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Abstract. This paper examines the fundamental limitations im- obtain (see Theorem 2 for details)

posed by instability in the plant (Right Half Plane{R) poles) on

closed-loop performance. The main limitation is that instability re- IKS(s)|l, = IGT(s) |, > |Gk (p)]

quires active use of plant inputs, and we quantify this is terms of

tight lower bounds on the input magnitudes required for disturbancewhereG,, s is the “stable and minimum phase” version®f
and measurement noise rejection. These new bounds involve théif G(s) also has a Rp-zeroz we get the additional penalty
H~-norm, which has direct engineering significance. The output%)_ As an example, consider the plafif{s) = ﬁ'
performance in terms of disturbance rejection or reference trackingyhich has an unstable pole= 10. We obtainG,,(s) =

is only limited if the plant has Rp-zeros. It is important to stress 11 . Foranylinear feedback controllek’, we find that the
that the derived bounds are controller independent and that they aq%(,vgr bound

tight, meaning that there exists controllers which achieve the lower
bounds. IKS(8)lloe > |G (p)] = 2p = 20

1 Introduction must be satisfied. Thus, if we require that the plant inputs are
bounded withl|u||, < 1, then we cannot allow the magni-
An unstable plant, for example an unstable chemical reactude of measurement noise to excdled , = 1/20 = 0.05.
tor, can only be stabilized by use of feedback control which  The basis for our results is theportantwork by Zames
implies active use of the plant inputs. If measurement noisg(1981), who made use of the interpolation constr&ift) =
and/or disturbances are present (which is always the case ih and the maximum modulus theorem to derive bounds on
practical process control), then the input usage may becomthe H.-norm of S for plants with one Rp-zero. Subse-
unacceptable. guently, these results were extended to plants with one R
In this paper, the above statements are quantified by derivpole and then to plants with combinediRzeros and poles,
ing tight lower bounds on thg{.,-norm of the closed-loop e.9. (Doyleet al, 1992, pp. 93-95) and (Skogestad and
transfer function$'V andT'V, whereS andT are the sensi- Postlethwaite, 1996).
tivity and complementary sensitivity functions. The transfer However, these generalizations to unstable plantsdid
functionV can be viewed as generalized'weight”, which consider the input usage which involves the closed-loop
for our purpose should be independent of the feedback contransfer functionk'S. An important contribution of this pa-
troller K. per is therefore to use the “tricklk'S = G ' T, which enable
One important application is that we cquantifythe min-  us to derive lower bounds on input usage, by using the gen-
imum input usage for stabilization in the presence of worsteral lower bound ofiT'V (s)||, with V' = G~'. But when
case measurement noise and disturbances. It appears thatis unstable (with RP-polep), thenV = G~! has RiP-
evenfor SISO systems this has been a difficult task, which zeros fors =p. A second important contribution compared to
has not been solved analytically until now. earlier work is the ability to include Rp zeros and poles in
To give the reader some appreciation of the basis of thehe “weight” V' (under the assumption that” and7'V are
bounds and their usefulness, we consider as a motivating exstable).
ample an unstable plant with adR-polep. We want to obtain A third important contribution is that we show that the
a lower bound on thé{..-norm of the closed-loop transfer lower bounds ar¢ight. That is, we give analytical expres-
function K S from measurement noiseto plant input:. We sions for stable controllers whidichievesan H ..-norm of
first rewrite KS = G~'T, which is on the forml'V with  the closed-loop transfer function which is equal to the lower
V = G~'. The basis of our bound is the use of the max- bound.
imum modulus principle and the “interpolation constraint”  The bounds o S(s)||., for plants with RiP-zero derived
T'(p) = 1, which must apply to achieve internal stability. We by Zames (1981) are also valid for multivariable systems. It
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2 Basics from linear control theory In most cased/ = G and to simplify the notation we often
omit to show that the all-pass filters are dependentone.
We consider linear time invariant transfer function models onwe write B, (s) and B, (s) in the meaning of3,(G(s)) and
the form B.(G(s))-
y(s) = G(s)u(s) + Gy(s)d(s) Q) The order of the two operatioris),,, and(-)s in the com-

whereu is the manipulated input] is the disturbancey is bined operatof-)m, is arbitrary. It also follows that

the output,¥ is the Sso plant model and?, is the Sso (G s = (Gms) =Gk (8)
disturbance plant model. The measured outpuytis= y +n
wheren is the measurement noise.

The H.-norm of a stable rational transfer functidi(s) 1M (s)|l o = I Mm(8)|l oo = | Mms(s)]l o 9

is defined as the peak value in the magnitlUtlgjw)| over The first identity follows sincéB. (M (jw))| = 1, Y, and

all frequencies. the latter identity follows sincé/ is stable, i.eM,,,s = M,
andB,(M,,) = B,(M) = 1.

