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Abstract

The starting point for this study was an incident in an industrial plant, where
the ammonia synthesis reactor became unstable with rapid temperature oscilla-
tions (limit cycles) in the range from about 300oC to 500oC. A simple dynamic
model reproduces this behavior. In industry a steady-state Van Heerden analysis
is often used to analyze the stability, but a more careful analysis for this reactor
system reveals that instability occurs when there still is positive steady-state
margin, namely as a pair of complex conjugate poles cross the imaginary axis
(Hopf bifurcation). This is consistent with the observations where the instabil-
ity manifests itself as oscillations rather than extinction of the reaction. This
somewhat unusual behavior can be explained by the presence of an inverse re-
sponse for the temperature response through the reactor beds combined with the
positive feedback caused by the preheater.
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1 Introduction

The starting point of this work was an incident in an industrial ammonia �xed bed
synthesis reactor in Germany in 1989. After a sudden decrease in reactor pressure
caused by a temporary reduction in fresh feed to the synthesis loop, the reactor {
which was operated without feedback control { became unstable, such that the recorded
temperatures in the reactor started oscillating with a period of about 6 minutes and a
range of about 200 0C (�100oC) (Naess et al., 1992). The oscillations lasted for about
two hours, until pressure in the synthesis loop was restored. A temperature recording
from this incident is shown in Figure 1. Such large and rapid oscillations are damaging
for the catalyst, and after the incident it was observed that this kind of oscillations
tended to occur more frequently and for smaller disturbances.

Figure 1: Temperature recording from the industrial ammonia reactor (close to the
reactor outlet). (NOTE: Time scale is 0 to 150 MINUTES)

The purpose of this paper is to provide an explanation of this sort of reactor be-
havior. First, we present a mathematical model of the ammonia synthesis reactor {
describing the conservation of mass and energy. Simulations using this model repro-
duce the temperature oscillations observed in the industrial plant. The main cause of
the instability is the positive feedback from the heat recycle caused by the feed-e�uent
heat exchanger. We �rst start with a simple steady-state analysis, similar to that of
van Heerden (1953), which proves to be inadequate. We then perform a conventional
linear stability analysis, which is found to be consistent with the nonlinear simulations
and shows that instability occurs as a pair of complex eigenvalues cross into the right
half plane (Hopf bifurcation). We explain why the initial steady-state analysis was
inadequate in this case. Finally, we discuss the implications for operation and control
of such reactors.

Although it is well-known that instability of this kind may occur in chemical re-
actors, this is to our knowledge the �rst time it is documented on an industrial scale.
Also, the paper demonstrates the usefulness of classical frequency-domain analysis such
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as Nyquist and Bode plots, and shows in which cases the steady-state analysis of van
Heerden may be incorrect.

The rest of this introduction is devoted to a short review of previous work. General
work on reactor stability, modeling and control is abundant. Crider and Foss (1968)
refer to Nusselt in 1927 and independently Schuman in 1929 as the �rst to present a
thermal analysis of packed beds. Van Heerden (1953) and Aris and Amundson (1958)
analyzed the stability of the steady states of autothermal reactors. Limit cycle behavior
in autothermal reactors was presented by Reilly and Schmitz (1966,1967) and Pareja
and Reilly (1969). Stephens and Richards (1973) performed a steady state and dynamic
analysis of an ammonia synthesis plant and noted that steady state stability criteria are
not su�cient for stability. Fixed bed reactors are discussed extensively in the survey
of Schmitz (1975), and also in Ray (1972), Eigenberger (1976, 1985) and J�rgensen
(1986). Silverstein and Shinnar (1982) discuss the stability of heat integrated �xed
bed reactor. Other works on dynamics and control of �xed bed reactors include Crider
and Foss (1966, 1968) Vakil et al. (1973), Wallmann and Foss (1979, 1981), Foss et al.
(1980), Gusciora and Foss (1989), and Eigenberger and Schuler (1989).

