Fundamental limitations for control of unstables8
plants

K. Havresand S. Skogestad
Chemical Engineering, Norwegian University of Science and Technology,
N-7034 Trondheim, Norway.

Submitted 10 Oct. 1997 for possible publicationAntomatica

Abstract

This paper examines the fundamental limitations on closed-loop performance imposed by
instability in the plant (Right Half Plane () poles). The main limitation is that instability
requires active use of plant inputs, and we quantify this is terms of tight lower bounds on the input
magnitudes required for disturbance and measurement noise rejection. These new bounds involve
the H-norm, which has direct engineering significance. The output performance in terms of
disturbance rejection or reference trackingoidy limited if the plant has Rp-zeros, and for
a one degree-of-freedom controller the presence w#-poles further deteriorate the response,
whereas there is no additional penalty for havingrRboles if we use a two degrees-of-freedom
controller. Itis important to stress that the derived bounds are controller independent and that they
are tight, meaning that there exists controllers which achieve the lower bounds.

1 Introduction

An unstable plant can only be stabilized by use of feedback control which implies active use of
the plant inputs. If measurement noise and/or disturbances are present (which is always the case in
practical control), then the input usage may become unacceptable.
In this paper, the above statements are quantified by deriving tight lower bounds7g therm
of the closed-loop transfer functiosd” and7V', whereS and7 are the sensitivity and complemen-
tary sensitivity functions. The transfer functidhcan be viewed as generalized'weight”, which
for our purpose should be independent of the feedback contrcller
Some reasons for deriving such bounds are:
1) The lower bounds provide direct insights to the limitations imposedHoy Zros and poles in
SISO systems.
2) The lower bounds derived are independent of the controller, so they can be used as controlla-
bility measures.
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3) In some cases we can show that the bounds are tight. This implies that we in these cases can find
a controllerkK, analytically, which achieves &H..-norm of the closed-loop transfer function
equal to the lower bound.

4) We camuantify, in terms of theH ,.-norm, the “best achievable” closed-loop effect of the worst
case disturbance, measurement noise and references both at the input and at the output of the
plant.

One important application is that we can quantify the minimum input usage for stabilization in the
presence of worst case measurement noise and disturbances. It appeavsnfat SISO systems
this has been a difficult task, which has not been solved analytically until now.
To give the reader some appreciation of the basis of the bounds and their usefulness, we consider
as a motivating example an unstable plant withrePRole p. We want to obtain a lower bound on
the #.,-norm of the closed-loop transfer functidnS from measurement noiseto plant inputu.
We first rewrite K.S = G~'T', which is on the forni’'V with V' = G~!. The basis of our bound is
the use of the maximum modulus principle and the “interpolation constraift] = 1, which must
apply to achieve internal stability. We obtain (see Theorem 1 for details)

IKS ()l = IGT'T(5) lle > |Grra(p)]

whereG,,; is the “stable and minimum phase” version®f(if G' also has a Rp-zero z we get the
additional penalt)ﬁ%gi). As an example, consider the plafits) = —, which has an unstable pole
p = 10. We obtainG,,;(s) = ﬁ For any linear feedback controllek’, we find that the lower
bound

IKS($)lloe > 1G s (p)| = 2p = 20

must be satisfied. Thus, if we require that the plant inputs are bounded|ujjth < 1, then we
cannot allow the magnitude of measurement noise to exgefd = 1,/20 = 0.05.

The basis for our results is tiraportantwork by Zames (1981), who made use of the interpolation
constraintS(z) = 1 and the maximum modulus theorem to derive bounds ortthenorm of S
for plants with one RP-zero. Subsequently, these results were extended to unstable plants with
one R4P-pole and then to plants with combinediR zeros and poles, e.g. (Doyle, Francis and
Tannenbaum, 1992, pp. 93-95) and (Skogestad and Postlethwaite, 1996).

However, these generalizations to unstable plantaididonsider the input usage which involves
the closed-loop transfer functiddS. An important contribution of this paper is therefore to use the
“trick” KS = G~'T, which enable us to derive lower bounds on input usage, by using the general
lower bound on| TV (s)]|, with V = G~'. But whenG is unstable (with Rp-polep), thenV = G~*
has RiP-zeros fors =p. A second important contribution compared to earlier work is the ability to
include R4P zeros and poles in the “weight” (under the assumption th&l” and7'V are stable).

A third important contribution is that we show that the lower boundstigte. That is, we give
analytical expressions for stable controllers whaacihievesan #.-norm of the closed-loop transfer
function which is equal to the lower bound.

Several authors, among them Kwakernaak (1995), have noted the symmetries between sensitiv-
ity and complementary sensitivity and the roles aifRzeros and poles off. In this paper, the
symmetries are also reflected in where performance is measured. We findithaefs ofG pose
limitations on performance measured at theputof the plant whereas i-poles ofG pose limita-
tions on performance measured at itmgut of the plant (input usage).

