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Abstract

A hierarchical control system arises when design is done in a sequential manner. Typically, a chemical plant has at least
three layers; a regulatory (base) control layer, a supervisory control layer, and an optimizing layer. In this paper we will look
at possibility for imposing fundamental limitations by improper design of the lower layer control. One tool that is useful for
analyzing this problem is the concept of partial control. This tool is well suited because it shows how the plant will look as seen
from the higher layer controller. Analysis of these transfer-functions shows that we cannot introduce “new” limitations, provided
that we have access to the measurements of the already closed loops and can adjust the setpoints to the loops.

We find that if both y2 and r2 are available at the next level, then no new fundamental limitation are introduced as we can
cancel the lower layer controller by a posetive feedback. However if either y2 or r2 are unavailable then it is possible to introduce
new limitations for the higher layer:

� If r2 andy2 are unavailable, then it is possible to introduce new RHP-zeros in the transfer function fromu1 to y1 . However,
the zeros are generally located far into the RHP.

� If y2 is unavailable then it is possible to introduce new RHP-zeros at the location of RHP-poles.

� If y2 is unavailable then it is possible to introduce a sensitivity to uncertainty and disturbances into the remaining plant.

� One may introduce ill-conditioning into the problem. We have shown an example where we do the opposite (the DV-
configuration).

1 Introduction

A hierarchical control system arises when design is done in a sequential manner. Typically, a chemical
plant has at least three layers; a regulatory (base) control layer, a supervisory control layer with local opti-
mization (e.g. model predictive control), and an optimizing layer (usually based on steady-state optimiza-
tion). The functions in the two upper layers are often performed by humans. The regulatory (base) control
layer usually consists of PID controllers. The task of this layer is to “stabilize” the plant, so that it can be
operated manually, without the high level controllers in place.

Hovd and Skogestad (1993) proposed some rules for designing the lower layer. One of the points they
mention is that one should not introduce fundamental limitations, like RHP-zeros and ill-conditioning, into
the remaining control problem. The issue we want to address is whether this is really a problem. That is,
can an improper selection of the base control layer lead to unnecessary limitations which cannot be over-
come by the higher layers? By “unnecessary” we mean limitations which were not present as fundamental
limitations in the original plant. Such fundamental limitations includes

� Non-minimum phase behavior (RHP-zeros).

� Instability.

� Ill-conditions (as seen from large RGA-elements).

� Sensitivity to disturbances, and input saturation.
�To whom correspondence should be addressed. Email: skoge@chembio.ntnu.no
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Outline

We first introduce the idea of partial control, and then discuss how to cancel the effect of the lower layer.
We then discuss the possibility for RHP-zeros in subsystems under partial control. The next section is
devoted to a high-purity distillation column, where we seem to remove a fundamental limitation by level
control. In the last section, we address one case where feedback in the lower loop introduces a disturbance
into a measurement that is to be used at the higher layer.

We end the introduction with an example. The example is how to switch from the outflow to the inflow
as a manipulated variable for level control. This is an important example, because if a flow that is used
for controlling a level saturates, then we will loose level control.

Example 1 As an introductory example we study the simple case where we have a tank with two feeds and one exit stream.
One of the feeds are a disturbance. The exit flow is used for controlling the volume. Thus if there is a step in the disturbance it will
be propagate downstream. The question we want to answer is: Can a higher layer in the control layer redirect the disturbance
upstream?

The model of the system is

sV = Fi � Fo + Fd (1)

y =

�
Fo
V

�
; u =

�
Fi
Fo

�
; d = Fd (2)

y =

�
0 1
1=s �1=s

�
u+

�
0
1=s

�
d (3)

Control of level with the outflow (Fo = k2(y2 � y2s), where y2s is the setpoint), gives the closed loop response

y1 =
k2

s+ k2
u1 +

�k2s

s+ k2
y2s +

k2
s+ k2

d (4)

y2 =
1

s+ k2
u1 +

k2
s+ k2

y2s +
1

s+ k2
d (5)

With the level control in place a disturbance d results in a change in y1 = Fo. Assume that we want to redirect the disturbance
to the input u1 = Fi, but without breaking the level loop involving u2 and y2. We then have two inputs, Fi and Vs, that are
available. The most straigth forward way would be to use u1 to control y1. However a change in the disturbance will have to
affect the outflow befor the inflow can be adjusted. Is it possible to design a layer that avoids this, and how should it look like?
We will leave it to the reader to come up with this after having read the article.