2 A simple model of the reactor

Models for �xed beds are abundant in the literature (see e.g. Eigenberger, 1976). The
main purpose of our model is not to reproduce the industrial case with great numerical
accuracy, but rather to yield qualitative insight into the observed phenomenon. Our
model is therefore kept simple.

Figure 2 shows a sketch of the reactor system, consisting of three beds in series with
fresh feed quenching between each beds and preheating of the feed with the e�uent.
A material and energy balance yield two partial di�erential equations:

w
@c

@z
= mcr(T; c) (1)

mcCpc

@T

@t
+ wCpg

@T

@z
= (��Hrx)mcr(T; c) + �mcCpc

@2T

@z2
(2)

where:

t Time [sec.]
z Position in reactor [-]
T Catalyst particle temperature [K]
c Ammonia concentration (mass fraction) [kg NH3/kg gas]
�Hrx Heat of reaction [J/kg.NH3]
Cpc Heat capacity of catalyst [J/kg cat, K]
Cpg Heat capacity of gas [J/kg, K]
mc Catalyst mass in the bed [kg]
w Gas ow through the bed [kg/s]
r(T; c) Reaction rate [kg NH3/kg cat, s]
� Dispersion coe�cient [1/s]

3



Ti

To
Tf

Figure 2: Sketch of reactor system with three beds and preheater.

Note that gas phase holdup has been neglected because the gas density is low. The
dispersion coe�cient is a simpli�ed way of taking into account the �nite heat transfer
rate between the gas phase and the solid catalyst.

The model may be discretized in space, and by selecting the grid spacing �z =
2�=u the term involving the di�usion drops out (e�ectively, the numerical \di�usion"
introduced by the discretization cancels the actual di�usion). We then get the following
discretized equations for cell no. j (see Morud (1995) for more details):

0 = w(cj�1 � cj) +mc;jr(Tj; cj) (3)

mc;jCpc

dTi
dt

= wCpg(Tj�1 � Tj) +mc;jr(Tj ; cj)(��Hrx) (4)

(Alternatively, this is a valid model for cases where the di�usion is neglected and the
number of grid points is large.)

An important parameter for the reactor is the migration velocity for the temperature
wave,

u =
wCpg

mcCpc

(5)

With the data used in the simulations the migration velocity through each of the
three beds is 0.0111, 0.0092 and 0.0067 [bed lengths/s], respectively. The total time

4



for a temperature wave to move through the the three beds is then approximately
1=u1 + 1=u2 + 1=u3 = 348 s.

The preheater is modeled as a as a standard countercurrent heat exchanger (without
dynamics for simplicity) which yields a relationship of the form:

Ti = �To + (1� �)Tf (6)

where Ti is the preheater outlet (reactor inlet) temperature and To the reactor outlet
temperature (see Figure 2), and the preheater e�ciency � 2 [0 1] is a constant
independent of temperature.

The reaction rate for the reaction N2+3H2 *) 2NH3 is computed from the Temkin-
Pyzhev equation (as given by Froment and Bischo�, 1990, p. 433):

rN2
=

1

�cat
�

 
k1 pN2

�
p1:5H2

pNH3

� k�1
pNH3

p1:5H2

!
[kmol N2=kg cat; h] (7)

where pi denotes the partial pressure of component i [in bar],

ko1 = 1:79 � 104 exp
�
�
87 090

RT

�
(8)

ko
�1 = 2:57� 1016 exp

�
�
198 464

RT

�
: (9)

and r = rN2
� 2 � 17=�cat [kg NH3/ kg cat, h].

However, in order to match the industrial data in Figure 1, the reaction rate was
multiplied by a factor f = 4:75, i.e. k1 = f ko1 and k�1 = f ko

�1. The coe�cient f may
take into account the higher activity of the newer industrial catalyst compared to the
pre-1940 catalyst used by Temkin and Pyzhev.

