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Abstract. This paper examines the fundamental limitations im-
posed by instability in the plant (Right Half Plane (RHP) poles) on
closed-loop performance. The main limitation is that instability re-
quires active use of plant inputs, and we quantify this is terms of
tight lower bounds on the input magnitudes required for disturbance
and measurement noise rejection. These new bounds involve the
H1-norm, which has direct engineering significance. The output
performance in terms of disturbance rejection or reference tracking
is only limited if the plant has RHP-zeros. It is important to stress
that the derived bounds are controller independent and that they are
tight, meaning that there exists controllers which achieve the lower
bounds.

1 Introduction

An unstable plant, for example an unstable chemical reac-
tor, can only be stabilized by use of feedback control which
implies active use of the plant inputs. If measurement noise
and/or disturbances are present (which is always the case in
practical process control), then the input usage may become
unacceptable.

In this paper, the above statements are quantified by deriv-
ing tight lower bounds on theH1-norm of the closed-loop
transfer functionsSV andTV , whereS andT are the sensi-
tivity and complementary sensitivity functions. The transfer
functionV can be viewed as ageneralized“weight”, which
for our purpose should be independent of the feedback con-
trollerK.

One important application is that we canquantifythe min-
imum input usage for stabilization in the presence of worst
case measurement noise and disturbances. It appears that
evenfor SISO systems this has been a difficult task, which
has not been solved analytically until now.

To give the reader some appreciation of the basis of the
bounds and their usefulness, we consider as a motivating ex-
ample an unstable plant with a RHP-polep. We want to obtain
a lower bound on theH1-norm of the closed-loop transfer
functionKS from measurement noisen to plant inputu. We
first rewriteKS = G�1T , which is on the formTV with
V = G�1. The basis of our bound is the use of the max-
imum modulus principle and the “interpolation constraint”
T (p) = 1, which must apply to achieve internal stability. We
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obtain (see Theorem 2 for details)

kKS(s)k1 = kG�1T (s) k1 � jG�1ms(p)j

whereGms is the “stable and minimum phase” version ofG
(if G(s) also has a RHP-zeroz we get the additional penalty
jz+pj
jz�pj ). As an example, consider the plantG(s) = 1

s�10 ,
which has an unstable polep = 10. We obtainGms(s) =
1

s+10
. Forany linear feedback controllerK, we find that the

lower bound

kKS(s)k1 � jG�1ms(p)j = 2p = 20

must be satisfied. Thus, if we require that the plant inputs are
bounded withkuk1 � 1, then we cannot allow the magni-
tude of measurement noise to exceedknk1 = 1=20 = 0:05.

The basis for our results is theimportantwork by Zames
(1981), who made use of the interpolation constraintS(z) =
1 and the maximum modulus theorem to derive bounds on
theH1-norm of S for plants with one RHP-zero. Subse-
quently, these results were extended to plants with one RHP-
pole and then to plants with combined RHP zeros and poles,
e.g. (Doyleet al., 1992, pp. 93–95) and (Skogestad and
Postlethwaite, 1996).

However, these generalizations to unstable plants didnot
consider the input usage which involves the closed-loop
transfer functionKS. An important contribution of this pa-
per is therefore to use the “trick”KS = G�1T , which enable
us to derive lower bounds on input usage, by using the gen-
eral lower bound onkTV (s)k1 with V = G�1. But when
G is unstable (with RHP-polep), thenV = G�1 has RHP-
zeros fors=p. A second important contribution compared to
earlier work is the ability to include RHP zeros and poles in
the “weight” V (under the assumption thatSV andTV are
stable).

A third important contribution is that we show that the
lower bounds aretight. That is, we give analytical expres-
sions for stable controllers whichachievesanH1-norm of
the closed-loop transfer function which is equal to the lower
bound.

The bounds onkS(s)k1 for plants with RHP-zero derived
by Zames (1981) are also valid for multivariable systems. It
is important to note that all the results given in this paper
have been generalized to multivariable systems (Havre and
Skogestad, 1997; Havre, 1998).