The bounds o} S(s) ||, for plants with RiP-zero derived by Zames (1981) are also valid for mul-
tivariable systems. It is important to note that all the results given in this paper have been generalized
to multivariable systems (Havre and Skogestad, 1997b). However, the notation becomes complicated
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in the multivariable case, with the result that it is difficult to understand the implications of the bounds.
In the Sso case, the bounds may easily be derived by hand for a particular plant. However, in the
multivariable case, we must in general evaluate the bounds numerically.

The paper is organized as follows: First we introduce the notation and present some basics from
linear control theory. In Section 3 we derive the general lower bound$diis) ||, and|| TV (s)|| .,
and in Section 4 we prove the tightness of the lower bounds. In Section 5 we show some applications
and implications of the lower bounds both on output performance, input usage, peaks in sensitivity and
complementary sensitivity, and we give some simple examples to illustrate the applications and the
implications. In Section 6 we discuss briefly the relationship to stabilization with input constraints.
In Section 7 we derive a lower bound applicable to two degrees-of-freedonog2-€»ntrol. The
proofs of the results which are not given in the main text are given in Appendix A.

2 Basics from linear control theory

We consider linear time invariant transfer function models on the form

y(s) = G(s)u(s) + Ga(s)d(s) (1)

wherew is the manipulated input] is the disturbancey is the output,G is the Sso plant model
and G, is the Sso disturbance plant model. The measured output,is= vy + n wheren is the
measurement noise.

The #H.,-norm of a stable rational transfer functidd(s) is defined as the peak value in the
magnitudd M (jw)| over all frequencies.

1M ()]l = sup [M(jw))] )

2.1 Zeros and poles

In a rational transfer functiof/ the zeros and poles are the roots of the numerator and denominator
polynomials. That is, the zeras and the poleg; are the solutions to the following equations

M(Z]) =0 and Mﬁl(pi) =0 (3)

When we refer to zeros and poles we mean the zeros and poles of theplaniess otherwise
explicitly stated.

2.2 Factorizations of RHP zeros and poles

A rational transfer functiord/ (s) with zerosz; and poleg; in the open RiP, {z;, p;} € C,, can be
factorized inBlaschke productas follows

M(s) = B.(M)Mp(s) (4)
M(s) = B, (M)M(s) (5)
M(s) = B.(M)B," (M) Mins(s) (6)

where

Note that the notation on the all-pass factorizations ePReros and poles used in this paper is reversed compared
to the notation used in (Skogestad and Postlethwaite, 1996; Havre and Skogestad, 1997a). The reason to this change of
notation is to get consistent with what the literature generally defines as an all-pass filter.
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Figure 1: Operations onHr zeros and poles for scalar transfer functions

M,, — Minimum phase (subscript) version of M with the RHP-zeros mirrored across the imagi-

nary axis.
M, — Stable (subscripf) version of M with the RHP-poles mirrored across the imaginary axis.

M,,s — Minimum phase, stable (subscripts) version of M with the R4P zeros and poles mirrored
across the imaginary axis.

B,.(M) — Stable all-pass rational transfer functigi,(jw)| = 1, Yw) containing the RP-zeros
(subscriptz) of M.

B,(M) — Stable all-pass rational transfer functigi,(jw)| = 1, Vw) containing the RP-poles
(subscriptp) of M as R4P-zeros.

The all-pass filters are

z

() = [1 7)
Np .
B(M(s) = [[ ®)

=1

whereN, is the number of Rp-zerosz; € C,. andN,, is the number of Rp-polesp; € C, in M.

In most cased/ = G and to simplify the notation we often omit to show that the all-pass filters
are dependent of, i.e. we writeBB,(s) andB,(s) in the meaning oB,(G(s)) andB,(G(s)).

Figure 1 demonstrates the operatiof$,, for RHP-zeros,(-), for RHP-poles and the combined
operator(-),,s of scalar transfer functions. The order of the two operatiepsand(-); in the com-
bined operatof-),, is arbitrary. It also follows that

(Gil)ms = (Gmsr1 = G;zls (9)

And we note that

1M (5) oo = |Mm ()|l oo = [ Mrms(s) (10)

The first identity follows sincéB, (M (jw))| = 1, Yw, and the latter identity follows sinc¥ is stable,
i.e. M,,s = M,, andB,(M,,) = B,(M) = 1.
To prove the main results in this paper we make use of the following Lemma.

o oo

LEMMA 1. Consider a stablé&iso transfer functionA B which can be expressed by the product of
the Siso transfer functionsA and B, where both4 and B may be unstable. Then

[ABl o = [(AB)mll o = | AmsBmsllo (11)
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Figure 2: One degree-of-freedom control configuration

