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Abstract

This paper examines the fundamental limitations on closed-loop performance imposed by
instability in the plant (Right Half Plane (RHP) poles). The main limitation is that instability
requires active use of plant inputs, and we quantify this is terms of tight lower bounds on the input
magnitudes required for disturbance and measurement noise rejection. These new bounds involve
theH1-norm, which has direct engineering significance. The output performance in terms of
disturbance rejection or reference tracking isonly limited if the plant has RHP-zeros, and for
a one degree-of-freedom controller the presence of RHP-poles further deteriorate the response,
whereas there is no additional penalty for having RHP-poles if we use a two degrees-of-freedom
controller. It is important to stress that the derived bounds are controller independent and that they
are tight, meaning that there exists controllers which achieve the lower bounds.

1 Introduction

An unstable plant can only be stabilized by use of feedback control which implies active use of
the plant inputs. If measurement noise and/or disturbances are present (which is always the case in
practical control), then the input usage may become unacceptable.

In this paper, the above statements are quantified by deriving tight lower bounds on theH1-norm
of the closed-loop transfer functionsSV andTV , whereS andT are the sensitivity and complemen-
tary sensitivity functions. The transfer functionV can be viewed as ageneralized“weight”, which
for our purpose should be independent of the feedback controllerK.

Some reasons for deriving such bounds are:

1) The lower bounds provide direct insights to the limitations imposed by RHP zeros and poles in
SISO systems.

2) The lower bounds derived are independent of the controller, so they can be used as controlla-
bility measures.
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3) In some cases we can show that the bounds are tight. This implies that we in these cases can find
a controllerK, analytically, which achieves anH1-norm of the closed-loop transfer function
equal to the lower bound.

4) We canquantify, in terms of theH1-norm, the “best achievable” closed-loop effect of the worst
case disturbance, measurement noise and references both at the input and at the output of the
plant.

One important application is that we can quantify the minimum input usage for stabilization in the
presence of worst case measurement noise and disturbances. It appears thatevenfor SISO systems
this has been a difficult task, which has not been solved analytically until now.

To give the reader some appreciation of the basis of the bounds and their usefulness, we consider
as a motivating example an unstable plant with a RHP-polep. We want to obtain a lower bound on
theH1-norm of the closed-loop transfer functionKS from measurement noisen to plant inputu.
We first rewriteKS = G�1T , which is on the formTV with V = G�1. The basis of our bound is
the use of the maximum modulus principle and the “interpolation constraint”T (p) = 1, which must
apply to achieve internal stability. We obtain (see Theorem 1 for details)

kKS(s)k1 = kG�1T (s) k1 � jG�1
ms(p)j

whereGms is the “stable and minimum phase” version ofG (if G also has a RHP-zeroz we get the
additional penaltyjz+pj

jz�pj
). As an example, consider the plantG(s) = 1

s�10
, which has an unstable pole

p = 10. We obtainGms(s) = 1
s+10

. For any linear feedback controllerK, we find that the lower
bound

kKS(s)k1 � jG�1
ms(p)j = 2p = 20

must be satisfied. Thus, if we require that the plant inputs are bounded withkuk1 � 1, then we
cannot allow the magnitude of measurement noise to exceedknk1 = 1=20 = 0:05.

The basis for our results is theimportantwork by Zames (1981), who made use of the interpolation
constraintS(z) = 1 and the maximum modulus theorem to derive bounds on theH1-norm of S
for plants with one RHP-zero. Subsequently, these results were extended to unstable plants with
one RHP-pole and then to plants with combined RHP zeros and poles, e.g. (Doyle, Francis and
Tannenbaum, 1992, pp. 93–95) and (Skogestad and Postlethwaite, 1996).

However, these generalizations to unstable plants didnot consider the input usage which involves
the closed-loop transfer functionKS. An important contribution of this paper is therefore to use the
“trick” KS = G�1T , which enable us to derive lower bounds on input usage, by using the general
lower bound onkTV (s)k1 with V = G�1. But whenG is unstable (with RHP-polep), thenV = G�1

has RHP-zeros fors= p. A second important contribution compared to earlier work is the ability to
include RHP zeros and poles in the “weight”V (under the assumption thatSV andTV are stable).

A third important contribution is that we show that the lower bounds aretight. That is, we give
analytical expressions for stable controllers whichachievesanH1-norm of the closed-loop transfer
function which is equal to the lower bound.

Several authors, among them Kwakernaak (1995), have noted the symmetries between sensitiv-
ity and complementary sensitivity and the roles of RHP zeros and poles ofG. In this paper, the
symmetries are also reflected in where performance is measured. We find that RHP-zeros ofG pose
limitations on performance measured at theoutputof the plant whereas RHP-poles ofG pose limita-
tions on performance measured at theinput of the plant (input usage).

The bounds onkS(s)k1 for plants with RHP-zero derived by Zames (1981) are also valid for mul-
tivariable systems. It is important to note that all the results given in this paper have been generalized
to multivariable systems (Havre and Skogestad, 1997b). However, the notation becomes complicated
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in the multivariable case, with the result that it is difficult to understand the implications of the bounds.
In the SISO case, the bounds may easily be derived by hand for a particular plant. However, in the
multivariable case, we must in general evaluate the bounds numerically.

The paper is organized as follows: First we introduce the notation and present some basics from
linear control theory. In Section 3 we derive the general lower bounds onkSV (s)k1 andkTV (s)k1,
and in Section 4 we prove the tightness of the lower bounds. In Section 5 we show some applications
and implications of the lower bounds both on output performance, input usage, peaks in sensitivity and
complementary sensitivity, and we give some simple examples to illustrate the applications and the
implications. In Section 6 we discuss briefly the relationship to stabilization with input constraints.
In Section 7 we derive a lower bound applicable to two degrees-of-freedom (2-DOF) control. The
proofs of the results which are not given in the main text are given in Appendix A.

2 Basics from linear control theory

We consider linear time invariant transfer function models on the form

y(s) = G(s)u(s) +Gd(s)d(s) (1)

whereu is the manipulated input,d is the disturbance,y is the output,G is the SISO plant model
andGd is the SISO disturbance plant model. The measured output isym = y + n wheren is the
measurement noise.

TheH1-norm of a stable rational transfer functionM(s) is defined as the peak value in the
magnitudejM(j!)j over all frequencies.

kM(s)k1 , sup
!

jM(j!)j (2)

2.1 Zeros and poles

In a rational transfer functionM the zeros and poles are the roots of the numerator and denominator
polynomials. That is, the zeroszj and the polespi are the solutions to the following equations

M(zj) = 0 and M�1(pi) = 0 (3)

When we refer to zeros and poles we mean the zeros and poles of the plantG unless otherwise
explicitly stated.

