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Abstract

This paper examines the limitations imposed by Right Half PlanePfReros and poles in
multivariable feedback systems. The main result is to provide lower boung$lakiV (s)|| .
where X is the input or output sensitivity or complementary sensitivity. and V' are matrix
valued weights who might depend on the plant and who also might be unstable. Previously de-
rived lower bounds on th# ,.-norm of the sensitivity and the complementary sensitivity are thus
generalized to include bounds for reference tracking and disturbance rejection. Furthermore, new
bounds which quantify the minimuimput usage for stabilization in the presence of measurement
noise and disturbances, are derived. From the bounds we findut@ait performance ionly
limited if the plant has Rp-zeros. For a one degree-of-freedomOF) controller the presence
of RHP-poles further deteriorate the response, whereas there is no additional penalty for having
RHP-poles if we use a two degrees-of-freedazrOF) controller (where the disturbance and/or
reference signal is measured). For large classes of plangave that the lower bounds given
aretight in the sense that there exist stable controllers (possible improper) that achieve the bounds.

Keywords: System theory; Achievablé{,.-performance; Unstable systemsHiRzeros and
poles; Stabilization.

1 Introduction

It is well known that the presence oHR zeros and poles pose fundamental limitations on the achiev-
able control performance. This was quantified feg&systems by Bode (1945) more thahyears
ago, and most control engineers have an intuitive feeling of the limitations for scalar systems. Rosen-
brock (1966; 1970) was one of the first to point out that multivarialie-Reros pose similar limita-
tions.

The main results in this paper are explicit lower bounds orthenorm of closed-loop transfer
functions. Of course, it is relatively straightforward to compute the exact minimum value #f the
norm for a given case using standard software, and a direct computation of the valug/gf-tih@m
is also possible, e.g. using the Hankel-norm as explained in (Francis, 1987). Therefore, we want
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to stress that the objective is to derive explicit (analytical) bounds that yield direct insight into the
limitations imposed by RHP-poles and zeros.

The basis of our results is timportantwork by Zames (1981), who made use of the interpolation
constrainty” S(z) = y! and the maximum modulus theorem to derive bound#&qrnorm of S for
plants with one RpP-zero. The results by Zames were generalized to plants withpdles by Doyle,
Francis and Tannenbaum (1992) in the&case, and by Skogestad and Postlethwaite (1996), Havre
and Skogestad (1998) in thelMo case.

In this paper we extend the work of Zames (1981) and Havre and Skogestad (1998) and quan-
tify the fundamental limitations imposed byHR zeros and poles in terms of lower bounds on the
‘H~.-norm of important closed-loop transfer functions. The main generalization of the previous result
is that from the results in this paper we can derive lower boundq gmorm of closed-loop trans-
fer functions other than sensitivity and complementary sensitivity. Furtfereralizations include
multivariable weights and unstable and non-minimum phase weights.

One important application of the lower bounds, is that weguzamtifythe minimum usage needed
to stabilize an unstable plant in the presence of the “worst case” disturbance, measurement noise and
reference changes for the “bespossible controller. An additional important contribution of this
paper is that we prove that the lower boundstagbt in a large number of cases. That is, we give
analytical expressions for controllers whigbhievean# .-norm of the closed-loop transfer function
which is equal to the lower bound.

2 Elements from linear system theory

2.1 Zeros and zero directions.

Zeros of a system arise when competing effects, internal to the system, are such that the output is zero
even when the inputs and the states are not identically zero. Here we apply the following definition
of zeros (MacFarlane and Karcanias, 1976).

DEFINITION 1 (ZEROS). z; € Cis a zero ofG(s) if the rank ofG(z;) is less than the normal rank of
G(s).

The normal rank of7(s) is defined as the rank @f(s) at all s except a finite number of singularities
(which are the zeros).

DEFINITION 2 (ZERO DIRECTIONS). If G(s) has a zero fors = z € C then there exist non-zero
vectors, denoted the input zero direction € C™ and the output zero direction, € C', such that
uwfu, =1,yly, =1 and

G(2)u. =0;  y'G(2) =0 (1)
For a systent¢(s) with state-space realizatio{ng—%}, the zeros: of the system, the input zero

directionsu, and the state input zero vectatg € C" (n is the number of states) can all be computed
from the generalized eigenvalue problem

A—sl B |y 0
Z — (2)
C D | u, 0
In order to accomplish lower bounds 6t..-norm of general closed-loop transfer functions, it was necessary to
generalize the previous results to include multivariable, unstable and non-minimum phase weights.