2 Basics from linear control theory

We consider linear time invariant transfer function models on
the form

y(s) = G(s)u(s) +Gd(s)d(s) (1)

whereu is the manipulated input,d is the disturbance,y is
the output,G is the SISO plant model andGd is the SISO

disturbance plant model. The measured output isym = y+n
wheren is the measurement noise.

TheH1-norm of a stable rational transfer functionM(s)
is defined as the peak value in the magnitudejM(j!)j over
all frequencies.

kM(s)k1 , sup
!

jM(j!)j (2)

2.1 Factorizations of RHP zeros and poles

A rational transfer functionM(s) with zeros and poles in
the open RHP, fzj ; pig 2 C+ , can be factorized inBlaschke
productsas follows1

M(s) = Bz(M)Mm(s) (3)

M(s) = B�1p (M)Ms(s) (4)

M(s) = Bz(M)B�1p (M)Mms(s) (5)

where

Mm – Minimum phase (subscriptm) version ofM with the
RHP-zeros mirrored across the imaginary axis.

Ms – Stable (subscripts) version ofM with the RHP-poles
mirrored across the imaginary axis.

Mms – Minimum phase, stable (subscriptms) version of
M with the RHP zeros and poles mirrored across the
imaginary axis.

Bz(M) – Stable all-pass rational transfer function
(jBz(j!)j = 1; 8!) containing the RHP-zeros (sub-
scriptz) of M .

Bp(M) – Stable all-pass rational transfer function
(jBp(j!)j = 1; 8!) containing the RHP-poles (sub-
scriptp) of M as RHP-zeros.

The all-pass filters are

Bz(M(s)) =

NzY
j=1

s� zj
s+ �zj

(6)

Bp(M(s)) =

NpY
i=1

s� pi
s+ �pi

(7)

whereNz is the number of RHP-zeroszj 2 C+ andNp is the
number of RHP-polespi 2 C+ in M .

1Note that the notation on the all-pass factorizations of RHP zeros and
poles used in this paper is reversed compared to the notation used in
(Skogestad and Postlethwaite, 1996; Havre and Skogestad, 1997). The rea-
son to this change of notation is to get consistent with what the literature
generally defines as an all-pass filter.

In most casesM = G and to simplify the notation we often
omit to show that the all-pass filters are dependent onG, i.e.
we writeBp(s) andBz(s) in the meaning ofBp(G(s)) and
Bz(G(s)).

The order of the two operations(�)m and(�)s in the com-
bined operator(�)ms is arbitrary. It also follows that

(G�1)ms = (Gms)
�1 = G�1ms (8)

And we note that

kM(s)k1 = kMm(s)k1 = kMms(s)k1 (9)

The first identity follows sincejBz(M(j!))j = 1; 8!, and
the latter identity follows sinceM is stable, i.e.Mms =Mm

andBp(Mm) = Bp(M) = 1.

2.2 Closing the loop

A typical control problem is shown in Figure 1. In the fig-
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Figure 1: One degree-of-freedom control configuration

ure possible performance weights are given in dashed lines.
Without loss of generality the performance weightswP and
wu may be assumed to be stable and minimum phase. We
have included both the referencer and the measurement noise
n, in addition to disturbancesd as external inputs. The trans-
fer functions,Gd, R andN can be viewed as weights on the
inputs, and the inputs:~d, ~r and~n are normalized in magni-
tude. Normally,N is the inverse of signal to noise ratio.

We apply negative feedback control

u = K(r � ym) = K(r � y � n) (10)

The closed-loop transfer functionF from

v =

2
4 ~r

~d
~n

3
5 to z =

�
z1
z2

�
=

�
wP (y � r)

wuu

�

is

F (s) =

�
�wPSR wPSGd �wPTN
wuSKR �wuKSGd �wuKSN

�
(11)

where the sensitivityS and the complementary sensitivityT
are defined as

S , (1 +GK)�1 =
1

1 +GK
(12)

T , 1� S =
GK

1 +GK
(13)



To have good control performance (keepz1 small) with a
small input usage (keepz2 small) we would like to have
kF (s)k1 small. That is we want all the SISO transfer func-
tions in (11) small. In addition, there are robustness issues.
For example, we wish to havekwuncT (s)k1 small, where
wunc is the magnitude of the relative plant uncertainty.