2 Partial Control

One tool that is useful for analyzing this problem is the concept of partial control, (Skogestad and Postlethwaite
1996). We partition the input and output into two parts

y =

"
y1
y2

#
; u =

"
u1
u2

#

The linear model y = Gu+Gdd may then be written

y1 = G11u1 +G12u2 + Gd1d (6)

y2 = G21u1 +G22u2 + Gd2d (7)

It is assumed that the plant is partially controlled, by closing the loops involving the variables u2 and y2
with

u2 = K2(r2 � n2 � y2) (8)

Where r2 is the reference for y2 and n2 the measurement noise (y2+n2 is the measurement). This partially
controlled plant is shown in figure 1(a). The closed-loop response becomes

y1 = (G11 � G12K2(I +G22K2)
�1G21)u1 + (9)

(Gd1 �G12K2(I +G22K2)
�1Gd2)d+
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G12K2(I + G22K2)
�1(r2 � n2)

y2 = (I +G22K2)
�1G21u1 + (I + G22K2)

�1Gd2d+

(I +G22K2)
�1G22K2(r2 � n2)

We note that closing these loops does not reduce the degrees of freedom, at least provided that dim y2 =
dim u2, since the setpoints r2 introduced, may be available for the next control layer instead of u2.
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(a) The partially controlled plant.
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(b) Cancellation of the partial controller.

Figure 1: The partially controlled plant and the cancellation of the controller.

Another interestingrelationship is obtained by formally treatingy2 as an independent variable. Solving
(7) with respect to u2 then gives

u2 = G�1

22
y2 � G�1

22
G21u1 + G�1

22
Gd2d (10)

where we assume that dim y2 = dim u2 and thatG�1

22
exists. Substituting equation (10) into (6) then gives

y1 = (G11 � G12G
�1

22
G21)u1 + (Gd1 �G12G

�1

22
Gd1)d+ G12G

�1

22
y2 (11)

Here y2 = r2+e2, where e2 is the control error. If we assume perfect control then y2 = r2 and 11 becomes

y1 = (G11 �G12G
�1

22
G21)u1 + (Gd1 �G12G

�1

22
Gd1)d+ G12G

�1

22
r2 (12)

Note that (12) can alternatively be derived from equation (9) by assuming G22K2(I + G22K2)
�1 = I

(tight control) and n2 = 0 (no measurement error).
These equations are interesting since they show us how the plant will look like as seen from a higher

layer.

3 Cancellation of lower layer

Is it possible for the higher layer to cancel the effects of the control introduced at the lower layer? If this
is possible, then in principle, we cannot introduce any new fundamental limitation, since the higher layer
can achieve the same performance independently of the lower layer.

The answer to the question is yes and one way the lower layer can be canceled is shown in figure 1(b).
Here the positive feedback cancel the negative feedback and the controller K2 is inverted at the input
(assuming thatK2 is stable and minimum phase so thatK2K

�1

2
contains no unstable hidden modes). Note

that this scheme requires access to both y2 and r2.
Is it possible to cancel the effect of the feedback by just using feed-forward? If this was the case then

we would be able to cancel the controller without using y2. For simplicity let us assume that all outputs
are controlled, then our new plant is (no measurement noise)

y = Tr + SGdd (13)
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By applying the feed-forward controller r = T�1Gu0 we would get

y = Tr + SGdd = Gu0 + SGdd (14)

As expected we were able to restoreG. Note that the effect of the disturbance are nowSGd. So the answer
to the second question is “no”.