2The best possible controller in the sense that the controller which minimizés.theorm of the closed-loop transfer
function from the disturbances, measurement noise and references to the outputs.
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Similarly one can compute the zeresind the output zero directions from G7.

2.2 Poles and pole directions.

Bode (1945) states th#te poles are the singular points at which the transfer function fails to be
analytic In this work we replace “fails to be analytic” with “is infinite”, which certainly implies that
the transfer function isot analytic When we evaluatethe transfer functiord(s) ats = p, G(p) is
infinite in some directions at the input and the output. This is the basis for the following definition of
input and output pole directions.

DEFINITION 3 (POLE DIRECTIONS). If s = p € Cis adistinct pole of7(s) then there exist an input
directionu, € C™ and an output directiony, € C' with infinite gain fors = p.

For a systenti(s) with minimal state-space realizatic{ = g ] the pole directions,, andy, for a
distinctpolep can be computed from (Havre, 1998, Section 2.4)

Up = Bpri/ ||BH$pi||2§ Yp = Cpo/ [|Cpolly (3)

wherez,; € C* andz,, € C" are the eigenvectors corresponding to the two eigenvalue problems

ng = pxg; Azpo = pTpo
Note, that the pole directions are normalized, i#,||, = 1 and||y, ||, = 1. For the sake of simplicity

we will only consider distinct poles in this paper.

2.3 All-pass factorizations of RHP zeros and poles

A transfer function matrixB(s) is all-pass ifB” (—s) B(s) = I, which implies that all singular values
of B(jw) are equal to one.
A rational transfer function matri&/ (s) with RHP-polesp; € C,., can be factorized either at the
input (subscript) or at the output (subscrip) as follows
M(s) = My By (M) M(s) = By (M) Myo(s) (4)

M,;, M,, — Stable (subscript) versions ofM with the RHP-poles mirrored across the imaginary

axis.
B,:(M), B,,(M) — Stable all-pass rational transfer function matrices containing tregles (sub-

scriptp) of M as R4P-zeros.
The all-pass filters are

Np AN ~ _ 1 e(p;) ~ ~
Bu(M(s) = T]( = 2880, all); B (M(s) = T (1 + 2, af) (5)
! 2Re(p;) X 2Re(p;)
Bpo(M(s)) = gv (I = 555 0n0p ) By (M(s)) = E(I+ 5= Uy, (6)

3Strictly speaking, the transfer functi@#(s) cannot be evaluated at = p, sinceG(s) is not analytic ak = p.

“Note that the notation on the all-pass factorizations ePReros and poles used in this paper is reversed compared
to the notation used in (Green and Limebeer, 1995; Skogestad and Postlethwaite, 1996; Havre and Skogestad, 1996). The
reason for this change of notation is to be consistent with what the literature generally defines as an all-pass filter.
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B,,(M) is obtained by factorizing at the output oneliRpole at a time, starting with

M = B;;L(M)Mplo
where
Bo(M(s)) = 1+ 2wy, g
andy,, = y,, is the output pole direction af/ for p,. This procedure may be continued to factor
outp, from M, , wherey,, is the output pole direction afZ,,, (which need not coincide with,,,
the pole directionof M) and so on. A similar procedure may be used to factorize the poles at the
input of M. Note that the sequence get reversed in the input factorization compared to the output
factorization.
In a similar sequential manner, theiRzeros can be factorized either at the input or at the output

of M

M(S) = MmiBzi(M(S)); M(S) = Bzo(M)Mmo(S) (7)

M,niy M, — Minimum phase (subscript) versions ofM with the R4P-zeros mirrored across the
imaginary axis.

B.;(M), B,,(M) — Stable all-pass rational transfer function matrices containing Hrezeros (sub-
scriptz) of M.