2.3 Closing the loop

A typical control problem is shown in Figure 2. In the figure possible performance weights are given
in dashed lines. Mainly for simplicity, but also because it is most practically relevant, we assume that
the performance weights, andw, are stable and minimum phase. If intergrators (poles-ab)
are present imwp andw, then we need the same number of integrators ia GK, to have a stable
closed-loop transfer function. In Figure 2 we have included both the referemathe measurement
noisen, in addition to disturbancesas external inputs. The transfer functio6s, R and N can be
viewed as weights on the inputs, and the inpdts® and7i are normalized in magnitude. Normally,
N is the inverse of signal to noise ratio. For most practical purposes, we can assuriieathchiV
are stable. However from the technical point of view it suffice that the unstable modesiii can
be stabilized through the input

We apply negative feedback control

u=K(r—ym)=K@r—y-—n) (12)

The closed-loop transfer functian from

T
v=|d to Z:|:21:|:|:wp(y—7'):|

- 29 Wy U

n
. SR SG TN

| —wp wp d —wp
F@)_[mﬁKR —mjﬁGd-ﬂ%KSN] (13)
where the sensitivityy and the complementary sensitivityare defined as
1
A -1 _
S = (1+GK) =11 Ck (14)
T £ 1-8 GR (15)

T1+GK

To have good control performance (kegpsmall) with a small input usage (keep small) we need
to have||F'(s)||, small. That is we want all the1So transfer functions in (13) small. In addition,
there are robustness issues. For example, we wish to|hayeT'(s)||,, small, wherew,,. is the
magnitude of the relative plant uncertainty.

The first requirement for being able to satisfying all these objectives (e.g. having all seven transfer
functions mentioned above small), is that the weights w, andw,,. are such that the objectives
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can be achieved. For example, sinte- 7' = 1 we cannot havevp R andw,,. largeat the same
frequencyif we want to have|wpSR(s)|| ., (tight control of setpoint changes) afith,n.7'(s)||, (the

closed-loop response is insensitive to plant uncertainty) small. However, the presenee zéras
and poles in the plan provide additional limitations, which is the focus of this paper.

2.4 Interpolation constraints

If G has a RipP-zeroz or a RiP-polep then for internal stability of the feedback system the following
interpolation constraints must apply (e.g. Skogestad and Postlethwaite, 1996):

0; S(z)=1 (16)
S(p) = 0; T(p)=1 (17)

3 Lower bounds on theH.-norm of closed-loop transfer func-
tions

In this section we will give the main results, which are lower bounds orthenorm of closed-
loop transfer functions which can be written on the fafvi or SV. The generalized “weightV is
assumed to be independent of the feedback contr&lldr may be unstable bdty and SV must be
stable. That s, it must be possible to stabilize all transfer functions by controlling the guipirng
the inputu (this implies that all unstable modeséfalso are modes a¥).

Some exampleLonsider the six transfer functions in (13). The first two can be written on the
form SV by selectingl;; = wpR andVi, = wpGy. The remaining four can be written on the form
TV by selectingVis = wpN, Vo1 = w,G 'R, Vay = w,G !G4 andVa3 = w,G'N. From this we
see that the “weight?” may be unstable (if one or both 6f; andG ! are unstable) and may contain
RHP-zeros (if one or both of/; andG~! contain RiP-poles).

In the first result, which is the lower bound @@’V (s) ||, we consider any number ofR-zeros
in the plantz and one Rip-pole at a time. Then by maximizing over albHR-poles in the plan& we
find the largest lower bound QiT"'V (s)|| . which takes into account oneHR-pole and all RiP-zeros.

THEOREM 1 (LOWER BOUND ON||T'V (s)||,,). Consider theSiso plantG with N, > 0 RHP-zeros
z; € C; and N, > 1 RHP-polesp;. LetV be a rational transfer function, and assume that is
(internally) stable. Then the following lower bound pfiV (s) || applies:

> L] . )
ITV(S) s 2 | mas B2 (0] - [Vias (00 (18)
REMARK 1. With |B,(p;)| we meanB,(G(s))| evaluated at = p;.

REMARK 2. The assumption thaf'V is internally stable, means th&il" is stable and we have noHR
zero/pole cancellations betweéhand K.

The lower bound (18) is independent of the controlierif the weightV” is independent of. The

factor|B; ! (p;)| takes into account the interactions between all the-Rerosz; € C,. and the single
RHP-pole p; of G. As we shall see this factor can be quite largé'ifontains one or moreHR-zeros

close to the RP-polep;.

Proof of Theorem 1



1) Factor out RHP zeros and poles i’ and V. Lemma 1 gives
1TV ()l oo = 1 Tims Vins ($)ll oo = [1TmVims (5) | o

where the last equality holds sin@&is stable, i.eT;,s = T},.
2) Introduce the stable scalar function f(s) = T,,, Vins(8).
3) Apply the maximum modulus theorem to f(s) at the RHP-polesp; of G.

