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Abstract

The following important question is frequenctly overlooked: Which variables should we select to control ?

Itisshown that theideaof selecting thevariablesthat achieve self-optimizing control” providesalink between
steady-state optimization, feedback control, time scale separation and uncertainty. In summary, thebasicideaisto
turn the optimi zation problem into a setpoint problem, and we show that a good candidate variablefor acontrolled
output should have the following properties:

1. Itsoptimal value isinsensitiveto disturbances.
2. On the other hand, the variableitself should be sensitiveto changes in the manipulated variables (inputs).
3. It should be easy to control accurately.
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1 Introduction

If we formulate an optimal control problem in the usual mathematical fashion, where we define a scalar
cost function .J to be minimized, then we generally find that a centralized solutionisthe optimal choice.
However, in many cases we want to decompose the control system into at least two layers. a setpoint
optimizer and a feedback control layer which implements the optimal setpoints. The two parts interact
throughthe controlled variables¢; the optimizer computestheir optimal setpointse,, and thecontrol layer
attemptstoimplementtheninpractice, i.e. toget ¢ =~ ¢,. Inpractice, thecontrol systemisusually divided
into more than an optimization and acontrol layer. Typically, layersincludeinclude scheduling (weeks),
site-wide optimization (day), local optimization (hour), supervisory/predictivecontrol (minutes) and reg-
ulatory control (seconds); see Figure 1.
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Figure 1: Typical control hierarchy in achemical plant.

Thereason for separating the control systeminto different layersis mainly to bresk the probleminto
more manageable subtasks. We usually do this by designing the control system in a hiearchical manner
by requiring time-scal e separation.

Definition of time-scale separation. The control system at a given layer can be designed
without theneed to know the detailed controller parameters (tunings) usedinthelower (faster)
layers.

Thismeansthat we can assume “ perfect control” in the lower layer when designing the controller for
the next layer. To be able to make thisassumption, the bandwith of the lower layer, wgs, must be at least
afactor 2-3 higher than the bandwith in the next layer, wg;.



The lossis defined as the difference between the actual cost and the truly optimal value of the cost
function.

Self-optimizing control iswhen we can achieve acceptabl el osswith constant setpoint values
for the controlled variables

Although our background is in process control, and we make some references to that area, we are
confident that the idea of “self-optimizing” control has applicability in most other fields of control.

1.1 Control structuredesign

More generally, the issue of selecting controlled outputsis one of the subtasksin the control structure
design problem (Foss 1973); (Morari 1982); (Skogestad and Postlethwaite 1996)

Selection of controlled outputs ¢ (variables with setpoints)
Selection of manipulated inputs m
Selection of measurements v (for control purposes including stabilization)

A 0D

Selection of control configur ation (astructureinterconnecting measurements/setpointsand manip-
ulated variables, i.e. the structure of the controller K which interconnects the variables ¢, and v
(controller inputs) with the variables m)

5. Sdlection of controller type (control law specification, e.g., PID, decoupler, LQG, etc.).

Note that these structural decisionsneed to be made before we can start the actual design the controller.
In most cases the control structureis solved by a mixture between a top-down consideration of control
objectives and which degrees of freedom are available to meet these (tasks 1 and 2), combined with a
bottom-up design of the control system, starting with the stabilization of the process (tasks 3,4 and 5). In
most cases the problem is solved without the use of any theoretical tools.

Of course, the controal field has made many advances over these years, for example, in methods for
and applicationsof on-line optimization and predictive control. Advances has also been madein control
theory and in the formulation of toolsfor analyzing the controllability of a plant. These latter tools can
be most hel pful in screening alternative control structures. However, a systematic method for generating
promising alternative structures has been lacking. Thisis related to the fact the control structure design
problem has not been well understood, has not been well defined, or even acknowledged as being an
important issue.

The realization that the field of control structure design is underdevel oped is not new. Inthe 1970's
severa “critique” articleswhere written on the gap between theory and practicein the area of processcon-
trol. Themost famousisthe one of (Foss 1973) who made the observation that in many areas application
was ahead of theory, and he stated that

The central issue to be resolved by the new theories is the determination of the control sys-
tem structure. Which variables should be measured, which inputs should be manipul ated and
which links should be made betweenthetwosets. ... Thegapispresent indeed, but con-
trary to the views of many, it is the theoretician who must closeit.

A similar observation that applications seems to be ahead of formal theory was made by Findeisen et al.
(1980) in their book on hierarchical systems (p. 10).

1.2 Related work

Partsof thispaper are based on Chapter 10in thebook of Skogestad and Postlethwaite(1996). In addition,
we have made use of some unpublished work by Skogestad and coworkers on self-optimizing control.
The latter work is planned to be published as a series of papers with the following tentativetitles:



Part 1. The basicissuesin self-optimizing control (selection of controlled outputsto make implemen-
tation of the optimal solution insensitiveto uncertainty).

Part 2. Taylor seriesanaysis.
Part 3. Theoretical basisfor using the minimum singular value for output selection.

Part 4. Partia and indirect control with application to selection of temperature measurements in distil-
lation.

Part 5. Constraints and feasibility.

Except for the book of Skogestad and Postlethwaite (1996), preliminary versions of the above work are
available in the Ph.D. theses of Morud (1995), Glemmestad (1997) and Havre (1998), as well asin a
number of conference publications. These references are available on the Internet®.

Of earlier work, Morari et al. (1980) come closest to the ideas presented in this paper. Morari et al.
(1980) writethat in attempting to synthesize a feedback optimizing control structure, our main objective
isto translate the economic objectives into process control objectives. In other words, we want to find
a function ¢ of the process variables which when held constant, leads automatically to the optimal ad-
justments of the manipulated variables, and with it, the optimal operating conditions. [...] This means
that by keeping the function ¢(u, d) at the setpoint ¢, through the use of the manipulated variables «,
for various disturbances d, it follows uniquely that the process is operating at the optimal steady-state
J = Jopt. Thisisaactually precise description of the best self-optimizing control structure, except that
they do not consider the effect of implementation error ¢ = ¢ — ¢,. Unfortunately, they did not attempt
to further formalize the idea, and it seems that very few people, including the authors themselves, have
picked up onit | ater.