We get
L 2Re(z;) ~  ~H —1 N 2Re(z;) ~  ~H
Bai(M(s)) = 11 I = 5357005); By (M(s)) = ILU + 52578, ) (8)
J=Nz J=
NZ i) A~ ~ — ! e(z;) ~ ~
Boo(M(s)) = (1 = $5%0:,0%): B (M(s) = T (T + 525,91 (9)
J1= J=Nz

Alternative all-pass factorizations are in use, e.g. the inner-outer factorizations used in (Morari
and Zafiriou, 1989) which are the same as (8) and (9) except for the multiplication of a constant
unitary matrix. Reasons for using the factorizations given here are:

1) The factorizations of RpP-zeros given here are analytic and in terms of the zeros and the zero
directions, whereas the inner-outer factorizations in (Morari and Zafiriou, 1989) are given in
terms of the solution to an algebraic Riccati equation.

2) To factorize Rip-poles using the inner-outer factorization one needs to assumé thaxist.

2.4 Closing the loop

In this paper we consider the general two degrees-of-freedono@-Eontrol configuration shown

in Figure 1. In the figure the performance weights are given in dashed lines. We have included
both references and measurement noisein addition to disturbances as external inputs. The
three matrice€?,, R and N can be viewed as weights on the inputs, and the ingufsandr, are
normalized in magnitude. Normallyy is diagonal andN];; is the inverse of signal to noise ratio.

For most practical purposes, we can assumeRhatd NV are stable. However, from a technical point

of view it suffices that the unstable modesihand R can be stabilized through the inputs For

®In fact: §,, = B;j(Mﬂszmym. HereB|,_,, means the rational transfer function matixs) evaluated at the

complex numbeg = sg. Thus, it provides an alternative £ so ), and it will mainly be used to avoid double parenthesis.
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Figure 1: Two degrees-of-freedom control configuration with= [K; K|

the disturbance plar; we assume that all the unstable modesg-gfalso appears G (which is
required if the unstable modes Gf; are state controllable ).
The controller can be divided into a negative feedback part fydifd,) and a feed forward part
fromr (K;)
u=Kir — Koy, = Kir — Ky(y +n) (10)

The closed-loop transfer functian from

R
v=|d to 2= | 2 = Wry
n Z3 Wyu
is
{WP(SGKl - DR WpSGy —WpTN
F(s) = WrSGK R WrSGy —WrTN (11)
Wu.SIK R —W,KySGy —W,KySN
where the sensitivityy, the complementary sensitivily and the input sensitivity; are defined by
S £ (I+GKy)! (12)
T £ I-S = GKy(I+GKy)™! (13)
S; & (I+K,G)™! (14)

We also define the input complementary sensitivity

>

T, £ 1-S = K,GU+ K)G)™! (15)

By settingK; = K, in the above equations, the one degree-of-freedomdt}Dontrol configuration
can be analyzed.

3 Lower bounds on the?..-norm of closed-loop transfer func-
tions

In this section we derive general lower bounds on #hg-norm of closed-loop transfer functions
when the plant has one or more IRe zeros and/or poles, by using the interpolation constraints and
the maximum modulus principle. The bounds are applicable to closed-loop transfer functions on the
form

W (s)X(s)V (s) (16)
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where X may beS, T', S; or T;. The idea is to derive lower bounds ¢W XV (s)||., which are

independent of the controllét. In general, we assume thidt X'V is stable. The “weights?/ and

V' must be independent &f, they may be unstable provided that the unstable modes can be stabilized

by feedback conntrol of the platt (e.g.unstable disturbance modg] or non-minimum phase plant

G with an unstabl&/~!). This implies that the unstable modes/tfandV also appear ih. = GK».

Otherwise, the system is not stabilizable. The results are stated in terms of four theorems.
Theorems 1 and 2 provide lower bounds on#hg-norm of closed-loop transfer functions on the

formsW SV andW . S;V caused by one or moreHR-zeros inGG. By maximizing over all Rip-zeros,

we find the largest lower bounds ¢ SV (s)||, and ||W SV (s)||,, which takes into account one

RHP-zero and all Rip-poles in the plant.