2.2 Factorizations of RHP zeros and poles

A rational transfer functionM(s) with zeroszj and polespi in the open RHP, fzj; pig 2 C + , can be
factorized inBlaschke productsas follows1

M(s) = Bz(M)Mm(s) (4)

M(s) = B�1p (M)Ms(s) (5)

M(s) = Bz(M)B�1p (M)Mms(s) (6)

where
1Note that the notation on the all-pass factorizations of RHP zeros and poles used in this paper is reversed compared

to the notation used in (Skogestad and Postlethwaite, 1996; Havre and Skogestad, 1997a). The reason to this change of
notation is to get consistent with what the literature generally defines as an all-pass filter.
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Figure 1: Operations on RHP zeros and poles for scalar transfer functions

Mm – Minimum phase (subscriptm) version ofM with the RHP-zeros mirrored across the imagi-
nary axis.

Ms – Stable (subscripts) version ofM with the RHP-poles mirrored across the imaginary axis.
Mms – Minimum phase, stable (subscriptms) version ofM with the RHP zeros and poles mirrored

across the imaginary axis.
Bz(M) – Stable all-pass rational transfer function(jBz(j!)j = 1; 8!) containing the RHP-zeros

(subscriptz) of M .
Bp(M) – Stable all-pass rational transfer function(jBp(j!)j = 1; 8!) containing the RHP-poles

(subscriptp) of M as RHP-zeros.

The all-pass filters are

Bz(M(s)) =
NzY
j=1

s� zj
s+ �zj

(7)

Bp(M(s)) =

NpY
i=1

s� pi
s+ �pi

(8)

whereNz is the number of RHP-zeroszj 2 C + andNp is the number of RHP-polespi 2 C + in M .
In most casesM = G and to simplify the notation we often omit to show that the all-pass filters

are dependent onG, i.e. we writeBp(s) andBz(s) in the meaning ofBp(G(s)) andBz(G(s)).
Figure 1 demonstrates the operations,(�)m for RHP-zeros,(�)s for RHP-poles and the combined

operator(�)ms of scalar transfer functions. The order of the two operations(�)m and(�)s in the com-
bined operator(�)ms is arbitrary. It also follows that

(G�1)ms = (Gms)
�1 = G�1

ms (9)

And we note that
kM(s)k1 = kMm(s)k1 = kMms(s)k1 (10)

The first identity follows sincejBz(M(j!))j = 1; 8!, and the latter identity follows sinceM is stable,
i.e.Mms = Mm andBp(Mm) = Bp(M) = 1.

To prove the main results in this paper we make use of the following Lemma.

LEMMA 1. Consider a stableSISO transfer functionAB which can be expressed by the product of
theSISO transfer functionsA andB, where bothA andB may be unstable. Then

kABk1 = k(AB)mk1 = kAmsBmsk1 (11)
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Figure 2: One degree-of-freedom control configuration

2.3 Closing the loop

A typical control problem is shown in Figure 2. In the figure possible performance weights are given
in dashed lines. Mainly for simplicity, but also because it is most practically relevant, we assume that
the performance weightswP andwu are stable and minimum phase. If intergrators (poles ats= 0)
are present inwP andwu then we need the same number of integrators inL = GK, to have a stable
closed-loop transfer function. In Figure 2 we have included both the referencer and the measurement
noisen, in addition to disturbancesd as external inputs. The transfer functions,Gd, R andN can be
viewed as weights on the inputs, and the inputs:~d, ~r and~n are normalized in magnitude. Normally,
N is the inverse of signal to noise ratio. For most practical purposes, we can assume thatR andN
are stable. However from the technical point of view it suffice that the unstable modes inN orR can
be stabilized through the inputu.

We apply negative feedback control

u = K(r � ym) = K(r � y � n) (12)

The closed-loop transfer functionF from

v =

2
4 ~r

~d

~n

3
5 to z =

�
z1
z2

�
=

�
wP (y � r)

wuu

�

is

F (s) =

��wPSR wPSGd �wPTN

wuSKR �wuKSGd �wuKSN

�
(13)

where the sensitivityS and the complementary sensitivityT are defined as

S , (1 +GK)�1 =
1

1 +GK
(14)

T , 1� S =
GK

1 +GK
(15)

To have good control performance (keepz1 small) with a small input usage (keepz2 small) we need
to havekF (s)k1 small. That is we want all the SISO transfer functions in (13) small. In addition,
there are robustness issues. For example, we wish to havekwuncT (s)k1 small, wherewunc is the
magnitude of the relative plant uncertainty.

The first requirement for being able to satisfying all these objectives (e.g. having all seven transfer
functions mentioned above small), is that the weightswP , wu andwunc are such that the objectives
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can be achieved. For example, sinceS + T = 1 we cannot havewPR andwunc largeat the same
frequencyif we want to havekwPSR(s)k1 (tight control of setpoint changes) andkwuncT (s)k1 (the
closed-loop response is insensitive to plant uncertainty) small. However, the presence of RHP zeros
and poles in the plantG provide additional limitations, which is the focus of this paper.

2.4 Interpolation constraints

If G has a RHP-zeroz or a RHP-polep then for internal stability of the feedback system the following
interpolation constraints must apply (e.g. Skogestad and Postlethwaite, 1996):

T (z) = 0; S(z) = 1 (16)

S(p) = 0; T (p) = 1 (17)

3 Lower bounds on theH1-norm of closed-loop transfer func-
tions

In this section we will give the main results, which are lower bounds on theH1-norm of closed-
loop transfer functions which can be written on the formTV or SV . The generalized “weight”V is
assumed to be independent of the feedback controllerK. V may be unstable butTV andSV must be
stable. That is, it must be possible to stabilize all transfer functions by controlling the outputy using
the inputu (this implies that all unstable modes ofV also are modes ofG).

Some examples.Consider the six transfer functions in (13). The first two can be written on the
form SV by selectingV11 = wPR andV12 = wPGd. The remaining four can be written on the form
TV by selectingV13 = wPN , V21 = wuG

�1R, V22 = wuG
�1Gd andV23 = wuG

�1N . From this we
see that the “weight”V may be unstable (if one or both ofGd andG�1 are unstable) and may contain
RHP-zeros (if one or both ofGd andG�1 contain RHP-poles).

In the first result, which is the lower bound onkTV (s)k1, we consider any number of RHP-zeros
in the plantG and one RHP-pole at a time. Then by maximizing over all RHP-poles in the plantG we
find the largest lower bound onkTV (s)k1 which takes into account one RHP-pole and all RHP-zeros.

THEOREM 1 (LOWER BOUND ONkTV (s)k1). Consider theSISO plantG withNz � 0 RHP-zeros
zj 2 C + andNp � 1 RHP-polespi. Let V be a rational transfer function, and assume thatTV is
(internally) stable. Then the following lower bound onkTV (s)k1 applies:

kTV (s)k1 � max
RHP-poles,pi

jB�1z (pi)j � jVms(pi)j (18)

REMARK 1. With jBz(pi)j we meanjBz(G(s))j evaluated ats = pi.
REMARK 2. The assumption thatTV is internally stable, means thatTV is stable and we have no RHP

zero/pole cancellations betweenG andK.