Although at first sight it may seem quite different, another related work is that of Shinnar (Shinnar
1981) (Arbel et al. 1996). Maarleveld and Rijnsdrop (1970) state that the steady-state optimum usually
isconstrained, and that we therefore should control the constrained variable. Arkun and Stephanopoul os
(1980) reach the same conclusion and provide a good discussion on the advantages of active constraint
control. Luyben and coworkers (e.g. Luyben (1975), Yi and Luyben (1995), Luyben (1988)) have stud-
ied unconstrained prablems, and some of the examples presented point in the direction of the selection
methods presented in this paper. However, Luyben proposesto sel ect controlled ouputswhich minimizes
the steady-state sensitive of the independent variable () to disturbances, i.e. to select controlled out-
puts (c) such that (0u/dd). issmall, whereas we really want to minimize the steady-state sensitivity of
the economic loss (1) to disturbances, i.e. to select controlled outputs (¢) such that (0L /dd). issmall.
Fisher et al. (1988) discuss plant economicsin relation to control. Narraway and Perkins ((Narraway et
al. 1991), (Narraway and Perkins 1993) and (Narraway and Perkins 1994)) strongly stessthe need to base
the sel ection of the contral structure on economics. Finaly, Marlin and Hrymak (1997) stressthe need to
find agood way of implementing the optimal solutionin termshow the control system should respond to
disturbances, “i.e. thekey constraintsto remain active, variablesto be maximized or minimized, priority
for adjusting manipulated variables, and so forth.” They suggest that an issuefor improvement intoday’s
real-time optimization systemsis to select the control system that yieldsthe highest profit for arange of
disturbancesthat occur between each execution of the optimization.

For amore detailed literature review and a more precise defintion of terms, the reader is referred to
the following internal report

S. Skogestad and T. Larsson, “A review of plantwidecontrol”. Availableat: ht t p: / / www. chenbi o. nt nu. no/ us

htt p: // ww. chenbi o. nt nu. no/ user s/ skoge/



2 Optimization and control

Thefocus on this paper on selection of controlled outputs (task 1), which is probably the least studied of
the structural decisions. But ask the question:

Why are we controlling hundreds of temperatures, pressures and compositionsin a chemical
plant, when there is no specification on most of these variables? Isit just because we can
measure them or is there some deeper reason?

To answer this problem we need think more carefully about why we do control. First, thereis the
issue of stabilization and then of keeping the operation within given constraints. These issues may con-
sume some degrees of freedom (e.g. to stabilize levelswith no steady-state effect and to satisfy product
specifications), but there will genereally be many degrees of freedom left. What should these be used
for?

Loosdly speaking, they should be used to “optimize the operation”. There may be many issuesin-
volved, and to trade them off against each other in a systematic manner we usualy quantify a scalar
performance (cost) index J which should be minimized. In many cases thisindex is an economic mea
sure, e.g. the operation cost. Since the economics of plant operation usually are determined mainly by
steady-state issues, the analysis of how to use the remaining degrees of freedom can often be based on
steady-state considerations, and their optimal values may be found using steady-state optimization. The
resulting optimization problem may be very large, with hundreds of thousands of equations, and hun-
dreds of degrees of freedom. However, with todays computers and optimization methodsthisproblemis
easily solvable, and it isindeed solved routinely in some plants, such as ethylene plants.

However, itisoften much lessclear how the optimal solution should actually beimplementedin prac-
tice. Three aternative solutionsare shown in Figure 2:

(& Open-loop optimization.
(b) Closed-loop implementation with a separate control layer.
(c) Integrated optimization and control.

It should be stressed that in all the cases the “ optimization” may be performed manually (by operatorsor
engineers).

InFigure 2 the" process’ denotesthe process as seen fromthe optimizationlayer, soit may actually be
apartialy controlled plant. Correspondingly, the variables « denote the independent variables (degrees
of freedom) as seen from the optimization layer, and typically consists of setpoint for the lower-layer
controlelrs. that is different from m, and we will use the symbol « to denote this set which includes
setpointsfor the lower layers. Only at the lowest layer dowe have v = m;

The open-loop implementation (a) wherewedirectly manipulatem can generally not be used because
of sensitivity to uncertainty.

From a theoretical point of view, the centralized scheme in (c) should be the best implementation.
Here, the optimizing controller stabilizesthe process and al so updatesthe model (using feedback) and at
the same time perfectly coordinates al the manipulated inputs based on dynamic on-line optimization.
However, there are fundamenta reasonswhy such a solutionis not the best, even with todays and tomor-
rows computing power. The main reason is probably the cost of modeling; in the centralized controller
there are no predetermined links, so the controller must rely only on the model to take the right action.

On the other hand, if we uselocal controllers (which use only a subset of the measurements and ma-
nipulators), then the task of each controller iswell-defined (e.g. keep the temperature at its setpoint) and
we can often tune the controllers with a minimum of modelling efforts. In fact, by cascading feedback
loops, it is possibleto control large plantswith thousands of variables without the actual need to develop
any models. In any case, we find that in practice the hierarchical feedback implementation (b) is pre-
ferred. It consists of

e Optimizationlayer — computes setpointsc, for the controlled variables ¢



Objective Objective Objective

Ootimizi Measurements
Optimizer Optimizer ngtrrncglzlg Vv
¢ Cc
S
m
O
Controller
u
u u
Disturbance
d —— Process d — Process d —— Process
Measurement l l
noise 5 n S
@ (b) (©

Figure 2: Alternative structuresfor optimization and control.

e control layer — implements this in practice, with the aim of achieving ¢ ~ ¢, (in practice we
achieve ¢ = ¢, + e where e is the control error; at steady-state and with integral actione = n
where n isthe measurement noise).