In conclusion cancellation of the lower layer is possible as shown in figure 1(b) if

1. y2 is available as a measurement at the layer above.

2. r2 is available as a degree of freedom at the layer above.

3. K2 is stable and minimum phase so that K2K
�1

2
contains no unstable hidden modes.

This conclusion is rather trivial but nevertheless important.

4 RHP-zeros and partial control

In this section we will look at the possibility of introduce any new RHP-zeros in parts of a partially con-
trolled plant. The closed loop response under partial control can be written"

y1
y2

#
= ~G

"
u1
r2

#
+ ~Gdd+ ~Gnn2 (15)

Where from equation (9) the new plant ~G becomes

~G =

"
G11 � G12K2S2G21 G12K2S2

S2G21 G22K2S2

#
; S2 = (I + G22K2)

�1 (16)

It is well-known that feedback does not change the location of the RHP-zeros, see appendix A for a proof
of this for a system under partial control1. This means that ~G will have the same (multivariable) RHP-

zeros as G =

"
G11 G12

G21 G22

#
. More exactly G

"
I 0
0 K2

#
and tildeG have the same zeros. Thus, no

new fundamental limitations are introduced (or removed) in ~G by applying partial control, provided that
the reference r2 are available for manipulation. At frequencies where control is tight we have

~G =

"
G11 �G12G

�1

22
G21 G12G

�1

22

0 I

#
(17)

However, in many cases we may want to use only u1 to control y1, or only r2 to control y1, and we
now want to study if new RHP-zeros can occur in the resulting subsystem, ~G11 or ~G12.

4.1 RHP-zeros in ~G11

The transfer function ~G11 + G11 � G12K2S2G21 from u1 to y1 may contain RHP-zeros not present in
the original system. For example it is well known that pairing on a negative RGA-element implies the
presence of a RHP-zero in ~G11 this was noted by sevral authors, Shinskey (1979) and Bristol 1977. For the
case of negative RGA and integral action control, Grosdidier and Morari (1985) presents a proof. Which
was generalized to non-integral control and MIMO systems by Jacobsen (1997).

The presence of a RHP-zero implies that there is a fundamental limitation, on the use of u1 to control
y1. However, the significance of the limitation depends on the location of the RHP-zero, and in this case
the new RHP-zero is generally located at frequencies at or beyond the bandwidth of the control system

1Even though RHP-zeros in the controller will be transmission zeros for the closed loop system, we will not consider them here. There reason
being that although is some cases it can be optimal to include RHP-zeros in the controller, (Morari and Zafiriou 1989), is rarely used, at least in
the lower layers.
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involving the other outputs y2. This means that if we require time-scale separation, i.e. that the bandwidth
if the outher loops are much less than the inner loop (i.e. that wB1 � wB2), such that we effectively can
assume that y2 is perfectly controlled, then the RHP-zero will not pose much of a limitation.

More specifically, for a plant under perfect control of y2 we have

Theorem 1 Given a functionallycontrollable plantG for which it is possible to achieve perfect control for
a subset of inputs and outputs denoted byG22. The remaining part of the plant, assuming perfect control,
G11 �G12G

�1

22
G21 will only contain RHP-zeros from the original plant.

The proof is included in the appendix B. Rosenbrock (1970) presented a similar conditionwhen all outputs
but one are under perfect control.

Example 2 To illustrate the points above, we consider the following plant

G(s) =

�
1 1
2 1

�
(18)

The (1; 1)-element of the RGA for this plant is �11 = �1. Pairing on this negative RGA element, by closing a loop u2 = 0:5=s,
gives the remaining plant

y1 =
2s� 1

2s+ 1
u1 (19)

Thus we get a RHP-zero in the subsystem. However for the plant with the setpoints as manipulative variables we have

y1 =
2s� 1

2s+ 1
u1 +

1

2s+ 1
r2 (20)

y2 =
4s

2s+ 1
u1 +

1

2s+ 1
r2 (21)

As expected the RHP-zero in the transfer function for u1 to y1 is not a multivariable zero in the transfer function from (u1; r2)
to (y1; y2). Thus it is only a fundamental limitation for a SISO controller. Furthermore the RHP-zero is at 0:5 which is the same
as the bandwidth of the inner loop (L2 = G22K2 = :5=s).