[

THEOREM 1 (LOWER BOUND ON [|[WSV(s)| ). Consider a plantG with N, > 1 RHP-zerosz;,
output directionsy,, and N, > 0 RHP-polesp; € C,. LetW andV be rational transfer function
matrices, wherdV is stable. Assume that the closed-loop transfer functiofiV' is (internally)
stable. Then the following lower bound g/ SV (s)|| ., applies:

WSV (s)lloo = max —([Wino(25) y, Il - 142 VB! (Bpo(G) V)]

" RHP-zerosz; in G

(17)

s:z]-||2
Proof. see Section A.

THEOREM 2 (LOWER BOUND ON ||[WS;V(s)|,,).- Consider a planti with N, > 1 RHP-zerosz;,
input directionsu,, and N, > 0 RHP-polesp; € C,. LetIW andV be rational transfer function
matrices, wheréd/ is stable. Assume that the closed-loop transfer functiofi;V' is (internally)
stable. Then the following lower bound 9 S;V (s)||.. applies:

oo

WSVl > max 1B (WB(G) W,y [y - 0l Vina(25)] (18)

Theorems 3 and 4 provide lower bounds on#hg-norm of closed-loop transfer functions on the
formsWTV andW T,V caused by one or moreHR-poles inGG. By maximizing over all Rip-poles,
we find the largest lower bounds ¢’V (s)||, and||[WT;V (s)||,, which takes into account one
RHP-pole and all Rip-zeros in the plant.

oo

THEOREM 3 (LOWER BOUNDS ON|[WTV (s)l|,,). Consider a planti’ with N, > 1 RHP-polesp;,
output directionsy,, and N, > 0 RHP-zerosz; € C,. LetW andV be rational transfer function
matrices, wherd/ is stable. Assume that the closed-loop transfer funciohV is (internally)
stable. Then the following lower bound OW TV (s)||_ applies:

WTV(s)llo = max ||B, (WB.o(G) W|,_,u,

~ RHP-poles,p; in G

2+ 19, Vini (P) |15 (19)

THEOREM 4 (LOWER BOUNDS ON||WT;V (s)| ). Consider a plantz with N, > 1 RHP-polesp;,
input directionsu,, and N, > 0 RHP-zerosz; € C,. LetWW andV be rational transfer function
matrices, wherdV is stable. Assume that the closed-loop transfer functiof; V' is (internally)
stable. Then the following lower bound §W 77V (s)|| ., applies:

o

IWTTV($)llo = max |[Woo(pi) uy,

° " Rup-polesp; in G

2 Iy VB (B.i(G) V)]

2 (20)

5=Pi

Remarks on Theorems 1-4:



1) The somewhat messy notation can easily be interpreted. As an example take the last factor of
(17): Factorize the Rp-poles at the output off into an all-pass filtei3,,(G) (yields R4P-
zeros), multiply on the right with” (may add Rip-zeros ifV' is non-minimum phase), then
factorize at the input the #RP-zeros of the product into an all-pass transfer function, take its
inverse, multiply on the left Witl@gV and finally evaluate the result fer= z;.

2) The lower bounds (17)—(20) are independent of the feedback contiglldrthe weightsiV
andV are independent dk’,.

3) The internal stability assumption on the closed-loop transfer funcliBiasl’, where X €
{S, S;, T, Ty}, means thalV? XV are stable, and we have nt4iR pole/zero cancellations
between the plan and the feedback controllés,.

4) The assumption on stability &7 andV' in Theorems 1-4 is in practigeot restrictive, since
when the assumption isot fulfilled we can generally rewrite the transfer function and apply
another theorem instead.

ExamMpLE 1. Consider deriving a bound oH,-norm of the closed-loop transfer functidk,SG
(input usage due to disturbances). We can use the rel&i¢tG, = G~ TG, and apply Theorem 3
with W = G~! andV = G, but we must assume th&}; is stable However, we can use the relation
K»,SGy = TiG~'G,4 and apply Theorem 4 with’ = I andV = G~'Gy, and in this case we can also
allow G4 to beunstable

4 Tightness of lower bounds

Theorems 1 to 4 provide lower bounds|piv XV (s)|| . whereX e {S, S;, T, T;}. The question is
whether these bounds are tight, meaning that there exist controllers which achieve these bounds? The
answer is “yes” if there is only oneH®-zero or one RP-pole. Specifically, we find that the bounds

on ||[WSV (s)| . and||WS;V(s)||,, are tight if the plantz has one Rp-zero and any number of
RHP-poles. Similarly, we find that the bounds oW1’V (s)||, and ||W1;V (s)||., are tight if the

plantG has one RpP-pole and any number of#-zeros. We prove tightness of the lower bounds by
constructing controllers which achieve the bounds.