The Appendix contains the numerical parameter values used in the simulations.
More details about the model and the approximations is given by Morud (1995). Morud
found that very similar results were obtained with a model where also the heat transfer
between gas and solid was included. Morud also used a more detailed kinetic model,
but the results are quite similar .

3 Simulations of limit cycle behavior

Dynamic simulations using the nonlinear model reproduce the observed temperature
oscillations in the industrial plant. A simulation result is shown in Figure 3, showing
the reactor outlet temperature as a function of time as we make changes in the reactor
pressure. Initially, the reactor operates at steady-state with a pressure of 200 bar. At
t = 0 the pressure is reduced from 200 to 170 bar; the system remains stable (at least
seemingly) and settles at a new steady-state with a somewhat lower outlet temperature.
Then, at t = 20 minutes, we further decrease the pressure from 170 to 150 bar, and the
system becomes unstable and exhibits limit cycle behavior (oscillations) very similar
to those observed in the industrial reactor. At t = 120 min we restore the pressure
from 150 to 200 bar, and the system recovers to its original steady-state.
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In the above simulation we just looked at the temperature at a �xed position { the
reactor outlet { as a function of time. To understand qualitatively what happens in the
reactor, we now consider temperature pro�les through the reactor at �xed times. Fig-
ures 4a to 4f show several such temperature pro�les during one period of the sustained
oscillations (taken from simulation time 103 to 109 min in Figure 3). The period of
oscillations is about 7 min (420 seconds). On the horizontal axis, z = 0 corresponds to
the inlet of the �rst bed and z = 3 to the outlet of the last bed. On the vertical axis is
the reactor temperature (range 250 oC to 550 oC). The discontinuities in the �gures
are due to the quenching.

One should note the wavelike bump to the left in the plot in Figure 4a. 70 seconds
later, see Figure 4b, the bump has moved a little to the right, growing in size. The wave
may be traced through Figures 4c-f, where it induces a new wave by heat exchange
with the reactor feed, resulting in the sustained temperature oscillations.

In the above simulations the feed temperature was kept constant at 250oC, and the
limit cycle behavior was induced by lowering the pressure (to less than about 170 bar).
Lowering the temperature has a similar e�ect; with the pressure �xed at 200 bar we
get instability (limit cycle behavior) when the feed temperature, Tf , is reduced from
250oC to about 235oC.

4 Steady-state analysis

Consider Figure 5, where the steady state characteristics of the reactor and preheater
are shown. The S-shaped reactor characteristic gives the relation between the reactor
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Figure 3: Nonlinear simulation of a decrease in the reactor pressure from 200 bar to
170 bar (t = 0), to 150 bar (t = 20), and back to 200 bar (t = 120).
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Figure 4: Sustained oscillations in temperature (p=150 bar).

inlet temperature Ti and the reactor outlet temperature To (see Figure 2 for de�ni-
tions). Similarly, the straight-line preheater characteristic gives the relation between
its \input" To and its \output" Ti, recall (6). For the reactor we show the S-shaped
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Figure 5: Steady state characteristics of reactor (S-shaped curves) and preheater
(straight line).

curves at two pressures; at 200 bar (solid line) and at 170 bar (dashed line). It is im-
plicitly assumed that other quantities are held constant (ow rates, feed temperature
etc.). The plot in Figure 5 is very similar to the classical van Heerden plot (1953).

The possible steady state operating points are points where the two curves intersect.
For the conditions given in Figure 5, there are three possible steady-state solutions, and
the desired one, in which we operate, is the upper one with the highest temperature
and highest conversion. The temperature pro�le through the reactor at this desired
operating point is shown in Figure 6 for the two pressures. Note that the temperature
at bed length zero is less than Ti because of the quench; see also Figure 2.