It is however easy to construct examples where the zero appears in at a point well below the bandwidth
of the system. We believe that this is will occur when pairing on elements with large RGA-elements.

4.2 RHP-zeros due to RHP-poles

We here consider the case where the set u1 is empty and we want to use u2 to control y1. However, the
plant is unstable, and we also need to use u2 to stabilize the plant for which we have available the extra
measurement y2. Will this instability limit the performance of the control of y1? The answer is “yes”, at
least if the measurement y2 is not available for use at the layer above (this is generally the case).

This is most easily seen by considering the transfer function ~G12 from r2 to y1. For the limiting case,
when y2 is perfectly controlled ~G12 = G12G

�1

22
, and we see that if the instability is not detectable in y1

(i.e. G12 is stable) then ~G12 will have a RHP-zero at the location of the RHP-pole in G22 (because of the
term G�1

22
). More generally,

~G12 = G12K2(I + G22K2)
�1 (22)

and from the requierment of internal stability there has to be a RHP-zero inK2(I+G22K2)
�1. So, unless

that pole is present in G12, the RHP-pole in G22 will appear as a RHP-zero in the subsystem ~G12.
This is actually a fundamental problem that occurs if we attempt to use variables involved in a stabi-

lization loop for control of a variable that does not contain this instability. To avoid this problem we would
need to either stabilize the plant using some other input or to introduce more degrees of freedom u1 (for
control of y1).

Example 3 Consider the unstable plant

y1 =
1

s+ 1
u2 (23)

y2 =
1

s� 1
u2 (24)
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Assume that we control y2 (the pole is only observable in this output) with u2, with a P-controller with gain kc = 10, then

y1 =
10(s� 1)

(s+ 9)(s+ 1)
r2 (25)

y2 =
10

s+ 9
r2 (26)

As expected the RHP-pole appeared in the transfer function from r2 to y1.

Special case: input resetting

A special case of the above is when y1 = u2 (G12 + I) , i.e. input resetting of a variable used for stabi-
lization. We have the transfer function

u = ((I +KG)�1Kr (27)

Internal stability implies that the transfer function contains a RHP-zero at location of the RHP-pole.

5 Control configurations for distillation columns

We consider here an example that has puzzled us. A high-purity distillationcolumn, e.g. column A studied
by Skogestad and Morari (1988), has large RGA-elements. But somehow by closing the level loops in a
particular way to obtain the DV configuration, we are able to eliminate the large RGA-elements. Thus a
fundamental limitation2 seems to have disappeared. This is obviously not possible, and in this section we
will study why this happens.

5.1 The plant

The column has four inputs, reflux (L), boil-up (V), distillate (D) and bottom product flow (B). The four
outputs are, top composition of light component (y), bottom composition of light component (x), level
in condenser (MD) and level in the re-boiler (MD). A simplified linear model is (Skogestad and Morari
1988) 2

6664
y

x

MD

MB

3
7775 =

2
6664
gyL gyV 0 0
gxL gxV 0 0
�

1

s
1

s
�

1

s
0

1

s
�

1

s
0 �

1

s

3
7775
2
6664
L

V

D

B

3
7775+

2
6664
gyF gyzF
gxF gxzF
0 0

kF
s

0

3
7775
"

F

zF

#
(28)

It is well known that different choices for controlling the level, will give different values for the RGA of
the remaining plant. The RGA for the open loop plant is

RGA =

2
6664

gyLgxV
gyLgxV �gyV gxL

�
gyV gxL

gyLgxV �gyV gxL
0 0

�
gyV gxL

gyLgxV �gyV gxL

gyLgxV
gyLgxV �gyV gxL

0 0

0 0 1 0
0 0 0 1

3
7775 (29)

Which at steady state becomes for column A, (Skogestad and Morari 1988)

RGA =

2
6664

35:1 �34:1 0 0
�34:1 35:1 0 0

0 0 1 0
0 0 0 1

3
7775 (30)

Here we see that we have large RGA values that indicates problems with decoupling control.

