c � copt is as small as possible. Thus, the correct statement
of the rule is:

Assume we have scaled each output c such that the expected c� copt is of magnitude 1 (in-
cluding the effect of both disturbances and control error), then select the output variables c
which minimize the norm of G�1, which in terms of the two-norm is the same as maximizing
the minimum singular value of G, �(G).

Interestingly, we note that this rule does not depend on the actual expression for the objective function
J , but it does enter indirectly through the variation of copt with d, which enters into the scaling. Also note

that in the multivariable case we should scale the inputsu such that the Hessian
�
@2J
@u2

�
is close to unitary

(Skogestad and Postlethwaite, 1996). Also note that use of the rule may be computationallymuch simpler
than evaluating the mean value of J or the loss function.

Example

To give a simple “toy example”, let J = (u� d)2 where nominally d0 = 0. For this problem we always
have Jopt(d) = 0 corresponding to uopt(d) = d. Let is now consider three alternative choices for the
controlled output (e.g. we can assume they are three alternative measurements)

c1 = 0:1(u� d); c2 = 20u; c3 = 10u� 5d

For the nominal case with d0 = 0 we have in all three cases that copt(d0) = 0 so we select in all three
cases cs = 0. Since in all cases uopt(d) = d, the optimal value of the controlled variable for the three
cases are c1opt(d) = 0, c2opt(d) = 20d and c3opt = 5d.

Method 1. The losses can for this example be evaluated analytically, and we find for the three cases

L1 = (10e1)
2; L2 = (0:05e2� d)2; L3 = (0:1e3 � 0:5d)2

(For example, in case 3, we have u = (c3+5d)=10 and with c3 = c3s+ e3 = e3 we get J = (u�d)2 =
(0:1e3 + 0:5d � d)2). If we further assume that the variables have been scaled such that jdj � 1 and
jeij � 1 then the worst-case values of the losses are L1 = 100, L2 = 1:052 = 1:1025 and L3 = 0:62 =
0:36, and we find that output c3 is the best overall choice for self-optimizing control. However, with no
control error c1 is the best, and with no disturbances c2 is the best.

Method 2. For the three choices of controlled outputs we have G1 = 0:1,G2 = 20 and G3 = 10, and
�(G1) = 0:1, �(G2) = 20 and �(G3) = 10. This would indicate that c2 is the best choice, but this is
only correct with no disturbances. The reason for the error is that we have not scaled the output variables
properly; in particular, we have not take into account the effect of the disturbances on the magnitude of
c� copt(d).
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Let us now scale the variables properly. We have uopt = d, so we have c1;opt = 0; c2;opt = 20d and
c3;opt = 5d. For c1 we then have that jc1 � c1;optj = 1 + 0 (the control error is 1 plus the variation in
c1;opt(d) due to disturbances is 0), and we find that

jG�1
1 (c1 � c1;opt)j =

1

0:1
� (1 + 0) = 10

Similarly,

jG�1
2 (c2 � c2;opt)j =

1

20
� (1 + 20) = 1:05

jG�1
3 (c3 � c3;opt)j =

1

10
� (1 + 5) = 0:6

and we find as expected that c3 is the best choice. Thus, the two methods agree.
In general, method 1 is more accurate that method 2. The main limitation with method 2, is that for

the multivariable case the particular value of c � copt(d) corresponding the direction of the minimum
singular value of G may not occur in practice, that is, there is no disturbance in this direction. Method 2
may therefore eliminate some viable control structures.

7 Discussion

7.1 Constraint problems

The approach outlined above may be extended to include problems with constraints,

min
u

J(u; d)

subject to
g1(u; d) = 0
g2(u; d) � 0

(33)

Problems with equality constraints are relatively straightforward, especially if we can identify a single
variable (manipulated or measured) directly related to the constraint; this should then be included as a
controlled variables c (“active constraint control” (Arkun and Stephanopoulos 1980)). The main effect is
then that each constraint removes a degree of freedom for the optimization. The same argument holds for
inequality constraints where the optimal policy is always to keep the same constraint active (i.e. satisfy
them as equalities for any disturbance).

The more difficult problems are when we have a inequality constraint which is active only under cer-
tain conditions (disturbances), and this constrained variable is not included as a controlled variable. For
such cases one must be careful to avoid infeasibility during implementation, for example, there may be a
disturbance such that the specified value of the controlled variable can only be achieved with a nonphys-
ical value of the input (e.g. a negative flowrate). The on-line optimization is usually for simplicity based
on the nominal disturbance (d0), and two approaches to avoid infeasibility are then

1. to use back-offs for the controlled variables during implementation, or

2. to add safety margins to the constraints during the optimization (Narraway et al. (1991); Glemmes-
tad (1997)).

Alternatively, one may solve the “robust optimization problem”, where one also optimizes cs for all the
possible disturbances. A fourth, and better approach in terms of minimizing the loss, is to track the active
constraint, but this requires a more complex control system. In particular, model predictive control is very
well suited and much used for tracking active constraints.

19



7.2 Controllability issues

Of course, steady-state issues related to the cost J are not the only ones to be considered when select-
ing controlled outputs. It may happen that the “optimal” controlled outputs from a steady-state point of
view, may result in a difficult control problem, so that dynamic control performance is poor. This may
analyzed using an input-output controllability analysis. For example, in distillation column control it is
well-known (Skogestad 1997) that controlling both product compositions may be difficult due to strong
two-way interactions. In such cases, one may decide to control only one composition (“one-point con-
trol”) and use, for example, constant reflux L=F (although this may not be optimal from a steady-state
point of view). Alternatively, one may choose to over-purify the products to make the control problem
easier (reducing the sensitivity to disturbances).

7.3 Why separate into optimization and control

Why is the controller decomposed? (1) The first reason is that it requires less computation. This reason
may be relevant in some decision making systems where there is limited capacity for transmitting and
handling information (like in most systems where humans are involved), but it does not hold in todays
chemical plant where information is centralized and computing power is abundant. Two other reasons
often given are (2) failure tolerance and (3) the ability of local units to act quickly to reject disturbances
(e.g. Findeisen et al., 1980). These reasons may be more relevant, but, as pointed out by Skogestad and
Hovd (1995) there are probably even more fundamental reasons. The most important one is probably (4)
to reduce the cost involved in defining the control problem and setting up the detailed dynamic model
which is required in a centralized system with no predetermined links. Also, (5) decomposed control
systems are much less sensitive to model uncertainty (since they often use no explicit model). In other
words, by imposing a certain control configuration, we are implicitly providing information about the
behavior of the process, which we with a centralized controller would need to supply explicitly through
the model.
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