We now consider the stability of the desired upper operating point. As noted above,
to induce instability one may reduce the pressure. According to the analysis of Van
Heerden (1953), which is repeated in many books (e.g. Froment and Bischo�, 1990.
p. 427), one would expect instability to occur exactly when the two characteristics in
Figure 5 touch each other (i.e. when the middle and upper solutions coincide). Thus,
one would expect the reactor to remain stable when the pressure is lowered from 200 to
170 bar and even a bit further down. However, simulations show that instability occurs
at about 172 bar, where there still is a positive steady-state \stability margin". At �rst,
this was believed to be caused by nonlinearity or numerical errors, but a more careful
analysis shows that the simulations are indeed correct, and that the upper solution
may be unstable, demonstrating that a steady-state analysis is insu�cient (as pointed
out already by Aris and Amundson, 1958).
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Figure 6: Steady-state reactor temperature pro�le at the \upper" operating point.

More speci�cally, we �nd by linearizing the model at the (upper) operating point
in Figure 5 that the eigenvalues � furthest to the right (closest to instability) are

p = 200 bar : � = �0:0017 � i0:0183 [s�1]

p = 170 bar : � = +0:0002 � i0:0148 [s�1]

Thus, the upper operating point is stable at 200 bar, but (barely) unstable at 170
bar. We note that the instability occurs as a pair of complex eigenvalues cross into
the right half plane (Hopf bifurcation). The corresponding period of oscillations is
approximately 2�=0:0148 = 425 s which agrees very well with the observed period of
oscillations of about 420 s in the nonlinear simulations and 360 s in the plant data.

5 Linear dynamic analysis

All the results given below are for a reactor with pressure 172 bar operating at the
upper (desired) operating point.

Close to an operating point, the dynamics of a system is well described by its
linearized model. The model of the reactor (without the preheater) was linearized
numerically at this operating point, yielding a standard linear state space model with
30 states on the form:

dx

dt
= Ax+Bu; y = Cx (10)
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Figure 7: Block diagram of reactor (g) and preheater (k).

where the state vector x consists of temperatures along the bed; the independent
variable u is the inlet temperature to the �rst bed, Ti (before the quench; the quench
gas temperature Tf is assumed constant); and y is the outlet temperature of the third
bed, To. We then get the input-output model

�To = g(s)�Ti; g(s) = C(sI �A)�1B

where the transfer function g(s) is for the reactor without the preheater, and the �
represents deviations from the nominal steady state. Linearization of the preheater
model (6) gives �Ti = "�To, where " is the heat exchanger e�ciency, which nominally
is " = 0:629. The reactor system in Figure 2 may hence be represented by the block
diagram with positive feedback shown in Figure 7, where k = " is the steady state gain
of the preheater and g(s) the transfer function of the reactor.

Below we consider �rst a root locus analysis to understand what happens as we vary
the feedback gain k. The results con�rm that the operating point with p = 172 bar
is at the limit to instability. Next, we perform a frequency domain analysis (Nyquist
and Bode plots), which are particularly revealing, as it yields added insight into the
physical cause of the instability.

5.1 Root locus analysis

The reactor with no preheater (k = 0) is stable. This can be seen computing the poles
of g(s). Thus the instability is caused by the preheating, and the eigenvalues of the
\closed-loop" reactor system (with preheat) are given as the solutions to 1�g(s)k = 0.
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In a root locus analysis, see Figure 8, we plot these eigenvalues (poles) as k increases
from 0 to in�nity (strictly speaking, k cannot exceed 1 since this corresponds to a
preheater with in�nite area, but we will let k exceed this value for completeness). The
closed-loop poles \start" (for k = 0) at the poles of g(s). These are marked with the
symbol `x' on the Nyquist plot, and we see that they lie quite evenly spaced between
-0.05 and -0.1 [1/s]. As k is increased towards in�nity, the poles which stay �nite
approach the zeros of g(s) { which are the values of s where g(s) = 0. These are
marked with the symbol `o' on the Nyquist plot, and we see that they lie almost in a
circular arrangement around the poles. Importantly, the discretized reactor model has
5 right half plane (RHP) zeros which will \pull" the eigenvalues towards instability as
k is incerased. As expected, instability occurs for k = 0:629 (its nominal value) as the
pair of complex RHP-poles closest to the real axis cross into the right half plane.