The lower bound (18) is independent of the controllerK, if the weightV is independent ofK. The
factorjB�1z (pi)j takes into account the interactions between all the RHP-zeroszj 2 C + and the single
RHP-polepi of G. As we shall see this factor can be quite large ifG contains one or more RHP-zeros
close to the RHP-polepi.

Proof of Theorem 1.
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1) Factor out RHP zeros and poles inT andV . Lemma 1 gives

kTV (s)k1 = kTmsVms(s)k1 = kTmVms(s)k1

where the last equality holds sinceT is stable, i.e.Tms = Tm.
2) Introduce the stable scalar functionf(s) = TmVms(s).
3) Apply the maximum modulus theorem tof(s) at the RHP-polespi of G.

kf(s)k1 � jf(pi)j

4) Resubstitute the factorization of RHP-zeros inT , i.e. useTm(pi) = T (pi)B
�1
z (pi) to get

f(pi) = Tm(pi)Vms(pi) = T (pi)B
�1
p (pi)Vms(pi)

5) Use the interpolation constraint (17) for RHP-polespi in G, i.e. useT (pi) = 1.
6) Evaluate the lower bound.

jf(pi)j = jB�1z (pi)j � jVms(pi)j (19)

Note thatf(pi) is independent of the controllerK if V is independent ofK.

Since these steps holds for all RHP-polespi, Theorem 1 follows. 2

In the next result, which is the lower bound onkSV (s)k1, we consider any number of RHP-poles
in the plantG and one RHP-zero at a time. Then by maximizing over all RHP-zeros in the plantG we
find the largest lower bound onkSV (s)k1 which takes into account one RHP-zero and all RHP-poles.

THEOREM 2 (LOWER BOUND ONkSV (s)k1). Consider theSISO plantG withNz � 1 RHP-zeros
zj andNp � 0 RHP-polespi 2 C + . Let V be a rational transfer function, and assume thatSV is
(internally) stable. Then the following lower bound onkSV (s)k1 applies:

kSV (s)k1 � max
RHP-zeros,zj

jB�1p (zj)j � jVms(zj)j (20)

Remarks on Theorems 2 and 1:

1) The lower bounds onkTV (s)k1 andkSV (s)k1 involveVms. Thus, we get the same result if
the “weight”V is replaced by its stable minimum phase counterpart with the same magnitude
Vms. Note that forV = V 1V 2 we have

kTV (s)k1 = kTmV 1
msV

2
msk1 (21)

Which means that we can treat the different factors ofV independently.
2) The bound onkTV (s)k1 is caused by the RHP-polespi in G, and the termjB�1z (pi)j � 1

gives an additional penalty for plants which also have RHP-zeros. For the case whenG hasno
RHP-zeros, thenB�1z (pi) = 1.

3) The bound onkSV (s)k1 is caused by the RHP-zeroszj in G, and the termjB�1p (zj)j � 1

gives an additional penalty for plants which also have RHP-poles. For the case whenG hasno
RHP-poles, thenB�1p (zj) = 1.

4) In all the lower bounds which follows from Theorems 2 and 1, one of the following two factors
appears

jB�1z (pi)j =

NzQ
j=1

jpi + �zjj
NzQ
j=1

jpi � zjj
� 1 (22)
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jB�1p (zj)j =

NpQ
i=1

jzj + �pij
NpQ
i=1

jzj � pij
� 1 (23)

The factorjB�1z (pi)j is a measure for the interactions between all RHP-zeroszj 2 C + of G
and the single RHP-polepi of G. If one or more RHP-zeros are close to the RHP-polepi, then
jB�1z (pi)j is much larger than one. In a similar wayjB�1p (zj)j combines all RHP-polespi 2 C +

of G together with the single RHP-zerozj of G. Clearly,jB�1p (zj)j is much larger than one if
one or more RHP-poles are located close to the RHP-zerozj.

4 Tightness of lower bounds

Theorems 1 and 2 provide lower bounds onkTV (s)k1 andkSV (s)k1. The question is whether
these bounds are tight, meaning that there actually exist controllers which achieve the bounds? The
answer is “yes” if there is only one RHP-zero or one RHP-pole. Specifically, we find that the bound
kTV (s)k1 is tight if the plantG has one RHP-pole and any number of RHP-zeros, and that the bound
on kSV (s)k1 is tight if the plantG has one RHP-zero and any number of RHP-poles. We prove
tightness of the lower bounds by constructing controllers which achieve the bounds.

First, we consider the controller which minimizeskTV (s)k1.

THEOREM 3 (K WHICH MINIMIZE kTV (s)k1). Consider theSISO plantG with oneRHP-polep
andNz � 0 RHP-zeroszj 2 C + . Then the feedback controllerK which minimizekTV (s)k1 is given
by

K(s) = G�1
msKo(s); Ko(s) = PQ�1(s) (24)

where

P (s) = B�1z (p)Vms(p)V
�1
ms (s) (25)

Q(s) = (1� Bz(s)P (s))m = B�1p (s) (1� Bz(s)P (s)) (26)

With this controller we have
kTV (s)k1 = jB�1z (p)j � jVms(p)j (27)

which shows that the bound given in Theorem 1 is tight when the plant has oneRHP-pole.

We stress that the bound given in Theorem 1 is generallynot tight if the plant has more than one
RHP-pole. The controller in Theorem 3 yields a constant (“flat”) frequency responsejTV (j!)j for all
!. We note that no properness restriction has been imposed on the controller, so the controller given
in Theorem 3 may be improper. Also note that the controllerK(s) in Theorem 3 is always stable and
minimum phase. This may seem surprising since it is known that some plants with RHP zeros and
poles require an unstable controller (Youla, Bongiorno and Lu, 1974) to achieve closed-loop stability.
However, these results assume that the loop transfer functionGK is proper or strictly proper, and
does therefore not apply in our case whereK may be improper. In practice, controllers are often
made proper by adding high-frequency dynamics, e.g. by multiplying with1=("s + 1)m where" is
small, andm is some integer. This works in most cases. However, it will not work for plants which
needs RHP zeros or poles in the controller to make the closed-loop transfer functionTV stable, and
we therefore conclude that our lower bound onTV may not be tight in such cases.Remark: We
have written “maynot be tight” since numerical results using standard state-spaceH1-synthesis in
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MATLAB , have shown that the boundsare tight even for plants which result in an unstable state-space
H1-controller. Thus for some plants, in addition to the stable improper controller given by (24), there
may exist an unstable proper controller which yields the same minimum value ofkTV (s)k1.

Next, we consider the controller which minimizeskSV (s)k1.