1 ($)lloo = 1f (p3)]
4) Resubstitute the factorization of RHP-zeros inT, i.e. useT}, (p;) = T'(p;)B, ' (p;) to get
F(pi) = Ton(pi) Vins(pi) = T(pi) B, " (pi) Vims (pi)

5) Use the interpolation constraint (17) for RHP-polesp; in G, i.e. useT'(p;) = 1.
6) Evaluate the lower bound.

|f (pa)| = B (Pi)] - [Vims (ps)] (19)
Note thatf (p;) is independent of the controlldf if V' is independent ok .
Since these steps holds for alHR polesp;, Theorem 1 follows. O

In the next result, which is the lower bound 81/ (s)||,, we consider any number of-R-poles
in the plantz and one RiP-zero at a time. Then by maximizing over alhRzeros in the plant’ we
find the largest lower bound dfp'V (s)|| ., which takes into account oneHR-zero and all RiP-poles.

THEOREM 2 (LOWER BOUND ON||SV(s)]|,.). Consider theSiso plantG with N, > 1 RHP-zeros
z; and N, > 0 RHP-polesp; € C,. LetV be a rational transfer function, and assume tisat is
(internally) stable. Then the following lower bound 81" (s)|| ., applies:

ISV ()l = max —|B, " (2)] - [Vins(2))] (20)

o RHP-z€ros,z;
Remarks on Theorems 2 and 1:
1) The lower bounds offT’'V'(s)||, and||SV (s)||, involve V,,;. Thus, we get the same result if
the “weight” V' is replaced by its stable minimum phase counterpart with the same magnitude
V... Note that forl = V'V?2 we have
1TV ($)lloe = 1T Vins Vi

ms ms“oo

(21)

Which means that we can treat the different factor§ afidependently.

2) The bound on|TV (s)||,, is caused by the Rp-polesp; in G, and the term{B;'(p;)| > 1
gives an additional penalty for plants which also haweRReros. For the case whéhhasno
RHP-zeros, them3, ! (p;) = 1.

3) The bound or| SV (s)]|, is caused by the Re-zerosz; in G, and the termB; ' (z;)| > 1
gives an additional penalty for plants which also hawefoles. For the case whe&nhasno
RHP-poles, ther3, ' (z;) = 1.

4) In all the lower bounds which follows from Theorems 2 and 1, one of the following two factors

appears
N,
I1 Ipi + ]
B ()] = > 1 (22)
s i — 2]



NP
[T 12 + pil
i=1

= > 1 23)
~—H1 |2 — pil

The factor|B,!(p;)| is @ measure for the interactions between alPRerosz; € C, of G
and the single Rp-pole p; of G. If one or more RiP-zeros are close to theHR-pole p;, then
|B; " (pi)| is much larger than one. In a similar wily, ' (z;)| combines all RiP-polesp; € C,
of G together with the single Rp-zero z; of G. Clearly, |B;"(z;)| is much larger than one if
one or more RP-poles are located close to theiRzeroz;.

4 Tightness of lower bounds

Theorems 1 and 2 provide lower bounds |8AV (s)||, and||SV (s)||.. The question is whether
these bounds are tight, meaning that there actually exist controllers which achieve the bounds? The
answer is “yes” if there is only oneH®-zero or one RpP-pole. Specifically, we find that the bound
TV (s)]]., s tight if the plantG has one RP-pole and any number of#-zeros, and that the bound
on [|SV(s)||,, is tight if the plantG' has one Rp-zero and any number of H®-poles. We prove
tightness of the lower bounds by constructing controllers which achieve the bounds.

First, we consider the controller which minimizggV (s)|| . .

THEOREM 3 (K WHICH MINIMIZE [TV (s)]|,.). Consider theSiso plant G’ with oneRHP-pole p
andN, > 0 RHP-zerosz; € C,.. Then the feedback controlléf which minimize|T'V (s)||__ is given

by

K(s) = G K,(s), K(s) = PQ '(s) (24)

where
P(s) = B;'p) Vins(p) Vins (5) (25)
Q(s) = (1—B.(s) P(s)),, =B, (s) (1 = B.(s) P(s)) (26)

With this controller we have
1TV ()|l = 1B ()] - [Vins ()] (27)
which shows that the bound given in Theorem 1 is tight when the plant hd&+ompole.