5.2 Frequency domain analysis

The stability of the system may be analyzed using the standard Nyquist criterion:

For a positive feedback system with a stable loop transfer function g(s)k,
the system is unstable if and only if a plot of the loop transfer function
g(j!)k encircles the +1 point (not �1 point) in the complex plane as the
frequency ! is varied from �1 to +1 (or, equivalently, it is unstable if
g(j!) encircles the 1=k point).

Consider �rst the stability of the middle operating point in Figure 5 (for which
we show no Nyquist plot). Here, the steady-state loop gain g(0)k, the ratio between
the two slopes in Figure 5, is larger than 1. Thus, encirclement of g(j!)k of the the
1-point is unavoidable, and it follows from the Nyquist stability criterion that the

−0.25 −0.2 −0.15 −0.1 −0.05 0 0.05 0.1

−0.1

−0.05

0

0.05

0.1

0.15

Real Axis

Im
ag

 A
xi

s

Figure 8: Root locus plot of system.
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Figure 9: Nyquist plot of reactor model g(s).

system is unstable at the middle operating point. This rigorously proves the claim by
van Heerden (1953).

Next, consider the stability of the upper (desired) operating point. Normally, one
would expect this point to be stable since,

(i) the steady-state loop gain g(0)k is less than 1 (it is 0:218 � 0:629 = 0:137 in our
case), and

(ii) the gain jg(j!)kj normally decreases with frequency so that instability cannot
occur at higher frequencies.

However, in our case there are right half plane (RHP) zeros in g(s) which increase
the loop gain and at the same time yield a negative phase shift (see the Bode plot of
g(s) in Figure 10), and assumption (ii) is invalid. This is also seen from the Nyquist
plot of g(j!) in Figure 9, where g(j!) is seen to cross the real axis to the right of
g(0) at some frequency !360. The Nyquist stability condition tells that the system
will be unstable if this curve encircles the point 1=k. Thus, the system is stable for
small values of k (corresponding to little heat integration), and is unstable if k > k�,
where the critical gain k� is 1=g(j!360). In our case, k� = 1=g(j!360) = 0:629 and the
preheater gain is k = " = 0:629, so as expected the system is at its limit to instability
at p = 172 bar. (For p = 170 bar we �nd k� = 1=g(j!360) = 0:591 and the system is
unstable). The fact that the instability occurs at a nonzero frequency, also shows that
the onset of the instability corresponds to a Hopf bifurcation, which is consistent with
the observed limit cycles in the nonlinear simulations.
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Figure 10: Bode plot of reactor model g(s).

5.3 Step response analysis

We already know that the transfer function of g(s) has several RHP (right half plane)
zeros. Such RHP-zeros generally correspond to inverse response behavior, and this is
con�rmed by Figure 11 which shows the outlet reactor temperature, To, in response
to a unit step increase in the inlet temperature, �Ti = 1oC. The above response is for
the linear model, and similar responses were found for the nonlinear model. From the
step response we also see that the steady-state gain is about 0:22 as was observed in
the Nyquist plot.

The reason why the reactor instability manifests itself as oscillations { and not the
more common extinction of the reaction { is this inverse response behavior. A physical
explanation for this inverse response is therefore of interest.

Consider a �xed bed where an exothermic reaction is taking place, and suppose
we make a sudden increase in the inlet temperature (step change). This will a�ect
the bed outlet by two mechanisms: by the migration of the temperature wave through
the reactor, which is a slow process; and by changes in the concentration of chemical
species, which is a fast process. The initial e�ect of the increase in inlet temperature is
an increase in the temperature and thus of the reaction rate in the �rst part of the �rst
bed. This depletes reactant so that the concentration of reactants drops in the last
part of the reactor (this e�ect is fast since the component holdup is negligible), and
this causes the reactor outlet temperature to start dropping. However, eventually the
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preheating).

temperature wave moves through the reactor, and the outlet temperature eventually
increases. Such inverse response characteristics are well known for chemical reactors
(e.g. Silverstein and Shinnar, 1982).