THEOREM 4 (K WHICH MINIMIZE kSV (s)k1). Consider theSISO plantG with oneRHP-zeroz
andNp � 0 RHP-polespi 2 C + . Then the feedback controllerK which minimizekSV (s)k1 is given
by

K(s) = G�1
msKo(s); Ko(s) = PQ�1(s) (28)

where

Q(s) = B�1p (z)Vms(z)V
�1
ms (s) (29)

P (s) = (1� Bp(s)Q(s))m = B�1z (s) (1� Bp(s)Q(s)) (30)

With this controller we have
kSV (s)k1 = jB�1p (z)j � jVms(z)j (31)

which shows that the bound given in Theorem 2 is tight when the plant has oneRHP-zero.

The comments following Theorem 3 also apply to the bound in Theorem 2 and to the controller given
in Theorem 4.

5 Applications of lower bounds

The lower bounds onkTV (s)k1 andkSV (s)k1 in Theorems 1 and 2 can be used to derive a large
number of interesting and useful bounds.

5.1 Bounds on important closed-loop transfer functions

Consider again the six transfer functions in (13), and the weighted complementary sensitivity function
wuncT . For simplicity we assume thatwP , wu, wunc, R andN are all stable minimum phase (or have
been replaced by the stable minimum phase counterparts with same magnitude). From Theorems 1
and 2 we obtain:

Output performance, reference tracking:

kwPSR(s)k1 � max
RHP-zeros,zj

jwP (zj)j � jB�1p (zj)j � jR(zj)j (32)

Output performance, disturbance rejection:

kwPSGd(s)k1 � max
RHP-zeros,zj

jwP (zj)j � jB�1p (zj)j � j(Gd)msjs=zj (33)

Output performance, measurement noise rejection:

kwPTN(s)k1 � max
RHP-poles,pi

jwP (pi)j � jB�1z (pi)j � jN(pi)j (34)
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Input usage, reference tracking:

kwuKSR(s)k1 = kwuTG
�1R(s)k1 � max

RHP-poles,pi
jwu(pi)j � jB�1z (pi)j � jG�1

msR(pi)j (35)

Input usage, disturbance rejection:

kwuKSGd(s)k1 = kwuTG
�1Gd(s)k1 � max

RHP-poles,pi
jwu(pi)j � jB�1z (pi)j � jG�1

ms(Gd)msjs=pi (36)

Input usage, measurement noise rejection:

kwuKSN(s)k1 = kwuTG
�1N(s)k1 � max

RHP-poles,pi
jwu(pi)j � jB�1z (pi)j � jG�1

msN(pi)j (37)

Closed-loop sensitivity to plant uncertainty:

kwuncT (s)k1 � max
RHP-poles,pi

jwunc(pi)j � jB�1z (pi)j (38)

Note that we mainly have inherent limitations on (output) performance when the plant has RHP-zeros.
The exception is for measurement noise, where the requirement of stabilizing an unstable pole may
give poor performance.

On the other hand, all the bounds on input usage are caused by the presence of RHP-poles. This
is reasonable since we need active use of the input in order to stabilize the plant. This is considered
in more detail in the next section.

5.2 Implications for stabilization with bounded inputs

Our bounds involve theH1-norm, and their large engineering usefulness may not be immediate. In
the following we will concentrate on the bounds involving input usage and we will use the lower
bounds to derive andquantifythe conclusion:

� Bounded inputs combined with disturbances and noise may make stabilization impossible.

The input signal for a one degree-of-freedom (1-DOF) controller due to disturbanced, measurement
noisen of magnitudeN and referencer of magnitudeR is

u = KS(R~r �Gdd�N ~n) (39)

Measurement noise.The transfer function from normalized measurement noise~n to the inputu is
KSN . Then from (37) withwu = 1

kuk1 = kKSN(s)k1 � max
RHP-poles,pi

jB�1z (pi)j � jG�1
ms(pi)N(pi)j (40)

Thus, to havekuk1 � 1 for k~nk1 = 1, we must require

jGms(pi)j � jB�1z (pi)j � jN(pi)j for the worst case polepi (41)

(we have here assumed thatN is minimum phase). That is:

� To keep the input magnitude less than one(kuk1 � 1) we must require that the plant gain is
larger than the measurement noise at frequencies corresponding to the unstable poles.
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To better understand this statement, we will make use of the interpretation of theH1-norm in terms
of steady-state sinusoids. Consider the case whenk~nk1 = 1 and assume that the lower bound in
terms ofkuk1 = kKSN(s)k1 in (40) is larger than one (i.e. (41) isnot satisfied). In this case, no
matter what linear controller we design, there will always be a sinusoidal noise signal

n(t) = nmax sin(!0t); nmax = jN(j!0)j
such that the resulting input signal

u(t) = umax sin(!0t + ')

hasumax > 1 (the value of' is not of interest here). For a given controllerK, the worst case frequency
!0 may be chosen as the frequency! wherejKSN(j!)j has its peak value, i.e.jKSN(j!0)j =
kKSN(s)k1.

Disturbances. Similar results as those for measurement noise apply to disturbances if we replaceN

byGd. From (36) withwu = 1 we obtain

kuk1 = kKSGd(s)k1 � max
RHP-poles,pi

jB�1z (pi)j � jG�1
ms(Gd)msjs=pi (42)

To havekuk1 � 1 for kdk1 = 1 we must require

jGms(pi)j �
��B�1z (pi)

�� � j(Gd)msjs=pi for the worst case polepi (43)

That is:

� To keep the input magnitude less than one(kuk1 � 1) we must require that the plant gain is
larger than the gain of the disturbance plant at frequencies corresponding to the unstable poles.

References.For reference changes withk~rk1 = 1, we find the same bound (42), but withGd re-
placed byR. However, the implications are less severe since we may choosenot to follow the refer-
ences (e.g. setR = 0). Also, in the case of reference changes we may use a2-DOF controller, such
that the “burden” on the feedback part of the controllerK is less. This is discussed in Section 7.

5.3 Combined RHP zeros and poles

It is well known that the combination of RHP zeros and poles imply peaks in the sensitivity and
complementary sensitivity for SISO systems which are larger than one. This has previously been
quantified by Freudenberg and Looze (1988) in terms of sensitivity integral relations, butnot directly
in terms ofkS(s)k1 andkT (s)k1. However, from (20) and (18) we obtain

kS(s)k1 � max
RHP-zeros,zj

jB�1p (zj)j � 1

kT (s)k1 � max
RHP-poles,pi

jB�1z (pi)j � 1

which are large ifjzj � pij is small. If all RHP zeros and poles are different by a factor of10 or more,
then the interaction between them are small. For a plant with one RHP-zeroz and one RHP-polep we
obtain

Mpz , jB�1p (z)j = jB�1z (p)j = jz + pj
jz � pj

Peaks inS andT less thanMpz are thus unavoidable. For example ifz=p = 10 givesMpz = 1:22,
whereasz=p = 1:5 givesMpz = 5. By using the lower bounds we have derived and quantified the
conclusion:

� Closely locatedRHP zeros and poles imply large sensitivity peaks.
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5.4 Examples