2.3 Interpolation constraints

If G has a RHP-zeroz or a RHP-polep then for internal sta-
bility of the feedback system the following interpolation con-
straints must apply (e.g. Skogestad and Postlethwaite, 1996):

T (z) = 0; S(z) = 1 (14)

S(p) = 0; T (p) = 1 (15)

3 Lower bounds on theH1-norm of closed-
loop transfer functions

In this section we will give the main results, which are lower
bounds on theH1-norm of closed-loop transfer functions
which can be written on the formSV or TV . The gener-
alized “weight”V is assumed to be independent of the feed-
back controllerK. V may be unstable butSV andTV must
be stable. That is, it must be possible to stabilize all trans-
fer functions by controlling the outputy using the inputu
(this implies that all unstable modes ofN ,R andGd also are
modes ofG).

Some examples.Consider the six transfer functions in (11).
The first two can be written on the formSV by selecting
V11 = wPR andV12 = wPGd. The remaining four can be
written on the formTV by selectingV13 = wPN , V21 =
wuG

�1R, V22 = wuG
�1Gd andV23 = wuG

�1N . From
this we see that the “weight”V may be unstable (if one or
both ofGd andG�1 are unstable) and may contain RHP-
zeros (if one or both ofGd andG�1 contain RHP-poles).

We now present the two main results, the proofs of these
are given in (Havre, 1998, Chapter 4).

THEOREM 1 (LOWER BOUND ON kSV (s)k1). Consider
the SISO plantG with Nz � 1 RHP-zeroszj andNp � 0
RHP-polespi 2 C+ . LetV be a rational transfer function,
and assume thatSV is (internally) stable. Then the following
lower bound onkSV (s)k1 applies:

kSV (s)k1 � max
RHP-zeros,zj

jB�1p (zj)j � jVms(zj)j (16)

REMARK 1. With jBp(zj)j we meanjBp(G(s))jevaluated at s=zj .
REMARK 2. The assumption thatSV is internally stable, means
that it must be possible to stabilize the system using the feedback
controllerK, without having any RHP zero/pole cancellations be-
tweenG andK.

THEOREM 2 (LOWER BOUND ON kTV (s)k1). Consider
the SISO plant G with Nz � 0 RHP-zeroszj 2 C+ and
Np � 1 RHP-polespi. LetV be a rational transfer function,

and assume thatTV is (internally) stable. Then the following
lower bound onkTV (s)k1 applies:

kTV (s)k1 � max
RHP-poles,pi

jB�1z (pi)j � jVms(pi)j (17)

Remarks on Theorems 1 and 2:

1) The lower bounds (16) and (17) are independent of the
controllerK, if the weightV is independent ofK.

2) The bound onkSV (s)k1 is caused by the RHP-zeros
zj in G, and the termjB�1p (zj)j � 1 gives an additional
penalty for plants which also have RHP-poles. For the
case whenG hasno RHP-poles, thenB�1p (zj) = 1.

3) The bound onkTV (s)k1 is caused by the RHP-poles
pi in G, and the termjB�1z (pi)j � 1 gives an additional
penalty for plants which also have RHP-zeros. For the
case whenG hasno RHP-zeros, thenB�1z (pi) = 1.

4) For a plant with a single RHP-zeroz and a single RHP-
polep the additional penalty is given by the term

jB�1p (z)j = jB�1z (p)j =
jz + pj

jz � pj

This factor can be quite large ifG contains a RHP-zero
z close to the RHP-polep.

4 Tightness of lower bounds

Theorems 1 and 2 provide lower bounds onkSV (s)k1
andkTV (s)k1. The question is whether these bounds are
tight, meaning that there actually exist controllers which
achieve the bounds? The answer is “yes” if there is only
one RHP-zero or one RHP-pole. We prove tightness of the
lower bounds by constructing controllers which achieve the
bounds. In this short version of the paper we only give the
controller minimizingkTV (s)k1, the controller minimizing
kSV (s)k1 and the proofs are given in (Havre, 1998, Chap-
ter 4).