In process control applications, the optimization layer typically recomputes new setpoints ¢, only about
every hour or so, whereas the feedback layer operates continuously. Since the data and model used by
the optimizer are uncertain and there are disturbances entering the plant between each re-optimization,
the objective of the feedback layer isto keep the plant close to its optimal operating point in spite of this
uncertainty.

Why do we select a particular set ¢ of controlled variables? (e.g., why specify (control) thetop com-
position in a distillation column, which does not produce final products, rather than just specifying its
reflux?) The answer to this questionis not obvious, because at first it seems like it does not really mat-
ter which variables we specify (aslong as al degrees of freedom are consumed, because the remaining
variables are then uniquely determined). However, thisistrue only when there is no uncertainty (distur-
bances, noise or model uncertainty). When there is uncertainty then it does make a difference how the
solutionisimplemented, that is, which variables we select to control at their setpoints.

We also stress that the analysisbelow is based on steady-state considerations. The main justification
for thisis, as mentioned above, that the economic performance ismainly determined by steady-state con-
siderations. Of course, one could extend the analysis on a frequency-by-frequency basis, and includein
the variable e information about how well a variable can be controlled at a given frequency. However,
thiswould complicatethe analysis, and shoul d therefore be used only when needed, and isnot considered



any further here.

3 Sdlecting controlled variablesfor optimal operation

3.1 The performanceindex (cost) ./

We assume that the optimal operation problem can be quantified in terms of ascalar performance index
(cost) J, such that the objective of the operation isto minimize .J with respect to the available degrees
of freedom. .J may be a purely economic abjective, but is more generally aweighted sum of the various
control objectives. For the optimizationitself it does not really matter which variables we use as degrees
of freedom as long as they form an independent set. Let the “base set” for the degrees of freedom be
denoted « (thesemay consist, for example, of asubset the physical manipulatorsm). In addition, the cost
will depend on the unknown disturbances d (which here is assumed to include uncertainty in the model
and uncertainty in the optimizer). We can then write .J (u, d). The nominal value of the disturbancesis
denoted dy,, and we can solve the nominal operating problem and obtain w,,:(do) for which

mmuJ(u, do) = Jopt(dO) = J(uopt(d0)7 do)

From this we can obtain a table with the corresponding optimal value of any other dependent variable,
including cop¢(do).

Theissueisnow to decide how to best implement the optimal policy in the presence of uncertainty by
selecting the right set of controlled variables ¢ with constants setpointsc, = c¢,,:(do). Hereitisassumed
that the number of controlled variables iy equalsthe number of independent variables «, or more exactly
that we starting from ¢ = f(u, d) can derive the inverse relationship

U= f_l(cvd)

where the function f~! existsand is unique.

Instead of evaluating the mean val ue of the performance index, it may be better to eval uatethe aways
positiveloss function. Theloss function expresses the difference between the actual operating costs (e.g.
obtai ned when we adjust « in order to keep ¢ at a given setpoint) and the optimal operating cost (obtai ned
with u = uype(d)),

L(u,d) = J(u,d) — Jopt(d) (1)

The objective of the operation isto minimize .J (or some average of .J), or equivalently to minimize the
loss L. Thelossfunction is zero if we use the optimal policy © = wu,,:(d). Theloss has the advantage
of providing a better “absolute scale’ on which to judge whether a given set of controlled variables ¢ is
“good enough”, and thusis self-optimizing.

3.2 Open-loop implementation

Let usfirst consider an open-loop implementation where we attempt to keep « constant at the value .
With this implementation the operation may be non-optimal (with a positive loss) due to the following
reasons

1. Thevalueof u, isdifferent from the optimal value u,(d).

2. The actua vadue of « is different from u, (due to an implementation error caused by imperfect
control).

This can be seen more clearly if we write the actual input as

u:u5—|—u—u5 (2)
N——

€y



where e, isthe implementation error for «. In process control, « is often aflowrate, and it is difficult in
practice to obtain exactly the desired value u, so e,, may be large. 2
Introduce the optimization error

Cuopt(d) = s — Ugpt(d)
Then the difference between the actual and optimal input, which causes a positive loss, can be written
U — uopt(d) = Us — uopt(d) + ey, = eu,opt(d) + €y (3)

i.e. itisthe sum of the optimization error and the control error. In summary, the open-loop policy isoften
poor; both because the optimal input val ue often depends strongly on the disturbance (so e, .« islarge),
and because we are not able to implement « accurately (so e,, islarge).

3.3 Closed-loop implementation

Asalready mentioned, in theory, thetruly optimal solutionwould beto use some “ optimizing controller”
which uses the measurements information (feedback) to correct the model and estimate the disturbance
d, and based on this computes a new optimal value u,,, (d). The main problem with this approach isthe
modelling effort, and the lack of theoretical toolsto ensure robustness (insensitivity to uncertainty).

In practice, asimpler closed-loop implementationis preferred if it yields acceptable operation (10ss).
Thisisto use directly the measurements ¢,,, of the selected controlled variables and adjust « in an inner
feedback loop to achieve ¢,,, ~ c,, wherein most cases ¢, = c,,¢(do), i.e. ¢, comes from solving the
nomina optimization problem. Theideais that by keeping ¢,, ~ ¢, we achieve an operation where
the deviation v — u,,:(d) is smaller than for the open-loop policy (in the open-loop policy we keep «
constant, but thisisnot optimal in theface of disturbances). Thismay happenbecausec,,;(d) isrelatively
insensitiveto d and/or because ¢ may more accurately controlled. We next formalize theseidess.