EXAMPLE 1. The intention with this example is to show the engineering application of the lower bound on
kKSN(s)k1 and to demonstrate the use of Theorem 3 to find the feedback controllerK which minimize
kKSN(s)k1. We consider the unstable plant

G(s) =
1

s� p
; p > 0

with RHP-pole atp. From (40) we have the following lower bound on theH1-norm of the transfer function
from normalized measurement noise~n to inputu (we assume thatN is minimum phase)

kKSN(s)k1 � jG�1ms(p)j � jN(p)j

In our caseG�1 = s� p,G�1ms(s) = s+ p,G�1ms(p) = 2p, and the lower bound becomes

kKSN(s)k1 � 2p � jN(p)j (44)

The controller which minimizeskTV (s)k1 and achieves the bound (44) is given in Theorem 3. Rewriting
KSN = TG�1N and by usingV = G�1N we obtainVms(s) = (s+ p)N(s), where we have assumedN to
be stable minimum phase. Furthermore,Bz(s) = 1, Bp(s) =

s�p
s+p . Thus, from Theorem 3 we obtain

P (s) =
2p �N(p)

(s+ p) �N(s)
and Q(s) =

s+ p

s� p
�

�
1�

2p �N(p)

(s+ p) �N(s)

�

which gives

K(s) =
2p �N(p) (s� p)

(s+ p)N(s)� 2p �N(p)

Remark: It seems like this controller has a RHP-zero fors = p, but this is not the case for its minimal realization
since

(s+ p) �N(s)js=p� 2p �N(p) = 0

For the special case whereN(s) is a constantN(s) = N we get the proportional feedback controller

K(s) =
2p(s� p)

s+ p� 2p
= 2p

As a numerical example, letp = 10, then

G(s) =
1

s� 10

and we must have for any stabilizing feedback controllerK

kKSN(s)k1 � 20 jN(p)j

Thus withk~nk1 = 1 we will need excessive inputs(kuk1 > 1) if jN(p)j � jGms(p)j = 0:05. Assume
thatN(s) = N(p) = 0:05, thenK(s) = 2p = 20. This controller gives a “flat” frequency response, i.e.
jKSN(j!)j = 20; 8!. Thus, at any frequency!0 the closed-loop response inu due to

n(t) = 0:05 sin(!0t); is u(t) = sin(!0t+ ') 8!

So, the inputu(t) oscillates between�1. The response inu andy due ton(t) = 0:05 sin(4t) is shown in
Figure 3.
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Figure 3: Closed-loop response at inputu and outputy of the plantG, due ton(t) = 0:05 sin(4t) (dashed),
with K = 20

EXAMPLE 2. In this example we consider disturbance rejection for a plant with one RHP zero and pole. Let

G(s) =
k

z

s� z

s� p
; Gd(s) = kdG(s) with z = 2; p = 1

We see that the disturbance is of magnitudekd and enters at the input of the plant. Note that

(Gd)ms =
k � kd
z

s+ z

s+ p
and G�1ms =

z

k

s+ p

s+ z

The factors involving the interactions between the RHP zeroz and polep become

jB�1p (z)j = jB�1z (p)j =
jz + pj

jz � pj
= 3

and we find that peaks in the sensitivityS and the complementary sensitivityT less than3 are unavoidable
since

kS(s)k1 �
jz + pj

jz � pj
= 3 and kT (s)k1 �

jz + pj

jz � pj
= 3

SinceG has a RHP-zero, we have a bound on theH1-norm of the closed-loop transfer function from distur-
banced to outpute = y � r

kSGd(s)k1 � jB�1p (z)j � j(Gd)msjs=z=
jz + pj

jz � pj
�
2 jk � kdj

jz + pj
= 2 jk � kdj

and forkdk1 = 1, the outpute will be unacceptable(kek1 > 1) for jk � kdj > 0:5.
Similarly, sinceG has a RHP-pole p we have a bound on theH1-norm of the closed-loop transfer function
from disturbanced to inputu

kKSGd(s)k1 � jB�1z (p)j � jG�1ms(p)j � j(Gd)msjs=p=
jz+pj
jz�pj � jkdj = 3 jkdj

and forkdk1 = 1 the input usage will be unacceptable(kuk1 > 1) whenjkdj > 1=3.

EXAMPLE 3. In this example we look at the effect of a RHP zero and pole inGd. Let the plant be

G(s) =
5

(10s+ 1)(s� 1)

whereBz(s) = 1 since there is no RHP-zeros inG. We consider the three disturbances

Gd1(s) =
kd

(s� 1)(0:2s + 1)
; Gd2(s) =

kd
(s+ 1)(0:2s + 1)
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and Gd3(s) =
kd(s� 2)

(s+ 1)(0:2s + 1)(s+ 2)

For disturbanced1 we must assume that the unstable pole atp = 1 is the same as the one in the plantG, such
that it can be stabilized using feedback control. There is no RHP-zero inG, so we have no lower bound on
kSGdk(s)k1. However, sinceG has a RHP-pole p there is a bound onkKSGdk(s)k1, and we find that the
same lower bound applies to all three disturbances(k 2 f1; 2; 3g), since

(Gd1)ms = (Gd2)ms = (Gd3)ms =
kd

(s+ 1)(0:2s + 1)

We obtain

kKSGdk(s)k1 � jG�1ms(Gdk)msjs=p=

����(10s+ 1)(s+ 1)

5

kd
(s+ 1)(0:2s + 1)

����
s=1

=
11

6
� jkdj

Thus, forkdk1 = 1 and if we requirekuk1 � 1 we need to havejkdj � 6
11 � 0:55. In other words, we may

encounter excessive plant inputs (for all controllers) ifjkdj >
6
11 � 0:55.

6 Stabilization with input saturation

Our results provide tight lower bounds for the required input signals for an unstable plant. Can these
bounds be used to say anything about the possibility of stabilizing a plant with constrained inputs
(e.g.ju(t)j � 1; 8t)? Assume that we have found, from one of these bounds, that we needkuk1 > 1.
That is, at some frequency!0 we needu(t) = umax sin(!0t), with umax > 1. Will the system become
unstable in the case where input is constrained such thatju(t)j � 1 (8t)?

Unfortunately, all our results are for linear systems, and we have not derived any results for this
nonlinear effect of input saturation. Nevertheless, for simple low order systems we find as expected
very good agreement between our lower bounds and the actual stability limit in systems with input
saturation. Intuitively, this agreement should be good if the input remains saturated for a time which
is longer than about1=p, wherep is the RHP-pole.

6.1 Examples

EXAMPLE 1 CONTINUED. Consider again the plant

G(s) =
1

s� 10

with the controllerK = 20 which minimizeskKSN(s)k1 whenN is constant. With this controller we get
jKS(j!)j = 20; 8!, from which we know that sinusoidal measurement noise

n(t) = n0 sin(!0t)

cause the input to become
u(t) = 20n0 sin(!0t+ ')

for any frequency!0. Thus, forn0 = f � 0:05 we have thatu(t) = f sin(!0t + '), and forf > 1 the plant
input will exceed�1 in magnitude. The question is: what happens if the inputs are constrained to be within
�1? Will the stability be maintained? We will investigate this numerically by considering three frequencies;
!0 = 1 [rad/s],!0 = 10 [rad/s] and!0 = 100 [rad/s].