2Large RGA-elements implies that decoupling control with an inverse based controller is very sensitive to input gain uncertainty, (Skogestad
and Morari 1987).
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5.2 The LV-configuration

By selectingD andB for level control, and assuming perfect level control we have the partially controlled
plant "

y

x

#
=

"
gyL gyV
gxL gxV

#"
L

V

#
+ 0

"
M r

d

M r
B

#
+

"
gyF gyzF
gxF gxzF

# "
F

zF

#
(31)

The RGA is as expected the same as for the open plant

�LV
11

=
gyLgxV

gyLgxV � gyV gxL
(32)

and for column A in (Skogestad and Morari 1988)

�LV
11

= 35:1 (33)

5.3 The DV-configuration

By usingL and B for perfect level control we obtain the DV configuration. The partially controlled plant"
y

x

#
=

"
�gyL gyV + gyL
�gxL gxV + gxL

# "
D

V

#
�

"
gyLs 0
gxLs 0

# "
M r

D

M r
B

#
+

"
gyF gyzF
gxF gxzF

# "
F

zF

#
(34)

This controller configuration has RGA values

�DV
11

=
gyL(gxL + gxV )

gyLgxV � gyV gxL
(35)

Thus the relationship for RGA of LV and DV configuration is

�DV
11

�LV
11

= 1 +
gxL

gxV
= :013; �DV

11
= 0:46 (36)

Which is a considerable smaller value.

5.4 What has happend?

For the DV-configuration the large RGA values have disappeared. Thus, it should be possible to have
decoupled control of the compositions. This seems inconsistent with the large value of the RGA for both
the full plant and the LV configuration.

The reason is that the DV-configuration has interactions from the levels to the composistions see equa-
tion 34. On the other hand we see from equation (31) that for the LV configuration there is no interaction
from the level to compositions loops. Apparently this means that in the DV-configuration we can have
decoupling between the compositions.

6 The effect of disturbances

This section looks at the role of disturbances. This is done using two examples. In the first we show how
feedback is used to reduce the effect of the disturbance on output y1. In the second we give an example
where feedback will introduce disturbances to y1. The question is if the next layer can cancel the effect
of this disturbance introduced by the lower layer.

Both plants are shown in figure 2. In both plants there are one inout and two outputs. One common
such example is the top (or bottom) of a distillationcolumn where we have fast temperature measurements
y2 and slow composition measurements y1. For such cases it is common to arrange the control loops in
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(a) Disturbance affects both measure-
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(b) Disturbance affects only the fast mea-
surement.

Figure 2: Different effect of the disturbance.

a cascaded manner, where the fast measurement y2 is used in a fast inner loop. The outer loop uses the
slow measurement y1, and the setpoints of the inner loop is used as manipulative variables.

The difference between the plants are that in figure 2(a) the disturbance is added to both measurements,
while in figure 2(b) the disturbance is only added to the fast measurement. In both cases we study the effect
introduced by a feedback controller u2 = �K2(y2 � r2).

In case (a), the closed loop transfer function from d to y1 becomes

y1 = S2Gdd+ T2r2 � 0d+G1r2 (37)

(where the approximation applies at low frequencies) In this case feedback will reduce the effect of the
disturbance d on y1 at frequencies where S2 is small. However in case (b) the feedback control introduces
a dependency on the disturbance that was not present in the original plant

y1 = T2d+ T2G1r2 � �G1d+G1r2 (38)

(where the approximation applies at low frequencies) Thus in this case feedback in the lower layer will
introduce variables in the output y1 that was not present in the original plant (with K2 = 0).