We here rewrite the problem with the variables ¢ as independent variables rather than the original
independent variables (inputs) «. However, note that we as a special case may choose ¢ = «, or some of
the elements in the vector ¢ may be the original input variables. Thus, the open-loop implementation is
included as a specia case.

If we compare the open-loop and closed-loop policiesthen the question is:

Isit best adjust theinput variables « such that « = u; + e,, (Where ¢, istheimplementation
error for the input ), or isit better to adjust « = f~!(e, d) in feedback fashion such that
¢ = ¢s + e (Where e istheimplementation error for control of ¢) ?

Moregenerdly, if thereare many alternative setsof variables ¢ which can bemeasured and controlled,
which set should be used? If we let y,,, represent al the candidate measured variables then we can write

¢ = g(Ym,u) 4

where thefunction g isfree to select. An open-loop policy isobtained with ¢(y,,,, «) = u. Linearized in
terms of deviation variables (4) becomes

Ac = C1Ay,, + CyAu (5)

The issue is then to find the optimal choice for the matrices C'y and C5, but under the restriction that
the number of controlled variables (¢’s) equals the number of independent inputs (u’s). If we use only
feedback then C; = 0. If wedisallow “combined” controlled variables, thenthematrix C' = (C;  Cy)
isaa“selection matrix” with only one nonzero element (a 1) in each row.

2The implementation error e,, may be reduced in some cases if we measure the variable u and implement an inner control
loop with setpoint «,. However, aso in this case there will be a control and a measurement error; if we use integral action then
at steady-state e,, will equa the steady-state measurement error (noise).
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To compare the alternative choices we then evaluate the objective function, or equivaently the loss
function, for alternativevaluesof the disturbanced and theimplementation error e.. The optimal choice
for of controlled variablesc (i.e. optimal choice of the matrix C) is then the one that minimizes some
average value of theloss

L(u,d) = L(f '(cs +e,d),d) (6)

for the expected set of disturbancesd € D, and expected set of implementation (control) errorse € &£.
In the simplest case we select the setpointsas ¢; = ¢,,:(do), but the value of ¢, may also be the subject
to an optimization.

The difference between the actual and optimal outputs, which causes a positiveloss, can be written

¢ — Copt(d) = s+ € — copt(d) = eope(d) + € (7

i.e itisthe sum of the optimization error e, (d) = ¢, — c.p¢(d) and the control error e.
Asaready mentioned, if there where no uncertainty (i.e. d = dg and e. = 0), thenit would make no
difference which variable ¢ that were chosen.

3.4 A procedurefor output selection (Method 1)

We are now in a position to formulate a procedure for selecting controlled outputs ¢. Preferably, one
should find severa candidate sets of candidate outputs, which could be further analyzed to see if they
are adequate with respect to other criteriathat may be relevant, such that the input-output control lability
(including the presence of RHP-zeros).

1. Define the optimal operation problem (including specifying the cost function .J to be minimized)

2. Solvetheoptimization problemat agivennominal operatingpoint. Thatis, findw,,(dy) by solving
the nominal optimization problem
mingJ (u, do)

where
u —“base set” for the V,, degrees of freedom
dy —nominal value of the parameters (disturbances)

3. Thisyieldsatablewith the nominal optimal values of all variables, ¢, (do)).
4. Define the uncertainty:

(8 Fortheoptimization: Definethe magnitudeor set of unknowndisturbances(d € D) (including
any changes that occur between each reoptimization). Treat also errorsin the data and model
for the optimizer as disturbances.

(b) For each candidate output variable (y): Define the magnitude or set of control error (e € &
(e.g. dueto measurement error)

5. Repeat for each candidate set of V,, output variables (y's)
(8 Evaluatethe cost function ./ (¢, d) with fixed setpoints

c=c¢s;+e€

where ¢, = co = ¢,p¢(do) iStaken from the above table.

Do thisfor al disturbances (d € D) and al control errors (e € £).
(b) Computethe“mean” cost, J,,... (Or equivaently, the mean 10ss)

6. Select as the controlled outputs the candidate set with the lowest “average” cost (or retain al the
sets with an acceptable loss for further screening)

Comments



1. Instead of evaluating the cost J we may equivaently evaluate theloss /..
2. Thereare many possibilitesfor defing the mean cost , J.;cqr ., fOr example,

(& Mean cost over afinite set (e.g., max, nominal, min for each disturbance and each control
error)

(b) Mean cost from “Monte-Carlo” evaluation of given distributionof d and e
(c) Worst-case loss (compared to true optimal)

3. Thecomputationload can besignificantly reduced if weusealocal anaysisbased onaTaylor series
expansion of .J or L. Thisisdiscussedin section4.7.

4 Taylor seriesanalysis

In thissection we study the problem of selecting controlled outputsby expanding the cost function around
anominal optimal operating point. Tothisend, we hereassumethat the cost function./ issmooth, or more
precicely twice differentiable, at the operating point we are considering.

We assume that the nominal disturbanceisd, and that the nominal operating point isoptimal, i.e.

g = Uept(do) and co = cope(do)

so that we have J (ug, do) = Jop:. We next consider a disturbance and input change so that the new
disturbanceis
d=dy+ Ad

and the new input is
= ug + Au

where Au is theinput change. The input « will generally be different from the optimal input, w,,:(d),
and we define the deviation from the optimal value as

Au' = u — ugp(d)

(Similarly, we define Ac’ = ¢ — ¢,,¢(d), €tc.). Theissueisnow what effect a nonzero value of Au’ will
have on the operation (as quantified by the value of the lossfunction ).

4.1 Expansion of the cost function
A second order Taylor series expansion of the cost function gives

T, d) = (o, do) 4+ T (u = o) 4+ TF (d = do) + 5 (u = 10)” (1 = o)
45 (d = do)a(d — do) + (d — do) T — o) + O ®

where al derivatives are evaluated at the optimal nominal operating point (with d = dy and u = ug =
uopt(do)), asindicated by using the subscript 3. We have

aJ
Ju= (a—u)o =0
aJ
Ja= (%)0

0%J
Juu - (W) .