First, Figure 4 shows the response ton(t) = 1:01 � 0:05 sin(t) (!0 = 1 [rad/s],f = 1:01). We see that the
plant becomes unstable due to the input saturation. Next, we consider!0 = 10 [rad/s]. In this case we donot

14
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Figure 4: Closed-loop response at inputu and outputy of the plantG, duen(t) = 1:01 � 0:05 sin(t)
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Figure 5: Closed-loop response at inputu and outputy of the plantG, duen(t) = 1:29 � 0:05 sin(10t)

get instability withf = 1:01 and!0 = 10 [rad/s]. We find numerically that we need to increase the magnitude
of the sinusoidal noise to aboutf = 1:29 to get instability for this particular frequency. Figure 5 shows the
response ton(t) = 1:29 � 0:05 sin(10t) (! = 10 [rad/s] andf = 1:29). Finally, as shown in Figure 6 we get
instability withn(t) = 1:6 � 0:05 sin(100t) (! = 100 [rad/s] andf = 1:6).

We experience that we have to increase the magnitude of the noise somewhat to get instability for sinusoidal
measurement noise with frequency around the bandwidth and higher. However, we are still within a factor of
two for a large frequency range for this particular plant. Measurement noise usually contain a large range of
frequencies, which makes it even more probable that one loose stability of the plant if the lower bounds exceeds
the allowable input range.

Note that the control system designer seldom wants the input to saturate when stabilizing an unstable
plant due to the possibility of loosing stability. So our “engineering bounds” are really applicable in practical
controller design.

As a final simulation, Figure 7 shows the closed-loop response due to a step of size1:01 � 0:05 in n. (1%
increase relative to the limit which causeu to exceed�1). This input signal can be viewed as consisting of
infinite number of frequencies with decreasing magnitude, where the steady-state effect is the most important
and can be viewed as a slowly varying sinusoid with!0 = 0 [rad/s] and amplitude1:01 � 0:05. As can be seen
from the figure, the unconstrained input exceeds1 slightly. When the input is constrained to be within�1,
stability of the plant is lost.

EXAMPLE 3 CONTINUED. Consider again the plant

G(s) =
5

(10s+ 1)(s� 1)
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Figure 6: Closed-loop response at inputu and outputy of the plantG, duen(t) = 1:6 � 0:05 sin(100t),
(unconstrained input not shown)
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Figure 7: Closed-loop response at inputu and outputy of the plantG, due to step in measurement noise,
n(s) = 1:01 � 0:05

s

In the simulations shown in this example, we have used the disturbance plantGd = Gd3

Gd(s) =
kd(s� 2)

(s+ 1)(0:2s + 1)(s+ 2)

However, it does not really matter whichGdk one uses, except that the initial responses may be different.
By using Theorem 3 withV = G�1Gd, we obtain:

Bz(s) = 1; Bp(s) =
s� 1

s+ 1
; Gms(s) =

5

(s+ 1)(10s + 1)
; (Gd)ms(s) =

kd
(s+ 1)(0:2s + 1)

;

Vms(s) =
kd
5

10s+ 1

0:2s+ 1
; Vms(p) =

11

6
� kd; P (s) =

55

6

0:2s+ 1

10s+ 1
and Q(s) =

49

6

s+ 1

10s+ 1

TheH1-optimal controller minimizingkKSGd(s)k1 becomes

K1(s) =
49

11
(0:2s+ 1)(10s + 1)

which is not proper. Forkd = 6
11 the controllerK1 results inkK1SGd(s)k1 = 1, and whenkd = 0:55 >

6
11 (0:55 is the value ofkd used in the simulations)kK1SGd(s)k1 = 1:008. We note that the specter of
K1SGd(j!) is flat (constant). To get a realizable (proper) controller we add second order dynamics at high
frequency to obtain theH1-suboptimal controller

eK1(s) =
49

11

(0:2s+ 1)(10s + 1)

(0:01s + 1)2
(45)
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TheH1-norm of the closed-loop transfer functioneK1SGd with kd = 0:55 is

k eK1SGd(s)k1 = 1:027; for ! = 1:35 [rad/s].

To compare with a more traditional controller, which emphasize tight control at low frequencies, we also
consider controlling the plantG using the feedback controller

K(s) =
0:4 � (10s+ 1)2

s(0:1s+ 1)2
(46)

With thisK theH1-norm of the closed-loop transfer functionKSGd for kd = 0:55 becomes

kKSGd(s)k1 = 2:845; for ! = 2:056 [rad/s].

The magnitude of the closed-loop transfer functionseK1SGd for eK1 given by (45) is shown in Figure 8
together with the magnitude ofKSGd for K given in (46). From the figure we see that forcingjKSGd(j!)j
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Figure 8: Closed-loop transfer functionsKSGd (dashed) andeK1SGd (solid)

to be small at low frequencies, results in a peak in the medium frequency range (comparejKSGd(j!)j with
j eK1SGd(j!)j in Figure 8).

The non-linear constrained and the linear unconstrained responses to the unit step in disturbanced using
the suboptimalH1-controller eK1 given by (45) and the controllerK given by (46), are shown in Figures 9
and 10. From the simulations we see that the input saturates (it may be difficult to separate the unconstrained
input from the constrained input in Figure 9, since the unconstrained input only slightly exceeds�1), with the
consequence that we loose stability of the plant for both controllers.

7 Two degrees-of-freedom control

In this section we consider the 2-DOF controller where

u = K1r �K2(y + n) (47)

(the 1-DOF considered above follows by settingK1 = K2 = K). For a 2-DOF controller the closed-
loop transfer function from references~r to outputsz1 = wP (y � r) becomes

wP (SGK1 � 1)R (48)

We then have the following “special” lower bound on this transfer function.
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THEOREM 5. Consider theSISO plantG with Nz � 1 RHP-zeroszj andNp � 0 RHP-polespi 2
C + . Let the performance weightwP be stable and minimum phase, and let the closed-loop transfer
functionwP (SGK1�1)R be stable. Then for a two degrees-of-freedom controller the following lower
bound applies

kwP (SGK1 � 1)Rk1 � max
RHP-zeros,zj

jwP (zj)j � jRms(zj)j (49)

Furthermore, the bound (49) is tight if the plant has oneRHP-zeroz, and the controllersK1 andK2

which achieve the lower bound (49) are given by

K1 = Bp(z)G�1
ms(z) �

�
1� w�1P (s)R�1

ms(s)wP (z)Rms(z)
�
m

(50)

K2 = The controller given in Theorem 4, minimizingkSG(s)k1. (51)

REMARK 1. The bound (49) is clearly a lower bound (both for 1-DOF and 2-DOF controllers). The important
fact is that (49) provides a tight lower bound for a plant with one RHP-zero and with the2-DOF controller given
in Theorem 5.
REMARK 2. It follows thatK1 is stable sincew�1P is stable andR�1ms is stable. From Theorem 4 it follows that
K2 is stable.