We stress that the bound given in Theorem 1 is generaltytight if the plant has more than one
RHP-pole. The controller in Theorem 3 yields a constant (“flat”) frequency resp@nsgjw)| for all

w. We note that no properness restriction has been imposed on the controller, so the controller given
in Theorem 3 may be improper. Also note that the contrdil¢s) in Theorem 3 is always stable and
minimum phase. This may seem surprising since it is known that some plants m#tlzdRos and

poles require an unstable controller (Youla, Bongiorno and Lu, 1974) to achieve closed-loop stability.
However, these results assume that the loop transfer fun€tions proper or strictly proper, and
does therefore not apply in our case whéfemay be improper. In practice, controllers are often
made proper by adding high-frequency dynamics, e.g. by multiplying Withs + 1) wherec is

small, andn is some integer. This works in most cases. However, it will not work for plants which
needs RIP zeros or poles in the controller to make the closed-loop transfer fungtiostable, and

we therefore conclude that our lower boundBiW may not be tight in such case®emark We

have written fmaynot be tight” since numerical results using standard state-sgagcsynthesis in
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MATLAB, have shown that the boundee tight even for plants which result in an unstable state-space

‘Ho-controller. Thus for some plants, in addition to the stable improper controller given by (24), there

may exist an unstable proper controller which yields the same minimum va||#EVofs)
Next, we consider the controller which minimizZgSV (s)|| ..

THEOREM 4 (K WHICH MINIMIZE ||SV (s)||,). Consider theSiso plant G with oneRHP-zero =
andN, > 0 RHP-polesp; € C,. Then the feedback controlléf which minimize| SV (s)||, is given

by

K(S) = GT_niKo(S)v KO(S) = PQ_l(S) (28)

where
Q(s) = B, (2) Vins(2) Vi (5) (29)
P(s) = (1-By(5)Q(s)),, = B:'(5) (1= By(s) Q(s)) (30)

With this controller we have
1SV ($)lloe = 1B, (2)] - [Vins(2)] (31)

which shows that the bound given in Theorem 2 is tight when the plant ha@+omeero.

The comments following Theorem 3 also apply to the bound in Theorem 2 and to the controller given
in Theorem 4.

5 Applications of lower bounds

The lower bounds offT'V'(s)||, and|[SV (s)||, in Theorems 1 and 2 can be used to derive a large
number of interesting and useful bounds.

5.1 Bounds on important closed-loop transfer functions

Consider again the six transfer functions in (13), and the weighted complementary sensitivity function
wunc . FOr simplicity we assume thatp, w,, w..., R andN are all stable minimum phase (or have

been replaced by the stable minimum phase counterparts with same magnitude). From Theorems 1
and 2 we obtain:

Output performance, reference tracking:

lwpSR(s)|lo > max |wp(z)] - 1B, (2)] - [R(2))| (32)

~ RHP-zerosz; p

Output performance, disturbance rejection:

lwrSGa(s) o >  max fwe(z)]- 1B, (z)] - (G, (33)

~ RHP-zerosz; p

Output performance, measurement noise rejection:

lwpTN(s)ll > max |wp(pi)] - B, (pi)| - IN(pi)| (34)

© " Rup-polesp;



Input usage, reference tracking:

lwi K SR(s)]lo = wn TG R($) |l > max fwy(p)| - [B(pi)] - |G R(pi)| - (35)

" RHP-polesp;

Input usage, disturbance rejection:

lwn KSGa(s)ll oo = WiTG ' Ga($)ll = max Jwy(pi)] - B, (pi)] - G (Gi)msl -y, (36)

~ RHP-polesp;

Input usage, measurement noise rejection:

lw  KSN ()]l = 0TGN (8) |l > max fwy(pg)| - [BS (p:)] - |G sV (pi)] (37)

" RHP-polesp;
Closed-loop sensitivity to plant uncertainty:

[waneT ()]l > max Jwune(pi)] - 1B, (pi)] (38)

RHP-polesp;

Note that we mainly have inherent limitations on (output) performance when the plantazeRos.
The exception is for measurement noise, where the requirement of stabilizing an unstable pole may
give poor performance.

On the other hand, all the bounds on input usage are caused by the presemncepafi€és. This
is reasonable since we need active use of the input in order to stabilize the plant. This is considered
in more detail in the next section.

5.2 Implications for stabilization with bounded inputs

Our bounds involve th&{,.-norm, and their large engineering usefulness may not be immediate. In
the following we will concentrate on the bounds involving input usage and we will use the lower
bounds to derive angquantifythe conclusion:

e Bounded inputs combined with disturbances and noise may make stabilization impossible.

The input signal for a one degree-of-freedom (&P controller due to disturbaneé measurement
noisen of magnitudeV and reference of magnitudeR is

u= KS(Ri — Gqd — Nii) (39)

Measurement noise.The transfer function from normalized measurement noise the inputu is
KSN. Then from (37) withw, = 1

[ullo = IESN(s)llo > max_|B. (p;)] - |G (pi) N (i) (40)

© ™ RHP-poles,p;
Thus, to have|u|| < 1 for ||n||,, = 1, we must require
|Gos(pi)| > |B, 1 (pi)| - IN(pi)| for the worst case polg (41)