If the measurement y2 is not available in the next control layer, then the dependence on d introduced
by the lower layer can be a fundamental limitation for control performance. For example, G1 is non-
minimum phase, and d is such that control is needed at frequencies where the non-minimum phase of
G1 is a limitation. Note that if the measurement of y2 is available then it is possible to achieve the same
performance with a multivariable controller independent of the lower layer controller. (See 1(b).)

In summary, we have found that if we close a lower loop involving the outputy2, and we assume y2 is
not available at the higher layer (this is a reasonable assumption in most cases), then the presence of the
lower layer may introduce a sensitivity to disturbance which cannot be counteracted at a higher layer.

This is an important result, which we have not seen explicitly stated befor. The results follows more
generally from the discussion in section 3, and was nicely illustrated by the above example. Comment:
Much of this discussion here is also valid for model uncertainty and for noise.

7 Conclusion

In this paper we have followed up a point made by Hovd and Skogestad (1993), that the lower layer should
be designed in such a manner that it will not impose any new fundamental limitation that was not present
in the original plant.

We find that if both y2 and r2 are available at the next level, then no new fundamental limitation are
introduced as we can cancel the lower layer controller by a posetive feedback. However if either y2 or r2
are unavailable then it is possible to introduce new limitations for the higher layer:

� If r2 and y2 are unavailable, then it is possible to introduce new RHP-zeros in the transfer function
from u1 to y1. However, the zeros are generally located far into the RHP.

� If y2 is unavailable then it is possible to introduce new RHP-zeros at the location of RHP-poles.
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� If y2 is unavailable then it is possible to introduce a sensitivity to uncertainty and disturbances into
the remaining plant.

� One may introduce ill-conditioning into the problem. We have shown an example where we do the
opposite (the DV-configuration).

The fact that we theoretically can counteract poor choices for base layer control does not mean that
the design of this layer is not important. First, we want the higher layer to be as simple as possible, and
we may want to avoid that the higher layer must use setpoints in the lower layer as degrees of freedom.
Second, and more importantly, we want to avoid the need for fast control and a detailed dynamic model in
the higher layer. Thus, a lower-layer control system which is effectively self-regulating (at least at higher
frequencies) is strongly desirable.
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A Zeros in the partially controlled plant.

From linear systems theory we have that for a system under feedback control the zeros of the closed loop system
is given by the zeros of the individual elements in the loop. However this statement is only valid for the transfer
function from the reference to the measurements. So it is not given that it is valid for a partially controlled system.

It is possible to rewrite the equation 9 to

y =

�
I +G

�
0 0
0 K2

��
�1

G

�
I 0
0 K2

�
(39)

Let us assume that all the elements above is functionally controllable then the zeros of the system above is given
by the zeros of the elements. Which means that zeros of G and K2 will be zeros in the closed loop system. How-

ever if there are zeros in

�
I +G

�
0 0
0 K2

��
�1

then that is due to poles in

�
I + G

�
0 0
0 K2

��
. Those poles are

also poles of G or K2, and hence they are not zeros of the system. This proves that the only zeros of the partially
controlled system is the zeros of either G or K2.

B Proof of Theorem 1

The partially controlled plant is
Ĝ11 = G11 �G12G

�1

22
G21 (40)
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The determinant of the partially controlled plant is

det Ĝ11 = det(G11 �G12G
�1

22
G21) (41)

Using Schurs formula gives

det Ĝ11 =
detG

detG22

(42)

From (MacFarlane and Karcanias 1976) we know that the zero polynomial, corresponding to a minimal realization,
is the greatest common divisor of all the numerators of all minors of the system of the same size as the normal
rank. For a functionally controllable system, this means that the zeros of the system is given by the numerator of
determinant when it is written with the pole polynomial as denominator.

Since we assume that we have perfect control then G22 must be functionally controllable, and it cannot have
RHP-zeros. This means that it cannot cancel any RHP-zeros in detG. Furthermore any RHP-poles in detG22 must
be canceled by the same pole in detG. If there is a pole in detG22 that does not appear in detG, then that is due
to a zero/pole cancellation in the evaluation of detG.
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