And we note that

1M ()]

o0

£ sup [M(juw)| 2

2.2 Closing the loop

2.1 Factorizations of RHP zeros and poles _ _ N .
A typical control problem is shown in Figure 1. In the fig-

A rational transfer functionV/(s) with zeros and poles in

the open Rip, {z;, p;} € C,, can be factorized iBlaschke Fmmmmmm e -y k-3
productsas follows l -
! & p k-3l
s === [ ?2_-'_ pr k-3
M(s) = B.(M)Mpy(s) A3) d=d . ! -
M(s) = B;'(M)M,(s) 4 : I :
M(s) = B.(M)B,' (M) Mpys(s) (5) : : Ly
—

where -

M, — Minimum phase (subscript) version ofM with the
RHP-zeros mirrored across the imaginary axis.

M, — Stable (subscripf) version ofM with the RiP-poles Figure 1: One degree-of-freedom control configuration
mirrored across the imaginary axis.

M,,s — Minimum phase, stable (subscripts) version of
M with the RHP zeros and poles mirrored across the
imaginary axis.

B.(M) —  Stable all-pass rational transfer function
(IB:(jw)| = 1, Vw) containing the RP-zeros (sub-
scriptz) of M.

B,(M) —  Stable all-pass rational transfer function
(|IBp(jw)| =1, Vw) containing the RpP-poles (sub-
scriptp) of M as R4P-zeros.

The all-pass filters are

&

N
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ure possible performance weights are given in dashed lines.
Without loss of generality the performance weights and
w, may be assumed to be stable and minimum phase. We
have included both the referencand the measurement noise
n, in addition to disturbancesas external inputs. The trans-
fer functions,GG4, R and N can be viewed as weights on the
inputs, and the inputsd, # and# are normalized in magni-
tude. Normally,V is the inverse of signal to noise ratio.

We apply negative feedback control

u=K(r—ym)=K(r—y—n) (10)

The closed-loop transfer functidn from

N
B.(M(s) = J[2=% (6) i
o1 ST v = c? to Z:{Z]:{wpl(uy;r)}
N, n “
5,01 = I3 ™ s

1 —wpSR wpSGy —wpT N

F (S):{quKR —w,KSGy —quSN} (11)

i

whereN; is the number of Rp-zerosz; € C; andN,, is the

number of Rip-polesp; € C.. in M. where the sensitivityy and the complementary sensitivity
are defined as
INote that the notation on the all-pass factorizations aPReros and 1
poles used in this paper is reversed compared to the notation used in S & (1+GK)'=—+ (12)
(Skogestad and Postlethwaite, 1996; Havre and Skogestad, 1997). The rea- 1+GK
son to this change of notation is to get consistent with what the literature A GK
generally defines as an all-pass filter. T = 1-5 (13)

T 1+GK



To have good control performance (keepsmall) with a  and assume th&'V is (internally) stable. Then the following
small input usage (keep, small) we would like to have lower bound or|T'V (s)|| . applies:
IIF(s)|l, small. Thatis we want all theiSo transfer func-

tions in (11) small. In addition, there are robustness issues. [TV (s)|l,, > max [BZ'(9:)] - [Vims(pi)| (A7)
. RHP-poles,p;

For example, we wish to hav@o.,.T'(s)||., small, where
wune 1S the magnitude of the relative plant uncertainty. Remarks on Theorems 1 and 2:

) i 1) The lower bounds (16) and (17) are independent of the
2.3 Interpolation constraints controllerK, if the weightV” is independent ok .
If G has a RiP-zeroz or a RipP-polep then for internal sta- ~ 2) The bound orj| SV (s) |, is caused by the Rp-zeros
bility of the feedback system the following interpolation con- zj in G, and the termB,, ' (z;)| > 1 gives an additional

straints must apply (e.g. Skogestad and Postlethwaite, 1996): ~ penalty for plants which also havedR-poles. For the
case wherti hasno RHP-poles, ther3; ! (z;) = 1.

(14) 3) The bound on| TV (s)|| . is caused by the Re-poles

(15) p; in G, and the termB; ! (p;)| > 1 gives an additional
penalty for plants which also haveHR-zeros. For the
case wher@ hasno RHP-zeros, theB; 1 (p;) = 1.

4) For a plant with a single Rr-zeroz and a single RP-
polep the additional penalty is given by the term

T(z) = 0; S(z)

1
S(p) = 0; Tp) =1

3 Lower bounds on the H,,-norm of closed-
loop transfer functions

In this section we will give the main results, which are lower

bounds on theH..-norm of closed-loop transfer functions 1B, (2)| = |BZ (p)| = :th:

which can be written on the forrffV or TV. The gener- =P

alized “weight"V is assumed to be independent of the feed- This factor can be quite large @ contains a RP-zero
back controlled. V may be unstable bufV" andT'V must z close to the RP-polep.

be stable. That is, it must be possible to stabilize all trans-

fer functions by controlling the output using the inputu

(this implies that all unstable modes®t, R andG, alsoare 4 Tightness of lower bounds
modes o).