(we have here assumed thétis minimum phase). That is:

e To keep the input magnitude less than o¢jfe|| ., < 1) we must require that the plant gain is
larger than the measurement noise at frequencies corresponding to the unstable poles.
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To better understand this statement, we will make use of the interpretation#fth@&rm in terms
of steady-state sinusoids. Consider the case Whgn, = 1 and assume that the lower bound in
terms of||u||, = ||[KSN(s)||, in (40) is larger than one (i.e. (41) iot satisfied). In this case, no
matter what linear controller we design, there will always be a sinusoidal noise signal

n(t) = Nmax sin(wot), Nmax = |N(jwo)]
such that the resulting input signal
u(t) = Umax Sin(wot + @)

hasuma.x > 1 (the value ofyp is not of interest here). For a given controll€r the worst case frequency
wo May be chosen as the frequencywhere | K SN (jw)| has its peak value, i.e|K SN (jwy)| =
[KSN(8) |-

Disturbances. Similar results as those for measurement noise apply to disturbances if we r&place
by G4. From (36) withw, = 1 we obtain
lullo = 1KSGa(s)lloe > max B (pi)] - |Grg(Ga)msl (42)

RHP-poles,p;

To have||u||, < 1for ||d||,, = 1 we mustrequire
|Goms (p2)] > | B, (03)| - 1(Ga)msl,—,, for the worst case polg; (43)

That is:

e To keep the input magnitude less than o¢jfe|| ., < 1) we must require that the plant gain is
larger than the gain of the disturbance plant at frequencies corresponding to the unstable poles.

References.For reference changes witl¥|| = 1, we find the same bound (42), but with, re-

placed byR. However, the implications are less severe since we may chase follow the refer-
ences (e.g. sdk = 0). Also, in the case of reference changes we may us®aFr controller, such
that the “burden” on the feedback part of the controliers less. This is discussed in Section 7.

5.3 Combined RH4P zeros and poles

It is well known that the combination of H zeros and poles imply peaks in the sensitivity and
complementary sensitivity foriSo systems which are larger than one. This has previously been
guantified by Freudenberg and Looze (1988) in terms of sensitivity integral relatiomstiolitectly
in terms of||S(s)||, and||T'(s)|| ... However, from (20) and (18) we obtain

1S(s)lloe = max_—|B, (z)| > 1

RHP-zeros,z;

1Tl > max B ()| > 1

| | ™ RHp-polesp;

which are large ifz; — p;| is small. If all RHP zeros and poles are different by a factod 0for more,
then the interaction between them are small. For a plant with erreZ@roz and one RiP-polep we
obtain
_ lz+p]

|z = p
Peaks inS andT less thanl/,, are thus unavoidable. For example:ffip = 10 givesM,,, = 1.22,
whereas:/p = 1.5 givesM,,, = 5. By using the lower bounds we have derived and quantified the
conclusion:

e Closely locatedRHP zeros and poles imply large sensitivity peaks.

My. = B, (2)] = 1B (p)]

11



5.4 Examples

ExAMPLE 1. The intention with this example is to show the engineering application of the lower bound on
|KSN(s)| . and to demonstrate the use of Theorem 3 to find the feedback contfolighich minimize
|KSN(s)| .. We consider the unstable plant

1

G(s):S@p, p>0

with RHP-pole atp. From (40) we have the following lower bound on thg,-norm of the transfer function
from normalized measurement nois¢o inputw (we assume thaV is minimum phase)

IKSN(5) oo > |G s (0)] - [N (p)]
In our caseG~! = s ©p, G;,L(s) = s +p, G, (p) = 2p, and the lower bound becomes
IKSN(s)llo = 2p - [N (p)] (44)

The controller which minimized7'V (s)|| ., and achieves the bound (44) is given in Theorem 3. Rewriting
KSN = TG~'N and by using/ = G~'N we obtainV,,s(s) = (s + p)N(s), where we have assumed to
be stable minimum phase. FurthermadBe(s) = 1, B,(s) = %. Thus, from Theorem 3 we obtain

%N gD (L NG)
PO =G a2 =g, (“i’(sw)-zv(s))
which gives

K(s) = — 2 NW®) (s <p)

(s +p)N(s) <2p- N(p)
Remark It seems like this controller has aiR-zero fors = p, but this is not the case for its minimal realization

since
(s +p) - N(s)|;=pe2p-N(p) =0

For the special case whelé(s) is a constanfV(s) = N we get the proportional feedback controller

2p(s &

s+p&S2p
As a numerical example, lgt= 10, then

1
G(s) =
)= S5m0

and we must have for any stabilizing feedback contraier

IKSN(s)llo > 20[N(p)|

Thus with |||, = 1 we will need excessive inputgu||,, > 1) if |[N(p)| > |Gpms(p)| = 0.05. Assume
that N(s) = N(p) = 0.05, thenK(s) = 2p = 20. This controller gives a “flat” frequency response, i.e.
|KSN(jw)| = 20, Yw. Thus, at any frequenay, the closed-loop response-indue to

n(t) = 0.05sin(wot), is wu(t) =sin(wot +¢) Yw

So, the inputu(t) oscillates betweert1. The response im andy due ton(t) = 0.05sin(4t) is shown in
Figure 3.