The inverse response behavior corresponds to a frequency response where the gain
and phase lag both increase with frequency, and this causes the Nyquist plot to cross
the real axis further from the origin at the higher frequency where the phase lag is 360o

than at steady-state.

6 Discussion

6.1 Control of reactors with heat integration

Although there has been a lot of work on the control of �xed bed reactors, many
reactors in the industry are left uncontrolled. When a processing unit can be operated
safely and e�ectively without control, this is preferred, as it is desirable to keep the
complexity of a plant to a minimum.

Two important issues which have to be considered for the ammonia synthesis reactor
in question are extinction and limit cycle behavior. Extinction of the reactor|which
corresponds to operation at the lower operating point in Figure 5|may occur if the
reactor temperature becomes su�ciently low. When this happens, the reactor can not
resume normal operation without external addition of heat, which necessitates special
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startup procedures. Second, the limit cycle behavior, studied in this paper, may lead
to damage to the reactor as well as deterioration of the catalyst.

Even a very simple controller may stabilize the reactor system and eliminate the
possibility of extinction and limit cycle behavior. For example, consider using the
quench valve before the �rst bed to control the temperature at the �rst bed inlet.
This may be done using a simple PI-controller. This is a simple mixing process with
no inverse response so this control loop may be made fast (compared to the overall
reactor response time of about 7 min). Thus, the feedback path through the controller
will dominate compared with the positive feedback through the preheater, and thus
the reactor with controller will behave almost as a reactor without feed-e�uent heat
exchange. That is, the reactor will exhibit a dynamic behavior similar to a reactor with
an independent preheater. To control more carefully the conditions (e.g. temperature)
inside the reactor, one could then adjust the setpoint for the inlet temperature in a
cascaded manner.

Of course, care must be taken not to saturate the quench valve used for control. For
example, if the quench valve becomes fully closed, then there is no further possibility
to increase the temperature, and it is likely that the reactor will extinguish. To avoid
this, one must increase the heat recovery by reducing the other quench ows such that
more of the feed is preheated. This can only be done to a limited extent, so one may
instead need to increase the feed temperature, Tf , or increase the reactor pressure.

One may ask whether the observed inverse response (RHP-zeros) through the re-
actor will limit the performance of the reactor. The answer is most likely \no". The
reason is that the inverse response only poses a limitation if one wants to control the
reactor outlet temperature To (or some other internal temperature in the reactor) us-
ing a quench further upstream in the reactor. Most likely, it is not critical that the
outlet temperature is tightly controlled, and the RHP-zeros will not present a serious
limitation. Also, as already noted, there is no RHP-zero when controlling the inlet
temperature using the inlet quench, so stabilization is not limited by RHP zeros.

6.2 Positive feedback

In the Nyquist plot analysis above, it was shown that the reason for oscillatory insta-
bility in the ammonia synthesis reactor could be attributed to the shape of the reactor
transfer function, g(j!). The plot of this transfer function crosses the real axis at a
point, g(j!360), to the right of the steady state point, g(0).

However, for most chemical engineering systems, there is no such point of g(j!)
crossing the real axis to the right of g(0). In such cases, when the positive feedback
gain k is increased, the instability occurs as a pole moves through the origin, at which
point the presence of the integrator makes the response becomes \slow" and sensitive
to disturbances. This has made many authors make statements like: "Positive feedback
in a plant makes the response of the plant slow, and the sensitivity to slow disturbances
high". Since there are systems where this is not the case, as demonstrated above, such
statements should be used with care.
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6.3 Comparison with previous work

That ammonia synthesis reactors may exhibit limit cycle behavior, has also been noted
by Stephens and Richards (1973); possibly because of an incident in an ICI plant. How-
ever, their paper does not contain any dynamic analysis, and it leaves the impression
that the authors were somewhat uncertain about the cause of the problem.