Some example€onsider the six transfer functionsin (11). Theorems 1 and 2 provide lower bounds AV (s)|| .
The first two can be written on the for$iV by selecting and||7V(s)||... The question is whether these bounds are
V11 = wpR andVys = wpGy. The remaining four can be tight, meaning that there actually exist controllers which
written on the formT'V by selectingVis = wpN, Va1 = achieve the bounds? The answer is “yes” if there is only
wuGTIR, Vas = w,G'Gq and Va3 = w,G~'N. From one R4P-zero or one RP-pole. We prove tightness of the
this we see that the “weigh” may be unstable (if one or lower bounds by constructing controllers which achieve the
both of G; and G~! are unstable) and may contairHR bounds. In this short version of the paper we only give the

zeros (if one or both off; andG ! contain RiP-poles). controller minimizing|| TV (s)|| ., the controller minimizing
We now present the two main results, the proofs of thesd| SV (s)||, and the proofs are given in (Havre, 1998, Chap-
are given in (Havre, 1998, Chapter 4). ter 4).

THEOREM1 (LOWER BOUND ON||SV (s)[|,,). Consider  Theorem3 (K wHICH MINIMIZE || TV (s)]|,.). Consider
the Siso plant G with N. > 1 RHP-zerosz; and N, > 0 the Siso plant G with oneRHP-pole p and N. > 0 RHP-

RHP-polesp; € C.. LetV be a rational transfer function,  zerosz; ¢ C, . Then the feedback controlléf which mini-
and assume th&fV is (internally) stable. Then the following mize||TV (s)|| . is given by

lower bound or|| SV (s)|| ., applies:

K(s)=G:LK,(s), K,(s)=PQ (s 18
1SVl > [ max 1B, )] [Via(z)] - (16) (8) = Grs Ko(5),  Ko(s) = PQ™ (s) (18)
where
REMARK 1. With |B,(2;)| we meanB,(G(s))|evaluated at s=z; -
REMARK 2. The assumption thaV is internally stable, means P(s) = BI'(p) Vims(p) V1 (s) (19)
that it must be possible to stabilize the system using the feedback _
controller K, without having any RP zero/pole cancellations be- Q) = (1-B:(s) P(S))m
tweenG andK. = B,'(s) (1= B.(s) P(s)) (20)

THEOREM2 (LOWER BOUND ON||TV (s)]|,.). Consider  With this controller we have
the Siso plant G with N, > 0 RHP-zerosz; € C, and .
N, > 1 Rup-polesp;. LetV be a rational transfer function, 1TV ()|l = B, (0)| - [Vins(p)] (21)



The controller in Theorem 3 gives constéht/ (jw)| for all Note that we mainly have inherent limitations on (output)
w. We note that no properness restriction has been imposegerformance when the plant hasiRzeros. The exception is

on the controller, so the controller given in Theorem 3 mayfor measurement noise, where the requirement of stabilizing
be improper. Also note that the controllEi(s) in Theorem3  an unstable pole may give poor performance.

is always stable and minimum phase. This may seem surpris- All the bounds on input usage are caused by the presence
ing since it is known that some plants wittHR zeros and  of RHP-poles. This is reasonable since we need active use of
poles require an unstable controller (Yodtaal, 1974) to  the input in order to stabilize the plant. This is considered in

achieve closed-loop stability. However, this assumes that thenore detail in the next section.

controller is strictly proper, and does therefore not apply in
our case, for further details see (Havre, 1998, Chapter 4).

5 Applications of lower bounds

5.1 Bounds on important closed-loop transfer functions

5.2 Implications for stabilization with bounded inputs

Our bounds involve thé{.,-norm, and their large engineer-
ing usefulness may not be immediate. In the following we
will concentrate on the bounds involving input usage and we
will use the lower bounds to derive andiantifythe conclu-

Consider again the six transfer functions in (11), and thesion:

weighted complementary sensitivity functiem,,.7. For
simplicity we assume thavp, w,, wy,e, R and N are all

e Bounded inputs combined with disturbances and noise
may make stabilization impossible.

stable minimum phase (or have been replaced by the stable ) ) )
minimum phase counterparts with same magnitude). FronjM€asurementnoise.The transfer function from normalized

Theorems 1 and 2 we obtain:
Output performance, reference tracking

lwpSR(s)llo =
1 e ()| 1B, ()] RG] (22)
Output performance, disturbance rejection
lwpSGa(s)lls >
max_|wp(z)| 1By (z)] - (Ga)ms(25)]  (23)

RHP-zerosz;