THEOREM5 (CONTROLLER WHICH MINIMIZES ||[W SV (s)| ). Consider a plantG with oneRHP-

zero z, output directiony,, and N, > 0 RHP-polesp; € C,. LetWW andV be rational transfer
function matrices, wherél’ is stable. A feedback controller (possible improper) which stabilizes
WSV, is given by

Ks(s) = Gono(s) P(s) @' (s) (21)

where
Q(s) = Wig(s) Wino(2) Vo By (G) |, Mini(2) My (5) (22)
P(S) = Bz_ol(GSO) ([ - Bpo(G) Q) (23)

VE) = yzyf‘i_ngOUoH and Mmi(s) = (Bpo(G) V(S))ml

where the columns of the matri% € R'*(~1) together withy, forms an orthonormal basis fdR!
and ky is any constant.P(s) is stable since th&Hp-zero fors = z in I — B,,(G) @ cancels the
RHP-pole fors = z in B,}(G,,), in @ minimal realization of>. With this controller we have

T (IWSV($) o = [Wono(2) 5y - 157V BL (B ) V)l (24)



From Theorem 5 it follows that the bound (17) is tight when the plant has eirezRro.
We can proove that the three other bounds in Theorems 2, 3 and 4 are tight, under conditions
similar to those given in Theorem 5.

5 Applications of lower bounds

The lower bounds offiW XV (s)||, in Theorems 1 and 4 can be used to derive a large number of
interesting and useful bounds.

5.1 Output performance

The previously derived bounds in terms of tHeg,-norms ofS and7 given in (Zames, 1981; Skoges-

tad and Postlethwaite, 1996) and in Havre and Skogestad (1998) follow easily, and further general-
izations involving output performance can be derived. Here we assume that the performance weights
Wp andWr are stable and minimum phase.

Weighted sensitivity, WpS. Selecti = Wp, V = I, and apply the bound (17) to obtain

WpS(s)lloe > _ max ([ Wp(z) s [, - lyz; B, (G))|

RHP-zeros,z;

(25)

S:Z]||2

Note, this generalizes the previously found bounds to the case with a matrix valued weight.

Disturbance rejection. SelectV = Wp, V = G4, and apply the bound (17) to obtain

IWpSGa(s)ll > . max [Wp(z) yslly - 1z Ga B (Byo(G) Ga)l (26)

RHP-zeros,z;

Reference tracking. Select = Wp, V = R, and apply the bound (17) to obtain

IWpSR(s) |l > . max  [[We(z;) ys,ll, - [l R B! (Bro(G) R) |, |l (27)

RHP-zeros z;

Note that we can also look at the combined effect of disturbances and references by sé&leeting
[Gy RI.

Measurement noise rejection.SelectiV = Wp, V = N, and apply the bound (19) to obtain

o N (i) Il (28)

IWpTN(s)lloe = max B, (WpB.o(G)) Wel,_, up

RHP-poles,p;

where we must assume thisithas no RiP-poles corresponding toH® zeros or poles id’. Normally
N is stable.

5.2 Input usage

The above provide generalizations of previous results, but we can also derive some new bounds in
terms of input usage from Theorems 3 and 4. These new bounds provide very interesting insights, for
example, into the possibility of stabilizing an unstable plant with inputs of bounded magnitude.



The basis of these new bounds is to note that the transfer function from the outputs to the inputs,
K, S, can be rewritten a&»S = 7;G~! or K»,S = G~'T. Whend is unstableG—! has one or more
RHP-zeros, so it is important that the bounds in Theorem 4 can handle the casé&'whe#~! has
RHP-zeros. Otherwise;/~! evaluated at the pole @f, would be zero in a certain direction, and we
would not derive any useful bounds. Here we assume that the wiéigbnh the inputu is stable and
minimum phase.