10



0%J
od? | |
0%J
Jua = (8u8d> o
Note that .J, = 0 because the Jacobian with respect to the independent variables must be zero at the
optimum. We can write the expansion in (8) more compactly as

sma=sma+ (&) (30) 5 (30) #(3) @

T
where H isthe Hessian matrix of .J with respect to (ig) ,

Juu Jud )
H =
( Jaw  Jaa
The Hessian matrix is adways symmetric, so .J,,,, and .J4; are symmetricand J,,; = Jcﬂ. Since the ex-
pansion is performed at the point where J has aminimum, we have that A’ J,,, Au is positivefor any

nonzero vector A, i.e. J,, is positiv definite, .J,, > 0 (if the minimum is asaddlethe Au” J,, Au is
zero in somedirection and .J,,,, is positive semidefinite, .J,,,, > 0).

4.2 Theoptimal input

The nominal operating point (o, do) isassumed to be optimal se we have ug = u,,:(do), and as noted

the Jacobian must be zero,

oJ
Ju = %(U(),do) =0
Next, consider a disturbance and input change so that the new operating point is (u«, d) and the new Ja-
cobianis 97
[— R
An first-order expansion of the Jacobian gives

I = Ju 4 Juu(u — uo) + JL,(d — do)

We assume that we change the input so that also the new operating point is optimal, i.e. v = ¢ (d).
Then we must also here have that the Jacobianis zero, i.e. .J, = 0, and we get

0 = o (opt(d) = wopt(do)) + Ty (d — do)

and wefind that that afirst-order accurate approximation of the optimal input iwhen thereisadisturbance
changeis

topt () = topt(do) =T Jau(d — do) (10)

Uo

4.3 Expansion of thelossfunction

L et us now consider theloss function

L(u,d) = J(u, d) — J(wopt(d), d)

11



Expand J (u, d) around the perturbed point (., (d), d) (whichiscloseto but not the same asthe nominal
point (uept(do), do). We get

) 2 Tt (@), ) -1, (0= g d) + 50— o () T 0 = () (21

where the’ denotes that the derivatives are evaluated at the perturbed point. However, it turns out this
does not matter. First, since also the perturbed point is optimal, we must havethat .J/, = 0. Second, .J/,
can be expanded in terms of .J,,,,,

Jilw = Juu + Jgud(d - do) + Jguu (uopt(d) - uopt(do))

but the resulting third order terms can be neglected upon substitutioninto (11), which then givesthefol-
lowing second order accurate expansion for the loss function in terms of the deviation from the optimal
input, Au' = u — uyp(d),

1 1
L= §(u — uopt(d))TJuu(u — Uppt(d)) = §Au’TJuuAu’ (12)

whichisavery useful expression.

Comment. To confirmthat the approach taken when deriving (12) isacceptable, we shall rederive (8) by expanding
inonly“ one” variable (v or d) at atime. Let here a double prime ("’) denote that the derivative is evaluated at the
point (ug, d). We then have by first expanding in « (with d constant)

1
J(u,d) = J(ug, d) + J;’T(u —ug) + §(u —ug) T T (u — uo) (13)
We then expand in d the terms that were not at the nominal operating point,
1
J(uo, d) &~ J(uo, do) + JF (d—do) + 5(d— do)" Jaa(d — do)

JI = Ju(uo,d) ~ Jy + JLy(d — do)
and with J!/, ~ J,,,, and substituting into (13) we rederive (8).

4.4 Losswith constant inputs

Assume there is a disturbance change, but we attempt to keep the input fixed at its nominaly optimal
vaue ug, i.e.
Us = Ug

whereug = uq¢(do). We usetheword “attempt”, sincein practice there will be an implementation error
so the actual input will be
U= Us + €y

where e,, isthe implementation error for the input. Then from (10) the deviation from the optimal input
is

Au' = u — upp = T T Ad+ ey 14

uu

and we can evauate the resulting loss from (12).

45 Losswith constant controlled outputs
As aready mentioned, the outputs ¢ are related to the inputs and disturbances by the relationship

c= f(u,d)

12



The corresponding linearized relationship in terms of deviation variables (Ac = ¢ — ¢y, €c.) is
Ac = GAu+ Gy4Ad (15)

where G = (9f/ou)T and Gy = (0f/0d)T.
Assumethereisadisturbance change, but we attempt to keep the control output fixed at its nominally
optimal value ¢, i.e.
Cs = Co

where ¢ = c.pt(do). We use the word “attempt”, because, in practice, there will be an implementation
error so the actua controlled output will be

c=cs+e (16)

where ¢ is the implementation error (typicaly, the sum of the measurement error and the control error).
We havein thiscase Ac = e, so from (15) the corresponding input changeis

Au= -G 'GyAd+ G e

and from (10) the resulting deviation from the optimal input is

Au' ==ty = (Jl Sy — GT'Ga) Ad+ G e (17)

The optimal choice for the controlled outputsis the one that minimizes the “ mean” value of the loss
1 1" /
L= §Au JuuAu

for the expected disturbances (as expressed by the magnitude Ad) and the expected control error (as ex-
pressed by the magnitude of ¢). Note that the matrices .J,,,, and .J;}.J,, areindependent of the choice of
controlled outputs.