THEOREM 3 (K WHICH MINIMIZE kTV (s)k1). Consider
the SISO plant G with oneRHP-pole p andNz � 0 RHP-
zeroszj 2 C+ . Then the feedback controllerK which mini-
mizekTV (s)k1 is given by

K(s) = G�1msKo(s); Ko(s) = PQ�1(s) (18)

where

P (s) = B�1z (p)Vms(p)V
�1
ms (s) (19)

Q(s) = (1�Bz(s)P (s))m
= B�1p (s) (1�Bz(s)P (s)) (20)

With this controller we have

kTV (s)k1 = jB�1z (p)j � jVms(p)j (21)



The controller in Theorem 3 gives constantjTV (j!)j for all
!. We note that no properness restriction has been imposed
on the controller, so the controller given in Theorem 3 may
be improper. Also note that the controllerK(s) in Theorem 3
is always stable and minimum phase. This may seem surpris-
ing since it is known that some plants with RHP zeros and
poles require an unstable controller (Youlaet al., 1974) to
achieve closed-loop stability. However, this assumes that the
controller is strictly proper, and does therefore not apply in
our case, for further details see (Havre, 1998, Chapter 4).

5 Applications of lower bounds

5.1 Bounds on important closed-loop transfer functions

Consider again the six transfer functions in (11), and the
weighted complementary sensitivity functionwuncT . For
simplicity we assume thatwP , wu, wunc, R andN are all
stable minimum phase (or have been replaced by the stable
minimum phase counterparts with same magnitude). From
Theorems 1 and 2 we obtain:

Output performance, reference tracking:

kwPSR(s)k1 �

max
RHP-zeros,zj

jwP (zj)j � jB
�1
p (zj)j � jR(zj)j (22)

Output performance, disturbance rejection:

kwPSGd(s)k1 �

max
RHP-zeros,zj

jwP (zj)j � jB
�1
p (zj)j � j(Gd)ms(zj)j (23)

Output performance, measurement noise rejection:

kwPTN(s)k1 �

max
RHP-poles,pi

jwP (pi)j � jB
�1
z (pi)j � jN(pi)j (24)

Input usage, reference tracking:

kwuKSR(s)k1 = kwuTG
�1R(s)k1 �

max
RHP-poles,pi

jwu(pi)j � jB
�1
z (pi)j � jG

�1
msR(pi)j (25)

Input usage, disturbance rejection:

kwuKSGd(s)k1 = kwuTG
�1Gd(s)k1 �

max
RHP-poles,pi

jwu(pi)j � jB
�1
z (pi)j � jG

�1
ms(Gd)ms(pi)j (26)

Input usage, measurement noise rejection:

kwuKSN(s)k1 = kwuTG
�1N(s)k1 �

max
RHP-poles,pi

jwu(pi)j � jB
�1
z (pi)j � jG

�1
msN(pi)j (27)

Closed-loop sensitivity to plant uncertainty:

kwuncT (s)k1 �

max
RHP-poles,pi

jwunc(pi)j � jB
�1
z (pi)j (28)

Note that we mainly have inherent limitations on (output)
performance when the plant has RHP-zeros. The exception is
for measurement noise, where the requirement of stabilizing
an unstable pole may give poor performance.

All the bounds on input usage are caused by the presence
of RHP-poles. This is reasonable since we need active use of
the input in order to stabilize the plant. This is considered in
more detail in the next section.

5.2 Implications for stabilization with bounded inputs

Our bounds involve theH1-norm, and their large engineer-
ing usefulness may not be immediate. In the following we
will concentrate on the bounds involving input usage and we
will use the lower bounds to derive andquantifythe conclu-
sion:

� Bounded inputs combined with disturbances and noise
may make stabilization impossible.

Measurement noise.The transfer function from normalized
measurement noise~n to the inputu isKSN . Then from (27)
with wu = 1

kuk1 = kKSN(s)k1 �

max
RHP-poles,pi

jB�1z (pi)j � jG
�1
ms(pi)N(pi)j (29)

Thus, to havekuk1 � 1 for k~nk1 = 1, we must require

jGms(pi)j � jB�1z (pi)j � jN(pi)j (30)

for the worst case polepi (we have here assumed thatN is
minimum phase).