Disturbance rejection. Apply the equalityk,S = T;G !, select = W,, V = G G4, and use
the bound (20) to obtain

W, K3SGa(s)|,, >  max
RHP-poles,p;
IWu(Di) up: ||y - gt G GaBLHGriGa)l =yl (29)

where we have used the identify;(G) G~! = G ;. Again, reference tracking is included by replac-
ing G4 by R.

Measurement noise rejection.Apply the equalityK,S = T;G !, selectWW = W,, V = G~!N,
and use the bound (20) to obtain

WuK2SN(s)]l = max [[Wy(p;) uy,

~ RHP-poles,p;

o [ullGTINBH G, iN)) (30)

s:pi||2
We may look at the combined effect of reference tracking, disturbance rejection and measurement
noise by using (20) withV = W, andV =G~'[G;, R N].

Simplified lower bound on || K,S(s)|| .. Two useful simplified lower bounds g, S(s)||,, can
easily be derived. First, apply the equalitiS = T;G !, selecti = I, V = G}, and use the
bound (20) to obtain

1S (5)ly > . max lu, GBS G

~ RHP-poles,p; ml) |5:pi

2 = ||UZG5_01

2 (31)

5=Pi

where the last identity follows froms.;(G;.}) = B.;(G™') = B,,(G).
Similarly, we obtain from (19), withV = G='andV =T

S (5)llo 2 max B, (G G,y U,

~ RHP-poles,p;

2 — ||G;il|s:pi Ypilla (32)

where the last identity follows froms.,(G,, .

mo

) = BZO(Gil) = Bpi(G)-

6 Two degrees-of-freedom control

For a 2-Dor controller the closed-loop transfer function from referencesoutputsz; = W,(y —r)
becomes
Wp(SGK, — I)R (33)

We then have the following “special” lower bound on this transfer function.



THEOREM 6. Consider a plantz with N, > 1 RHP-zerosz; and N, > 0 RHP-polesp; € C,.. Let
the performance weight’» be minimum phase and let (for simplicit{) be stable. Assume that
the closed-loop transfer functios(SGK; — I)R is stable. Then the following lower bound on
IWp(SGK, — I)R(s)||, applies:

IWp(SGE, = DR(s)lly > . max  [[We(2)ys,ll; - 14z Bmi (27) [ (34)

°° 7 RHp-zerosz; in G
The bound (34) is tight if the plant has oReiP-zeroz.

Note that this bound does not follow directly from Theorems 1-4. The bound in (34) should be
compared to the following bound for a 1€p controller (which follows from Theorem 1, assuming
thatWp is minimum phase).

IWpSR(s)ll > max [[We(z))ys, I, - lyz; BB (Byo(G) R)I,_ |l (35)

" RHP-zerosz; in G

We see that for the 2-OF controller only the RiP-zeros pose limitations.

7 Example

In this section we consider the following multivariable pléht

s—z _ 0.1s+1
G(s) = [ sP 5P ] , with =25 and p=2
0.1s+1 1

The plantG has one multivariable Rr-zeroz = 2.5 and one Rip-polep = 2. The corresponding input and
output zero and pole directions are

L[ _[o0371 L [0385 1
ol Y27 0928 P~ lo923|° 7o

The R4P-polep can be factorized int6i(s) = B,,' (G)Gs,(s) where

0 o U
— | s+p — | stp s+p
Byo(G) [ 5 1] and Gg(s) [0.51;% ] ]

From the lower bound (17), witW” = I andV = I, we find

= 3.4691

_ 9 0
1) oo 2 192 By ()]l = H[o.:m 0.928] [ ]
2

0 1

Next, we use Theorem 5 (wit" = I andV" = I) to find the feedback controller which minimizgs/(s)|| ..
With &y = 10~2 we get the following balanced minimal state-space realization of the feedback conkfgller

—10 | 188.4 —75.49
Ko(s) =G, PQl(s)Z | 0 306 —122.6 | which achieves ||S(s)||, = 3.4691
203 | —6508 2605

Note the large gain in the controller (large elements inEhenatrix). The reason is the small value laf =
102, kg must be small to get th# ..-norm of S close to the lower bound. Note, it is not surprising that we get
large gains in the controller (and large input usage) since no weight has been put on the transfer Kyftion
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Next, consider minimizing the input usage, i.e. to minimize #g-norm of K»S. We have two lower
bounds orj| K»5(s)|| ., but they are identical since the bounds are tight. We use the eqaly= 7,G 1
and the lower bound (20) witi’ = I andV = G, to obtair?