451 Alternativeform

Andternativeform isto expressthe lossdirectly in terms of the controlled outputs. A similar derivation
asfor theinputs, see (12), gives

1
L= §AC/TJCCAC/ (18)

where Ac’ = ¢ — ¢, (d) and
Joo = G WG

(thelatter followsfrom A¢’ = GAw')., We see that .J... depends directly on the choice of the controlled
outputs through the matrix G—1), and to keep .J.c and thus L small, we want G—! small. The deviation
between the actual and optimal output, A¢’, will be nonzero due to the presence of two generaly inde-
pendent terms,

Ad = e+ € (29

wheree,,: = ¢ — c,¢(d) isthe optimization error (introduced by attempting to keep ¢ at ¢, rather than
a copi(d)), and e = ¢ — ¢, istheimplementation or control error (introduced by incorrect measurement
and poor control of ¢).
We may also express the optimization error directly in terms of the disturbance. Using the linearized
model in (15)
—€opt = Copt(d) — co = G (uppt(d) — ug) +G4Ad

Ac Ay

13



where from (10)

uopt(d) — Up = —Ju_ul Jdu (d — do)
—_——
Ad
and wefind
eopt(d) = ¢ = Copr(d) = (GIZ = Ga) Ad (20)

where ¢; = ¢o. We will return to this expression shortly.
Remark. Obviously, substitution of (20) and (19) into (18) gives the same expression for theloss I. as a
function of e and Ad, as the one we obtain by substituting (17) into (12).

4.6 “ldeal” choiceof controlled outputs

If we for the moment disregard the control error e, then theideal choice of controlled outputs would be
to have e, (d) = ¢; — cope(d) = 0 for any value of d. Here c; = ¢, is constant, so to achieve this,
we need the optimal value of output to be independent of the disturbance. An example of such an ideal
output would be to have adirect measurement of the gradient of the cost function with respect to theinput
(sinceit is optimal for any disturbance to have this gradient zero, we could directly specify its setpoint
at zero). In particular, consider the following output

3 +co=c1Ju+co (21)
U

where ¢y and ¢, are constants. To see that this output would be “ideal”, we linearize (21) to get
Ac = JypAu+ JEAd

i.e. wefindtha G = .J,, and G4 = Jqu = J4u, Which upon substitutioninto (20) givese,,: = 0.

However, as we see when studying, for exampl e, sel ection of measurement locationsin adistillation
column, the implementation error ¢ may be a very important factor, and the “ideal” output may not be
the best after all.

4.7 A procedurefor output selection (Taylor-version of Method 1)

Thecomputationsfor the procedure (method 1) giveninthe previous section can bevery time-consuming,
but they can be reduced significantly if we usethe local Taylor series approximations derived above.
Upon substitution of (17) into (12) we can write

1 1

L= §ZTZ = §HZH§ (22)
where || z||, denotes the 2-norm of the vector = and by
e= I | (TalJaw — GT1Ga) Ad +Ge (23)

Let the elements in the positive diagona matrices W, and W, represent the expected magnitudes of
the disturbances and the control errors, i.e. let

Ad = WyAd

e=W.e

where we assume )
1Adllz <15 Jlefl < 1
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Minimization of the loss I for any (worst-case) combination of disturbances and control errorsis then
equivalent to minimizing induced 2-norm (maximimum singular value) of the matrix

M= (M, M) (24)
where
My = I3 (J2t Ja — G Ga) Wy
M, = JM2G'w,
1

where Jul/LQ J’i’t{,z — Juu
Thus, if we assume that the disturbances and control errors are two-norm bounded then we have that

and the procedure becomes
1. Define the optimal operation problem (specify the cost function .J).

2. Solve the optimization problem at the given nominal operating point and find the second-order
derivatives of the cost, .J,,,, and .J,.4, a thisnomina optimal operation point.

3. For each candidate set of controlled variables obtain the linear model Ac = GAu + G4Ad.
4. Define the uncertainty:

(& Theeementsin the diagona matrix W, represents the magnitude of each disturbance

(b) Theelementsinthediagona matrix W, represents the magnitude of the control error for each
output ¢ (e.g. due to measurement error)

5. For each candidate set compute the singular value of the matrix M, a(M).
6. Select as the controlled outputs the candidate set with the lowest value of theloss L = 15 (M).

Comment. We can easily use thisapproach to search for the best linear combination of measurementsy,,,
and independent inputs « to control,

Ac= C1Aym + ChAu

wherethematricesC'; and C', arefreeto choose, but we make therestriction that the number of controlled
variables (¢'s) equals the number of independent inputs (u’s) (recall the comments following (5)).
We first identify all the candidate measurements y,,, and obtain the linear model

Ay = G™Au+ G Ad

We al so need to identify (or at |east estimate) the control error (measurement noise) associated with con-
trolling the measurements and inputs, and collect these in the diagona matrices W..,,, and W.,,.
The matrices used in the procedure above then become

G=C+CG™

Gy=CiGT

and the j'th diagona element in the matrix control error matrix W, isgiven by

We ;= ZC%WQ

whereC' = (C; Cy) and W,,, = diag{W.,.,, Weu }.
It isthen possibleto find the choice for C' which minimizes ..
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5 Relationship toindirect and partial control

Here we consider a special problem which from the outset is a setpoint problem

1 1
J = 5(91 - y1s)TW(yl — Y1) = §€1TW€1 (26)

where W > 0 isaweighting matrix, and y; are the primary output variables. In this case the optimal
cost for any disturbancisto have J,,; = 0, o we have that the loss equalsthe cost, L = .J.
Notethat y; .+ = Y15, and we may write

€1 =Y1 —Yis = (yl - ylo) - (y1s - ylo) = Ay — Ay

wherewe have sel ected the nominal operating point suchthat iy,0 = 315s. To makethe probleminteresting
we assume that the “ideal” choice of outputsc = g, can or should not be used because direct control of
y isdifficult or impossible. We therefore instead consider controlling the secondary outputs s (i.e. we
choose ¢ = ;). Theideaisto find a set of variables y, such that keeping 3> close to the setpoint -,
indirectly achieves good control of 4, (i.e. i, iskept closeto ).

Thelinear model relating the variablesis

Ayl = GlAu + GdlAd (27)
Ayy = GoAu+ G Ad (28)
where Au = u — o, etc. We assume that the nominal operating point (ug, do) isoptimal, i.e. y10 = y1s.