The bound in (49) should be compared to the corresponding bound for 1-DOF controller (32):

kwPSR(s)k1 � max
RHP-zeros,zj

jwP (zj)j � jB�1p (zj)j � jRms(zj)j (52)
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The fact that the lower bound (49) is tight when the plant has one RHP-zero and2-DOF is applied
makes it possible to conclude thatonly the RHP-zero pose limitations in this case. Thus, with a2-DOF

controller there is no additional penalty for having RHP-poles inG when performance is measured
asz1 = wP (y � r). However, from (52) we see that the penalty for having both a RHP-zerozj and
RHP-poles isjB�1p (zj)j � 1 for a1-DOF controller.

8 Discussion

Form the lower bounds on input usage (see Section 5.2) we can easilyquantify how much mea-
surement noise and the magnitude of disturbance we can tolerate to avoid that the input exceeds some
prespecified limits. We find this quantification appealing, and it should be useful for control engineers
doing practical control design. We therefore used the term “engineering bounds” for this application
of the lower bounds in the second part of Example 1. Here we will only stress that these bounds are of
fundamental theoretical importance, and they are (in many cases) tight for the best possible controller.
So the bounds are exact, i.e. these bounds are not rules of thumb.

In theH1-controller design procedure, theH1-norm of some weighted closed-loop transfer func-
tion is minimized. It has been shown that the resulting minimization problem is a convex problem,
which can be solved numerically for example by introducing Linear Matrix Inequalities (LMI) or
using
-iteration.

In this paper we have looked at single closed-loop transfer functions which can be written asTV

or SV . PracticalH1-controller designs are usually set up as a stacked transfer function consisting
of several closed-loop transfer functions. Usually the sensitivity appears as a factor in one or more
of the closed-loop transfer functions, which is the origin to the name “mixed sensitivity”. The con-
troller designed will then reflect a trade-off between the different requirements expressed in each of
the closed-loop transfer functions. For example, it is common to put weight on both the output per-
formance and input usage. This can be expressed as in the mixedS=KS H1 controller design where

the problem is to find the controllerK such that theH1-norm of
�
wPS

wuKS

�
is minimized, i.e.

min
K






�
wPS(s)

wuKS(s)

�




1

Lower and upper bounds on theH1-norm of the mixedS=KS sensitivity are

maxfkwPS(s)k1 ; kwuKS(s)k1g �





�
wPS(s)

wuKS(s)

�




1

�
p
2 maxfkwPS(s)k1 ; kwuKS(s)k1g

which shows that our individual lower bounds onkwPS(s)k1 and kwuKS(s)k1 provide useful
information also for practicalH1-controller designs.

In the
-iteration theH1-minimization over the controllerK is transformed to a convex mini-
mization problem in the free variable
, which is theH1-norm of the closed-loop transfer function2.
Most packages3 perform the
-iteration using the bisection method. That is, given a high and a low
value of
 (upper and lower bound) and a stabilizing controller, the bisection method is used to iter-
ate on the value of
. This “modern” controller synthesis shows one application of lower and upper
bounds on theH1-norm of general closed-loop transfer functions. The lower bounds derived in this

2In MATLAB Robust Control Toolbox
 is the inverse of theH1-norm of the closed-loop transfer function.
3See MATLAB , �-tools or Robust Control Toolbox.
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paper can be used as the low value of
 supplied to the
-iteration. This follows since the largest
singular value of matrix is larger than the largest element in the matrix. So, the largest lower bound
on theH1-norm of a SISO transfer function in a larger multivariable stacked transfer function matrix
still is a lower bound on theH1-norm of the stacked closed-loop transfer function in question.

9 Conclusion

� We have derived tight lower bounds on closed-loop transfer functions. The bounds are inde-
pendent of the controller, and therefore reflects the controllability of the plant.

� The bounds extend and generalizes the SISO results by Zames (1981), Doyle et al. (1992) and
Skogestad and Postlethwaite (1996) to also handle non-minimum phase and unstable weights.
This allow us to derivenew lower bounds on input usage due to disturbances, measurement
noise and reference changes.

� The new lower bounds on input usage make it possible toquantifythe minimum input usage for
stabilization of unstable plants in the presence of worst case disturbances, measurement noise
and reference changes.

� It is proved that the lower bounds aretight, by deriving analytical expressions for stable con-
trollers which achieves anH1-norm of the closed-loop transfer functions equal to the lower
bound for large classes of systems.

� Theorem 5 express the benefit of applying a2-DOF controller compared to a1-DOF controller
when the plant is unstable and has a RHP-zero.

� The application of the lower bounds have been illustrated and the implications have studied
in several examples. Nonlinear simulations have been used to find the amount of noise and
disturbances which in combination with input constraints, cause loss of stability for unstable
plants. The results show good agreement between this amount of noise and disturbances and
the corresponding values predicted by the lower bounds, in the examples studied.
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A Proofs of the results

Proof of Lemma 1. The first identity in (11) follows since extracting RHP-zeros in the productAB in terms of
the all-pass filterBz(AB), does not change theH1-norm. The reason is of course thatBz(AB) is all-pass for
s = j!. To prove the latter identity, assumeA has RHP-zeros which does not appear in the productAB, then
B has RHP-poles for those RHP-zeros, and these RHP-poles can be factorized asB�1p (B). Similarly, if B has
RHP-zeros which does not appear in the productAB, thenA has RHP-poles for those RHP-zeros, and these
RHP-poles can be factorized asB�1p (A). We obtain

AB = B�1p (A)Bz(A)Ams B
�1
p (B)Bz(B)Bms = B�1p (A)Bz(A)B

�1
p (B)Bz(B)| {z }

=Bz(AB)

AmsBms| {z }
=(AB)m

Since,AB is stable then(AB)m = AmsBms, and it follows that

B�1p (A)Bz(A)B
�1
p (B)Bz(B) = Bz(AB)

Note that,B�1p (A)Bz(B) are the RHP-zeros ofB which arenot RHP-poles inA andBz(A)B�1p (B) are the
RHP-zeros ofA which arenot RHP-poles inB. 2

Proof of Theorem 2.

1) Factor out RHP zeros and poles inS andV . Lemma 1 gives

kSV (s)k1 = kSmsVms(s)k1 = kSmVms(s)k1

where the last equality holds sinceS is stable, i.e.Sms = Sm.
2) Introduce the stable scalar functionf(s) = SmVms(s).
3) Apply the maximum modulus theorem tof(s) at the RHP-zeroszj of G.

kf(s)k1 � jf(zj)j

4) Resubstitute the factorization of RHP-zeros inS, i.e. useSm(zj) = S(zj)B
�1
p (zj) to get

f(zj) = Sm(zj)Vms(zj) = S(zj)B
�1
p (zj)Vms(zj)

5) Use the interpolation constraint (16) for RHP-zeroszj in G, i.e. useS(zj) = 1.
6) Evaluate the lower bound.

jf(zj)j = jB�1p (zj)j � jVms(zj)j (53)

Note thatf(zj) is independent of the controllerK if V is independent ofK.