1K2S() g > Il G BZN Gl oyl = 0 G (0)]l, = 3.077

mi

In (Havre, 1998, Section 5.7) reference tracking is also considered, and the benefit of appbirry
controller when the plant is unstable is illustated.

8 Conclusion

e We have derived tight lower bounds on closed-loop transfer functions valid for multivariable
plants. The bounds are independent of the controller and therefore reflects the controllability of
the plant.

e The bounds extend and generalize the results by Zames (1981), Doyle et al. (1992), Skogestad
and Postlethwaite (1996) and the results given in Havre and Skogestad (1998), to also handle
non-minimum phase and unstable weights. This allows us to deewower bounds on input
usage due to disturbances, measurement noise and reference changes.

e The new lower bounds on input usage make it possibdgigmtifythe minimum input usage for
stabilization of unstable plants in the presence of worst case disturbances, measurement noise
and reference changes.

e It is proved that the lower bounds aiight, by deriving analytical expressions for stable con-
trollers which achieves ai..-norm of the closed-loop transfer functions equal to the lower
bound for large classes of systems.

e Theorem 6 expresses the benefit of applyiBg20F controller compared to BDoOF controller
when the plant is unstable and hasarzero.
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A Proofs of the results

Proof of Theorem 1We prove (17) by applying the following six steps:

1) Factor out Rip-zeros inW SV: RHP-poles inG appears as RP-zeros inS. Factor outS = §Bpo(G)
to obtain

20(W) Wino S Byo(G) V
ZO(W) vao g(BPO(G) V)mg Bzi(BIJO(G) V)

(WSV)m

WSV(s) = B
B

W SV is stable by assumption. From the assumption on internal stability it follows'tisagtable (if one
closed-loop transfer function is stable then internal stability implies that all the other closed-loop transfer
functions are stable). Then it is only theiRzeros inS which can cancel Rp-poles inV andW. So,
factorizing the zeros if©;. of W does not introduce instability i#¥.SV),,, since none of these cancel
unstable modes if or V' . Similarly, we can factorize the zeros@. of V. However, when factorizing

the zeros inS we must avoid factorizing the zeros which cancel poleS. inof V. Otherwise(W SV'),,
becomes unstable. By factorizing only the zeros in a minimal realizatids){{7) V' we accomplish

this. SincelV is stable there are no canncellations against the zerdsdue to poles inG. It then
follows that(WW SV),, is stable.
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2) Introducef(s) =

= max
w1l =1, ||lz2[l,=1

o (W SV),, w2, then

IWSV($)lloo = IWSV(8))mlloo = [1/(5)llog

3) Apply the maximum modulus theorem f@s) at the RiP-zerosz; of G

1 ()Mo = 1£(2))]

4) Resubstitute the factorization of#R-zeros inS, i.e. useS = § B, (G)

flz) = max 21 Wino S By (G) (Bpo(G) V)imil 2
lzll=1, lz2|l,=1 g
= max T Wino SV B (Bpo(G) V) |s:Zj:1:2

lzill,=1, [Jz2]l,=1
5) Use the interpolation constraint foHR-zerosz; in G, i.e. useyZS(zj) = yg

fz) = max T Wio SVBLH(Byo(G) V)|

llz1ll;=1, [|z2[[,=1

max 21 Wino Y92 SV B (Byo(G) V)|

llz1lly=1, l|lz2[l;=1

= max W0, yzijV B (Bpo(G) V)|

llz1ll;=1, [|z2][,=1

s=2j L2

4G

S:Zj

s*z-x2
)
6) Evaluate the lower bound

WSV (9)lloo > 1£ ()] = Wino(2)y;1ls - |52 VB (Bpo(G) V)

s:z]-“2

Since these steps apply to alHR zeros inG, the bound (17) follows.
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