1. Let usfirst use our derived relationshipsto confirm that the outputs ¢ = y; would be idedl (this
isreally just acheck of our derived formulas). We assume here that the setpointsy; s are constant
(since we assumed in the derivation above that ¢, is constant), i.e. wehave Ay;;, = 0ande; =

Ayp. We get
1
J = §Ay1TWAy1 = (G1Au+ G Ad)TW (G1Au + G g1 Ad)
and we get that
Ju = (G1Au+ G Ad)TWGE,

Ju = GTWa,

JE =aTwa,
and from (20) we get as expected

Eopt = Cs5 — Copt(d) = (GIJu_uleu — Gdl)Ad =0

2. Let us next consider the more interesting case of selecting ¢ = -, where we keep the setpoints
constant, 2, = y20. Rewriting the linear model gives

€1 = G1G2_1 es + (G — Gle_lGdz) Ad — Ay, (29)
N—_——’
P, Py

where P are called the partial control gains. (To derive thiswefirst solve (28) with respect to «
Au =Gy Ays — Gy G pAd

and then substitutethisinto (27) and use thefact that Ays = e; and Ayy = ey + Ayy s to get (29)).
To minimize the cost function J wewant e; = y; — y1s Smal. (29) shows how e, is affected by
disturbancesd, by the control error for the secondary variables, e;, and by changesin the setpoints
Yis-

L et usheredisregard setpoint changes for the primary outputs, i.e. let Ay, , = 0. If wefurthermore
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e scaletheoutputsy, suchthat W =1
e scale the outputs i, sich that the expected control error e5 is of magnitude 1
¢ scale the disturbances such that the expected disturbance change Ad is of magnitude 1

then we see from (29) that to minimize e, (and J) we should attempt to minimize the combined
norm of the matrices P, and P; (appropriately scaled).

This simple approach has been used on a distillation case study (Havre 1998). Here we find that
we can not use temperature measurements located at the end of the column because of sensitivity
to control error e, (measurement noise) (as seen since the scaled matrix P, is large), and we can
not use measurements closeto the middle at the column yield because of sensitivity to disturbances
(as seen since the scaled matrix Py islarge). The best balance between sensitivity to measurement
noise and disturbancesis found when the measurements are located somewhere between the end
and the middle of the column.

. Anadternativeform of (29) is

€1 =Y1 — Yis = Py(€2 + e?,opt) (30)

where by definition

€2.0pt = Y25 — y?,opt(dv yls)
is the difference between the chosen constant setpoint for y, 125 = %20, and the optimal value
Y2,0pt(d, y15) that corrspondsto e; = y; — y1, = 0. Wemay obtain e, ,,; by settinge; = 0in(29)
and solving for e;. We get

Pyez,opt = Ays — P4Ad

and substituting thisinto (29) gives (30).
Expression (30) is rather obvious, but it is nevertheless very useful in some cases, and forms the
basis for the common rule of minimizing the minimum singular value (see below).
Comment: Another way of deriving (30) isto use (for any d)

Y1 — Yiopt = Gl (u - uopt)

Y2 — Y2opt = GQ (u - uopt)

WhiChSinceyl —Yiopt = Y1 —Y1s = €1 and Y2 — Y2opt = (92 - y25) + (y25 - yQOpt) = €2 — €20pt
directly gives (30).

. By replacing P, and F; by the corresponding transfer function matrices, P, (s) and P, (s), we can

extend these results to nonzero frequencies.

Maximizing the minimum singular value (M ethod 2)

Let the matrix G represent the effect on the controlled variables ¢ of asmall change in the “base set” of
independent variables u, i.e..

Ac=G - Au

Then, acommon criterion (rule) in control structure design isto select the set of controlled outputs that
maximizes the minimum singular value of the gain matrix, o (&) (Yu and Luyben (1986) refer to thisas
the“Morari Resiliency Index”). Previously, thisrule has had little theoretical justification, and it has not
been clear how to scale the variables. However, asindicated by Skogestad and Postlethwaite (1996) the
rule may be derived by considering alocal approximation of the loss function.
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Itisdesirableto select thecontrolled variablessuch that thelossisminimized. For agiven disturbance
d, aTaylor series expansion of theloss at the optimal point (where u = w,,:(d)) gives

1 (0%
AL = J(U7 d) — J(uopt7 d) = §(U — uopt) W (U — uopt) (31)
opt

(where we have assumed that the problem is unconstrained, so that the first-order term 9.J /du is zero.)
Thus, the | oss depends on the quantity « — u,,,; Which we obviously want as small as possible. Now, for
small deviationsfrom the optimal operating point we have that the candidate output variables are related
to theindependent variablesby ¢ — ¢,,t = G'(uw — ugpt), OF

U — Ugpt = G_l(c — Copt) (32

Sincewewant « — u,,; assmall aspossible, it therefore followsthat we shoul d select the set of controlled
outputs ¢ such that the product of G~! and ¢ — ¢,,; is as small as possible. Thus, the correct statement
of theruleis:

Assume we have scaled each output ¢ such that the expected ¢ — ¢,,; is of magnitude 1 (in-
cluding the effect of both disturbancesand control error), then select the output variables ¢
which minimizethe normof =1, which in terms of the two-normis the same as maximizing
the minimum singular value of G, o (G).

Interestingly, we notethat thisrule doesnot depend on the actual expressionfor the objectivefunction
J, but it doesenter indirectly through thevariation of ¢,,; with d, which entersinto the scaling. Also note

that in the multivariable case we should scal e theinputs« such that the Hessian (227‘27) iscloseto unitary
(Skogestad and Postlethwaite, 1996). Also notethat useof therule may be computationally much simpler

than eva uating the mean value of .J or theloss function.