EXAMPLE 1 Consider the unstable plant

G(s) =
1

s� p
; p > 0

with RHP-pole atp. From (29) we have the following lower bound
on theH1-norm of the transfer function from normalized measure-
ment noise~n to inputu (we assume thatN is minimum phase)

kKSN(s)k1 � jG�1ms(p)j � jN(p)j

In our caseG�1 = s� p,G�1ms(s) = s+ p, G�1ms(p) = 2p, and the
lower bound becomes

kKSN(s)k1 � 2p � jN(p)j (31)

The controller which minimizeskTV (s)k1 and achieves the bound
(31) is given in Theorem 3. For the special case whereN(s) is a
constantN(s) = N we get the proportional feedback controller
K(s) = 2p.

As a numerical example, letp = 10, then we must have for any
stabilizing feedback controllerK

kKSN(s)k1 � 20 jN(p)j

Thus withk~nk1 = 1 we will need excessive inputs(kuk1 > 1) if
jN(p)j � jGms(p)j = 0:05. Assume thatN(s) = N(p) = 0:05,
thenK(s) = 2p = 20. This controller gives a “flat” frequency



response, i.e.jKSN(j!)j = 20; 8!. Thus, at any frequency!0
the closed-loop response inu due to

n(t) = 0:05 sin(!0t); is u(t) = sin(!0t+ ') 8!

So, the inputu(t) oscillates between�1. The response inu andy
due ton(t) = 0:05 sin(4t) is shown in Figure 2.
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Figure 2: Closed-loop response at inputu and outputy of the plant
G, due ton(t) = 0:05 sin(4t) (dashed), withK = 20

Disturbances. Similar results as those for measurement
noise also apply to disturbances by replacingN with Gd.
From (26) withwu = 1 we obtain

kuk1 = kKSGd(s)k1 �

max
RHP-poles,pi

jB�1z (pi)j � jG
�1
ms(Gd)ms(pi)j (32)

To havekuk1 � 1 for kdk1 = 1 we must require

jGms(pi)j �
��B�1z (pi)

�� � j(Gd)ms(pi)j (33)

for the worst case polepi.

6 Stabilization with input saturation

Our results provide tight lower bounds for the required input
signals for an unstable plant. Assume that we have found,
from one of these bounds, that we needkuk1 > 1. That is,
at some frequency!0 we needu(t) = umax sin(!0t), with
umax > 1. Will the system become unstable in the case
where input is constrained such thatju(t)j � 1 (8t)?

Unfortunately, all our results are for linear systems, and we
have not derived any results for this nonlinear effect of input
saturation.

Nevertheless, for simple low order systems we find as ex-
pected very good agreement between our lower bounds and
the actual stability limit in systems with input saturation.

Intuitively, this agreement should be good if the input re-
mains saturated for a time which is longer than about1=p,
wherep is the RHP-pole.

EXAMPLE 1 CONTINUED. Consider again the plant

G(s) =
1

s� 10

with the controllerK = 20 which minimizeskKSN(s)k1 when
N is constant. With this controller we getjKS(j!)j = 20; 8!,
from which we know that sinusoidal measurement noise

n(t) = n0 sin(!0t)

cause the input to become

u(t) = 20n0 sin(!0t+ ')

for any frequency!0. Thus, forn0 = f � 0:05 we have that
u(t) = f sin(!0t + '), and forf > 1 the plant input will ex-
ceed�1 in magnitude. The question is: what happens if the inputs
are constrained to be within�1? Will the stability be maintained?
We will investigate this numerically by considering sinusoidal mea-
surement noise with frequency!0 = 1 [rad/s].

Figure 3 shows the response ton(t) = 1:01 � 0:05 sin(t) (!0 =
1 [rad/s],f = 1:01). We see that the plant becomes unstable due to
the input saturation.
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Figure 3: Closed-loop response at inputu and outputy of the plant
G, duen(t) = 1:01 � 0:05 sin(t)

Further reading. The full version of this paper can be found
in (Havre, 1998, Chapter 4), which also contain several addi-
tional examples.
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