12
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Figure 3: Closed-loop response at inpuénd outputy of the plantG, due ton(t) = 0.05sin(4¢) (dashed),
with K = 20

EXAMPLE 2. In this example we consider disturbance rejection for a plant with earrezRro and pole. Let

G(s) = éz:; Gals) = kaG(s) with 2=2, p=1

We see that the disturbance is of magnitégend enters at the input of the plant. Note that

k-k
(Gd)ms = 452 and G;ﬁs:ESWLP
z S+Dp ks+z

The factors involving the interactions between therReroz and polep become

_lz+pl
|z <p|

=
—_

—~
N

=
I

1B, (p)]

and we find that peaks in the sensitivityand the complementary sensitivify less than3 are unavoidable
since

3

_3 and |T(s). > ZEPL

|z + p
S > —
15 -2y

7 |z el
Since@ has a Rip-zero, we have a bound on tfé,,-norm of the closed-loop transfer function from distur-
banced to outpute = y <r

S |g-1 i _ -9k .
1SGa(3)lw > 185" () [ Galmalyme = g Ty = 210K

and for||d|| ., = 1, the outpute will be unacceptabl¢||e|| ., > 1) for |k - kq| > 0.5.
Similarly, sinceG has a RipP-pole p we have a bound on thH ,-norm of the closed-loop transfer function
from disturbancel to input

IKSGa(3)]lo > 1B )] - 1Gm(0)] - [(Cdsl oy = 22 - kil = 31kl

and for||d|| ., = 1 the input usage will be unacceptalgle:|| ., > 1) when|ky| > 1/3.

ExaMPLE 3. In this example we look at the effect of aiRzero and pole i7;. Let the plant be

5

Gls) = (10s + 1)(s 1)

whereB, (s) = 1 since there is no Rp-zeros inG. We consider the three disturbances

kd kd

Gdl(s) = (8 <:>1)(0.23 + 1)’ (8 + 1)(0.28 + 1)

Gaa(s) =

13



kd(s <=>2)
5+ 1025 + 1)(s + 2)

For disturbancel; we must assume that the unstable polg at 1 is the same as the one in the pl@htsuch
that it can be stabilized using feedback control. There is Re-Bero inG, so we have no lower bound on
|SGak(s)|l .- However, since&d has a Rip-pole p there is a bound o\ K SG 4x(s) and we find that the
same lower bound applies to all three disturbar{ées {1, 2, 3}), since

and Ggs(s) =

||oo’

kq

(Gar)ms = (Gaz)ms = (Gaz)ms = (s +1)(0.2s + 1)

We obtain

(10s + 1)(s + 1) kq 11

K > —1 ms | e— = = —
H SGdk(S)Hoo = |Gms(Gdk) |s_p 5 (S+ 1)(0.2S+ 1) _ 6

ALzl

Thus, for||d||, = 1 and if we require|ul| ., < 1 we need to havék,| < 2 ~ 0.55. In other words, we may
encounter excessive plant inputs (for all controllergkif > % ~ 0.55.

6 Stabilization with input saturation

Our results provide tight lower bounds for the required input signals for an unstable plant. Can these
bounds be used to say anything about the possibility of stabilizing a plant with constrained inputs
(e.0.]u(t)| <1, Vt)? Assume that we have found, from one of these bounds, that we|nggd> 1.

That is, at some frequency, we needu(t) = tmax sin(wot), With u,,.x > 1. Will the system become
unstable in the case where input is constrained suchuhiat < 1 (vt)?

Unfortunately, all our results are for linear systems, and we have not derived any results for this
nonlinear effect of input saturation. Nevertheless, for simple low order systems we find as expected
very good agreement between our lower bounds and the actual stability limit in systems with input
saturation. Intuitively, this agreement should be good if the input remains saturated for a time which
is longer than about/p, wherep is the RiP-pole.

6.1 Examples

EXAMPLE 1 CONTINUED. Consider again the plant

1
s <10

G(s) =

with the controllerK = 20 which minimizes|| K.SN(s)||,, whenN is constant. With this controller we get
|KS(jw)| = 20, Yw, from which we know that sinusoidal measurement noise

n(t) = ng sin(wot)

cause the input to become
u(t) = 20ng sin(wot + @)

for any frequencywy. Thus, forng = f - 0.05 we have that.(t) = f sin(wot + ), and forf > 1 the plant
input will exceed=1 in magnitude. The question is: what happens if the inputs are constrained to be within
+1? Will the stability be maintained? We will investigate this numerically by considering three frequencies;
wo = 1 [rad/s],wy = 10 [rad/s] andwy = 100 [rad/s].