Example

To giveasimple“toy example’, let J = (u — d)* where nominally dy = 0. For this problem we always
have .J,,:(d) = 0 corresponding to u,,:(d) = d. Let isnow consider three alternative choices for the
controlled output (e.g. we can assume they are three alternative measurements)

cg =01(u—d); cg=20u; c3=10u—5d

For the nominal case with dy = 0 we havein all three cases that c,,:(dy) = 0 so we select in all three
casesc; = 0. Sincein al cases u,,:(d) = d, the optimal value of the controlled variable for the three
cases are ciopt(d) = 0, coopt(d) = 20d and 3., = 5d.

Method 1. The losses can for this example be evaluated analytically, and we find for the three cases

Ly = (10e1)%; Ly = (0.05¢5 — d)?; Lz = (0.le3 — 0.5d)°

(For example, incase 3, wehaveu = (c3+5d) /10 and with cz = c35+e3 = ez weget J = (u—d)? =
(0.1e3 + 0.5d — d)?). If we further assume that the variables have been scaled such that |d| < 1 and
le;| < 1 then the worst-case values of thelossesare ., = 100, Ly = 1.05% = 1.1025 and L3z = 0.6% =
0.36, and we find that output ¢; is the best overall choice for self-optimizing control. However, with no
control error ¢; isthe best, and with no disturbances ¢, is the best.

Method 2. For thethree choices of controlled outputswehave Gy = 0.1,G, = 20 and G3 = 10, and
a(Gy) = 0.1, a(G3) = 20 and g(G3) = 10. Thiswould indicate that ¢, is the best choice, but thisis
only correct with no disturbances. Thereason for the error isthat we have not scaled the output variables
properly; in particular, we have not take into account the effect of the disturbances on the magnitude of
¢ — Copt(d).
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Let us now scale the variables properly. We have u,,; = d, sowehave ¢ o+ = 0, ¢2 e = 20d and
c3,0pt = bd. For ¢; wethen have that |¢; — ¢1 4] = 1 + 0 (the control error is 1 plusthe variation in
¢1,0pt(d) dueto disturbancesis 0), and we find that

1
IGT (e = cropt)| = 0l (1+0)=10

Similarly,
1
G (e2 = eaop)| = 55 - (14 20) = 1.05

1G5 (e3 = C3.0pt)| = 11—0 (145)=10.6
and we find as expected that ¢3 isthe best choice. Thus, the two methods agree.

In general, method 1 is more accurate that method 2. The main limitation with method 2, is that for
the multivariable case the particular value of ¢ — ¢,,:(d) corresponding the direction of the minimum
singular value of G may not occur in practice, that is, thereis no disturbancein this direction. Method 2
may therefore eliminate some viable control structures.

7 Discussion

7.1 Constraint problems

The approach outlined above may be extended to include problems with constraints,

min

" J(u,d)
subject to g1(u,d) =0 9
! g?(“v d) S 0

Problems with equality constraints are relatively straightforward, especialy if we can identify asingle
variable (manipulated or measured) directly related to the constraint; this should then be included as a
controlled variables ¢ (“active constraint control” (Arkun and Stephanopoul 0s1980)). Themain effect is
then that each constraint removes adegree of freedom for the optimization. The same argument holdsfor
inequality constraints where the optimal policy is always to keep the same constraint active (i.e. satisfy
them as equalities for any disturbance).

The more difficult problems are when we have ainequality constraint which isactive only under cer-
tain conditions (disturbances), and this constrained variable is not included as a controlled variable. For
such cases one must be careful to avoid infeasibility during implementation, for example, there may bea
disturbance such that the specified value of the controlled variable can only be achieved with anonphys-
ical valueof theinput (e.g. anegativeflowrate). Theon-lineoptimizationis usually for simplicity based
on the nominal disturbance (dy), and two approaches to avoid infeasibility are then

1. to use back-offs for the controlled variables during implementation, or

2. toadd safety marginsto the constraintsduring the optimization (Narraway et al. (1991); Glemmes-
tad (1997)).

Alternatively, one may solve the “robust optimization problem”, where one also optimizes ¢, for al the
possibledisturbances. A fourth, and better approach in terms of minimizingtheloss, isto track theactive
constraint, but thisrequiresamore complex control system. In particular, model predictivecontrol isvery
well suited and much used for tracking active constraints.
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7.2 Controllability issues

Of course, steady-state issues related to the cost ./ are not the only ones to be considered when select-
ing controlled outputs. It may happen that the “optimal” controlled outputsfrom a steady-state point of
view, may result in a difficult control problem, so that dynamic control performance is poor. This may
analyzed using an input-output controllability analysis. For example, in distillation column control it is
well-known (Skogestad 1997) that controlling both product compositions may be difficult due to strong
two-way interactions. In such cases, one may decide to control only one composition (“one-point con-
trol”) and use, for example, constant reflux L/ F' (although this may not be optimal from a steady-state
point of view). Alternatively, one may choose to over-purify the products to make the control problem
easier (reducing the sensitivity to disturbances).

7.3 Why separateinto optimization and control

Why is the controller decomposed? (1) Thefirst reason isthat it requires |ess computation. Thisreason
may be relevant in some decision making systems where there is limited capacity for transmitting and
handling information (like in most systems where humans are involved), but it does not hold in todays
chemical plant where information is centralized and computing power is abundant. Two other reasons
often given are (2) failure tolerance and (3) the ability of local unitsto act quickly to reject disturbances
(e.g. Findeisen et al., 1980). These reasons may be more relevant, but, as pointed out by Skogestad and
Hovd (1995) there are probably even more fundamental reasons. The most important oneis probably (4)
to reduce the cost involved in defining the control problem and setting up the detailed dynamic model
which is required in a centralized system with no predetermined links. Also, (5) decomposed control
systems are much less sensitive to model uncertainty (since they often use no explicit model). In other
words, by imposing a certain control configuration, we are implicitly providing information about the
behavior of the process, which we with a centralized controller would need to supply explicitly through
the moddl.
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