Since these steps holds for all RHP-zeroszj , Theorem 2 follows. 2

Proof of Theorem 3. The transfer functionP is stable, sinceV �1
ms (s) is stable and the remaining matrices

B�1z (p) andVms(p) are finite constant matrices. Consider(1� Bz(s)P (s)) which has a RHP-zero fors = p

(1� Bz(s)P (s)) = Bp(s) (1 � Bz(s)P (s))m or (1� Bz(s)P (s))m = B�1p (s) (1 � Bz(s)P (s))

We obtain

L(s) = GK(s) = B�1p (s)Bz(s)Ko =
M(s)

1�M(s)
= �1 +

1

1�M(s)
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where
M(s) = Bz(s)B

�1
z (p)Vms(p)V

�1
ms (s)

Since,S�1 = 1 + L = 1
1�M we have

S(s) = 1�M(s) = 1� Bz(s) B
�1
z (p)Vms(p)V

�1
ms (s)| {z }

=P (s)

= 1� Bz(s)P (s)

ConsiderS at the complex valuep

S(p) = 1� Bz(p)B
�1
z (p)Vms(p)V

�1
ms (p) = 0

We can therefore write

S(s) = Bp(s)Q(s) , Q(s) = B�1p (s)(1 �Bz(s)P (s))

whereQ is stable. Since,P ,Q andG�1ms are all stable we have thatK is stable. Furthermore,

T = B�1p (s)Bz(s)P (s)Q�1(s)Bp(s)Q(s) = Bz(s)P (s)

and we get

TV (s) = Bz(s)B
�1
z (p)Vms(p)V

�1
ms (s)

=V (s)z }| {
Bz(V (s))B�1p (V (s))Vms(s)

= B�1z (p)Vms(p)Bz(s)Bz(V (s))B�1p (V (s))

TheH1-norm ofTV is
kTV (s)k1 = jB�1z (p)j � jVms(p)j (54)

sinceBz(s)Bz(V (s))B�1p (V (s)) is all-pass fors = j!. Since the value ofkTV (s)k1 in (27) is the same as
the lower bound (18), this is the controller which minimizekTV (s)k1. 2

Proof of Theorem 4. The transfer functionQ is stable, sinceV �1ms (s) is stable and the remaining matrices
B�1p (z) andVms(z) are finite constant matrices. Consider(1� Bp(s)Q(s)) which has a RHP-zero fors = z

(1� Bp(s)Q(s)) = Bz(s) (1� Bp(s)Q(s))m or (1� Bp(s)Q(s))m = B�1z (s) (1 � Bp(s)Q(s))

We obtain

1 + L(s) = 1 +GK(s) = 1 + B�1p (s)Bz(s)GmsG
�1
msKo = 1 + B�1p (s)Bz(s)Ko

= 1 + B�1p (s) (1� Bp(s)Q(s)) Q�1(s) = 1 +
�
B�1p (s)Q�1(s)� 1

�
= B�1p (s)Q�1(s)

Which implies that
S(s) = Bp(s)Q(s)

Since bothQ(s) andBp(s) are stable, it follows thatS(s) is stable. At the complex valuez, we have

Q(z) = B�1p (z) and S(z) = Bp(z)Q(z) = 1

It then follows thatT = 1� S is stable and has a RHP-zero fors = z

T (z) = 1� S(z) = 1� 1 = 0

SinceT (s) = 1� S(s) = 1� Bp(s)Q(s), we obtain

T (s) = Bz(s)P (s) , P (s) = B�1z (s) (1� Bp(s)Q(s))
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whereP is stable. Since,Q, P andG�1ms are all stable we have thatK is stable. We get

SV (s) = Bp(s)B
�1
p (z)Vms(z)V

�1
ms (s)

=V (s)z }| {
Bz(V (s))B�1p (V (s))Vms(s)

= B�1p (z)Vms(z)Bp(s)Bz(V (s))B�1p (V (s)) (55)

TheH1-norm ofSV is
kSV (s)k1 = jB�1p (z)j � jVms(z)j (56)

sinceBp(s)Bz(V (s))B�1p (V (s)) is all-pass fors = j!. Since the value ofkSV (s)k1 in (31) is the same as
the lower bound (20), this is the controller which minimizekSV (s)k1. 2

Proof of Theorem 5. We first prove the lower bound (49). From Lemma 1 we have

kwP (SGK1 � 1)R(s)k1 = kwP (SGK1 � 1)msRms(s)k1

sincewP is stable and minimum phase. Consider the scalar functionf(s) = wP (SGK1 � 1)msRms which is
analytic (stable) in RHP since the closed-loop system is stable. By applying the maximum modulus theorem to
f(s) we get

kwP (SGK1 � 1)msRms(s)k1 = kf(s)k1 � jf(zj)j

We get

jf(zj)j = jwP (SGK1 � 1)msRmsjs=zj = jwP (zj)(�1)Rms(zj)j = jwP (zj)j � jRms(zj)j

The second equality follows sinceSGK1 must have RHP-zeros fors = zj , sinceG has RHP-zeros fors = zj,
andS andK1 must be stable (no RHP-poles inS or K1 to cancel the RHP-zeros inG). It then follows that
(SGK1 � 1) has no RHP-zeros fors = zj.

We next prove that the controllersK1 andK2 given in Theorem 5, achieves this lower bound for the case
when the plant has one RHP-zero z. From equation (55) in the proof of Theorem 4 we find thatSG with
K = K2 (minimizing kSG(s)k1) andV = G becomes

SG(s) = B�1p (z)Gms(z)Bz(s)

We obtain

SGK1(s)� 1 = Bz(s)(

RHP-zero fors = zz }| {
1� w�1P (s)R�1ms(s)wP (z)Rms(z))m � 1

= Bz(s)B
�1
z (s)

�
1� w�1P (s)R�1ms(s)wP (z)Rms(z)

�
� 1

= �w�1P (s)R�1ms(s)wP (z)Rms(z)

which gives
wP (SGK1(s)� 1)R(s) = �Bz(R)B

�1
p (R)wP (z)Rms(z)

SincewP (SGK1(s) � 1)R(s) is stable, so isBz(R)B�1p (R)wP (z)Rms(z) and RHP-poles inR may only
cancel against RHP-zeros inSGK1 � 1. It follows that

kwP (SGK1(s)� 1)R(s)k1 = jwP (z)j � jRms(z)j

and the controllersK1 andK2 given in (50) and (51) minimizes theH1-norm ofwp(SGK1 � 1)R(s). 2
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