On the other hand, the general paper by Silverstein and Shinnar (1982) contains a
generic analysis of reactor systems with feed-e�uent heat exchange and a combustion
chamber. In their analysis, which is based on linear systems theory, they explain the
conditions for reactor stability.

7 Conclusion/Summary

An industrial �xed bed autothermal ammonia synthesis reactor became unstable, such
that the recorded temperatures in the reactor oscillated heavily. A nonlinear dynamic
mathematical model of the reactor reproduces the incident. The oscillatory behavior
(limit cycles) occurs in the simulations when the reactor feed temperature or the op-
erating pressure is too low. The phenomena may be described as a temperature wave
migrating through the reactor, being fed back through the preheater.

A linear analysis, using Nyquist and Bode plots, can be used to predict the point of
instability, and shows that the phenomena occurs when a pair of complex eigenvalues
cross into the right half plane. The analysis shows that the physical cause for this
somewhat unusual instability, is a combination of the positive heat feedback in the
preheater, combined with non-minimum phase behavior (inverse response dynamics)
of the reactor temperature response. Thus, the system may become unstable even
though there is a positive \stability margin" at steady-state.

The classical steady-state stability analysis of van Heerden (1953) can be used to
conclude that the intermediate steady-state is unstable, but not { as illustrated by the
results in this paper { to conclude that the upper (desired) steady-state is stable. In
any case, it is important to note that any of these steady-states may be stabilized with
feedback control.

In the industrial plant, the information obtained from the analysis was used to
change the operating procedures to make it less likely for instability to occur. An
alternative, and most likely better, solution would have been to implement a feedback
control system, but the operators and plant management prefer manual operation.
The feedback system could for example use the quench to the �rst bed to control the
temperature at the inlet to the �rst bed.
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Additional information

The Matlab and Fortran �les for generating the results in this paper and the Ph.D.
thesis of Morud (1995) are available over the internet; see the home page of Sigurd
Skogestad at www.chembio.ntnu.no/users/skoge.
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Appendix. Data for the model

The reaction is N2 + 3H2 *) 2NH3.

Gas heat capacity, Cpg 3500 J=kg;K
Heat capacity of catalyst, Cpc 1100 J=kg;K
Heat of reaction ��Hrx 2:7 � 106 J=kg NH3

Volume, bed 1 6.69 m3

Volume, bed 2 9.63 m3

Volume, bed 3 15.2 m3

Catalyst bulk density, �cat 2200 kg=m3

Typical gas density 50 kg=m3

Dispersion coe�cient, bed 1, �1 5:6 � 10�4 (bed lenghts)2=sec:
Dispersion coe�cient, bed 2, �2 4:6 � 10�4 (bed lenghts)2=sec:
Dispersion coe�cient, bed 3, �3 3:3 � 10�4 (bed lenghts)2=sec:
Number of discretization points in each bed 10

Operating conditions:
Inlet ow to preheater, wh 127 tons=hr
Quench bed 1, wQ1 58 tons=hr
Quench bed 2, wQ2 35 tons=hr
Quench bed 3, wQ3 32 tons=hr

Feed mole fraction NH3 0.0417
Feed mole fraction N2 0.2396
Feed mole fraction H2 0.7187
Feed gas temperature, Tf 250 oC
Typical reactor pressure 200 bar

Preheater:
Heat transfer coe�cient, U 536 W=m2;K
Heat exchanger area, A 283 m2

Calculated number of heat transfer units, NTU 1.23
Calculated heat exchanger e�ciency, � 0.629

" =
1 � e�NTU(1�C)

1 � Ce�NTU(1�C)

where

NTU =
UA

whCpg

; C =
wh

wh + wQ1 + wQ2 + wQ3
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