Output performance, measurement noise rejection

lwpTN(s)llo >
wonax fwe(pi)] - 1B, (pi)l - IN(pi)| - (24)
HP-poles,p;
Input usage, reference tracking
lwu KSR(5)|lo, = lwu TG R(s)|l,, >
oax Jwa(pi)| - B (pi)l - G R(pi)| - (25)
HP-poles,p;

Input usage, disturbance rejection

lwu KSGa(s)ll = [lwa TG Ga(s)llo >
lwu(Pi)] - 1B (0)| - G55 (G a)ms (pi)] (26)

max
RHP-poles,p;

Input usage, measurement noise rejection

lwu KSN(8)[|o, = lw TG N ()|, >

nax Jwy (pi)] - 1B (pi) - |G N (pi)| - (27)
HP-poles,p;
Closed-loop sensitivity to plant uncertainty
[wuncT'(5) o >
max  |wunc(pi)| - |B;1(pi)| (28)

RHP-poles,p;

measurement noiseto the inputu is K.SN. Then from (27)
with w, =1
lullo = 1KSN ()l =

1B (pi)| - |G (pi) N (pi)]  (29)

max
RHP-poles,p;

Thus, to haveju|| < 1for |||, = 1, we must require

|Grs ()| > 1B (9i)] - IN ()]

for the worst case polg; (we have here assumed thitis
minimum phase).

(30)

ExampPLE 1 Consider the unstable plant

1

)

s—p

G(s) p>0

with RHP-pole atp. From (29) we have the following lower bound
on the?# - -norm of the transfer function from normalized measure-
ment noisen to inputw (we assume tha¥ is minimum phase)

IKSN(8)lloo > 1Gms (0)] - IN(p)]

Inour caseG ™! = s — p, Gt (s) = s +p, Gt (p) = 2p, and the
lower bound becomes

IKSN(s)llo = 2p - [N(p)| (1Y)

The controller which minimize§T'V'(s)|| , and achieves the bound
(31) is given in Theorem 3. For the special case wh€(@) is a
constantN(s) = N we get the proportional feedback controller
K(s) = 2p.

As a numerical example, lgt = 10, then we must have for any
stabilizing feedback controllek’

[KSN(s)ll. =2 20 |N(p)|

Thus with||72||__ = 1 we will need excessive inputfu|| > 1) if
IN(p)| > |Gms(p)| = 0.05. Assume thaiV(s) = N(p) = 0.05,
then K(s) = 2p = 20. This controller gives a “flat” frequency



response, i.e|KSN(jw)| = 20, Yw. Thus, at any frequenayo
the closed-loop responseqndue to
n(t) = 0.05sin(wot), IS wu(t) =sin(wot +¢) Yw

So, the inputu(t) oscillates betwees:1. The response in andy
due ton(t) = 0.05 sin(4¢) is shown in Figure 2.

1F
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Figure 2: Closed-loop response at inpuand outputy of the plant
G, due ton(t) = 0.05 sin(4t) (dashed), withK = 20

Disturbances. Similar results as those for measurement

noise also apply to disturbances by replacifigwith G.
From (26) withw, = 1 we obtain

lullee = [[KSGa(s)]l =

aax B ()] G (Ga)ms(pi)| - (32)
HP-poles,p;
To havel|u||, < 1for||d||., = 1we mustrequire

|Gins (03)] > B (02)| - 1(G ) ms (1) (33)

for the worst case polg;.

6 Stabilization with input saturation

Our results provide tight lower bounds for the required input
signals for an unstable plant. Assume that we have found

from one of these bounds, that we néed| , > 1. That s,
at some frequency, we needu(t) = umax sin(wpt), with

umax > 1. WIll the system become unstable in the case

where input is constrained such thatt)| < 1 (Vt)?

with the controllerK’ = 20 which minimizes|| KSN(s)|| when
N is constant. With this controller we gek S(jw)| = 20, Vw,
from which we know that sinusoidal measurement noise

n(t) = no sin(wot)
cause the input to become
u(t) = 20no sin(wot + @)

for any frequencywo. Thus, forng = f - 0.05 we have that
u(t) = fsin(wot + ¢), and forf > 1 the plant input will ex-
ceed=+1 in magnitude. The question is: what happens if the inputs
are constrained to be withi#t1? Will the stability be maintained?
We will investigate this numerically by considering sinusoidal mea-
surement noise with frequenaey = 1 [rad/s].

Figure 3 shows the responseri¢t) = 1.01 - 0.05sin(t) (wo =
1[rad/s],f = 1.01). We see that the plant becomes unstable due to
the input saturation.
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Figure 3: Closed-loop response at inpLéind outputy of the plant
G, duen(t) = 1.01 - 0.05 sin(¢)

Further reading. The full version of this paper can be found
in (Havre, 1998, Chapter 4), which also contain several addi-
tional examples.
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