First, Figure 4 shows the responsenf@) = 1.01 - 0.05sin(¢) (wy = 1 [rad/s], f = 1.01). We see that the
plant becomes unstable due to the input saturation. Next, we consgiderl10 [rad/s]. In this case we doot

14
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Figure 4: Closed-loop response at inpuand outputy of the plantG, duen(t) = 1.01 - 0.05 sin(¢)
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Figure 5: Closed-loop response at inpuaind outputy of the plantG, duen(t) = 1.29 - 0.05sin(10¢)

get instability withf = 1.01 andwy = 10 [rad/s]. We find numerically that we need to increase the magnitude
of the sinusoidal noise to aboyit= 1.29 to get instability for this particular frequency. Figure 5 shows the
response ta(t) = 1.29 - 0.05sin(10¢) (w = 10 [rad/s] andf = 1.29). Finally, as shown in Figure 6 we get
instability withn(t) = 1.6 - 0.05sin(100¢) (w = 100 [rad/s] andf = 1.6).

We experience that we have to increase the magnitude of the noise somewhat to get instability for sinusoidal
measurement noise with frequency around the bandwidth and higher. However, we are still within a factor of
two for a large frequency range for this particular plant. Measurement noise usually contain a large range of
frequencies, which makes it even more probable that one loose stability of the plant if the lower bounds exceeds
the allowable input range.

Note that the control system designer seldom wants the input to saturate when stabilizing an unstable
plant due to the possibility of loosing stability. So our “engineering bounds” are really applicable in practical
controller design.

As a final simulation, Figure 7 shows the closed-loop response due to a step bb%iz6.05 in n. (1%
increase relative to the limit which causeo exceed+1). This input signal can be viewed as consisting of
infinite number of frequencies with decreasing magnitude, where the steady-state effect is the most important
and can be viewed as a slowly varying sinusoid wigh= 0 [rad/s] and amplitudé.01 - 0.05. As can be seen

from the figure, the unconstrained input exceéddightly. When the input is constrained to be withitl,
stability of the plant is lost.

EXAMPLE 3 CONTINUED. Consider again the plant

5

Gls) = (10s + 1)(s 1)

15



1

|\ \,
i

y(t)

(

Il Il Il Il Il Il Il Il Il

0 0.5 1 15 2 25 3 35 4 45 5
Time [s]

Figure 6: Closed-loop response at inpuind outputy of the plantG, duen(t) = 1.6 - 0.05sin(100¢),
(unconstrained input not shown)
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Figure 7: Closed-loop response at inpuand outputy of the plantG, due to step in measurement noise,
n(s) =1.01- %5

In the simulations shown in this example, we have used the disturbancefjant’ ;3
k‘d(S <=>2)
(s +1)(0.2s +1)(s +2)

However, it does not really matter whicky, one uses, except that the initial responses may be different.
By using Theorem 3 withV = GG, we obtain:

Ga(s) =

sl 5 kq
p — ]_, = s ms = P G ms = ?
B.(s) BG) =71 Ol =Gpas sy GO0 = Gt 1
kg 10s + 1 11 550.2s + 1 49 s+1
_fd 0T - . Plg)= 222"~ A
Vins(8) 5025+ 1 Vins(p) 6 ka, (5) 6 10s+1 and Q(s) 6 10s+1

The #H .-optimal controller minimizing| K. SG4(s)|| ., becomes

Koo(s) = %(0.25 +1)(10s + 1)

which is not proper. Fok, = £ the controllerK, results in|| K+ SGq(s)|,, = 1, and wherk; = 0.55 >
£ (0.55 is the value ofk,; used in the simulations) K., SGq(s)||., = 1.008. We note that the specter of

K. SG4(jw) is flat (constant). To get a realizable (proper) controller we add second order dynamics at high
frequency to obtain the{,.-suboptimal controller

R(s) = 29025+ (10 +1)
T (0.01s + 1)2

(45)
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The H..-norm of the closed-loop transfer functidti., SG 4 with k; = 0.55 is
| Koo SGa(s),, = 1.027, forw = 1.35 [rad/s].

To compare with a more traditional controller, which emphasize tight control at low frequencies, we also
consider controlling the plart using the feedback controller

0.4 (10s + 1)

K@) =01+ 172 (46)

With this K the’H .-norm of the closed-loop transfer functidghSG,; for k; = 0.55 becomes

|KSGa(s)|| . =2.845, forw = 2.056 [rad/s].

The magnitude of the closed-loop transfer functidis SG, for K, given by (45) is shown in Figure 8
together with the magnitude df SG, for K given in (46). From the figure we see that forcidgSG 4 (jw)|

10"

Magnitude

10 L L PR | L L PR | L L PR | L L PV
10 10" 10° 10" 10°
Frequency [rad/s]

Figure 8: Closed-loop transfer functioh&SG; (dashed) and(,, SG, (solid)

to be small at low frequencies, results in a peak in the medium frequency range (caiiparg(jw)| with
| Koo SG4(jw)| in Figure 8).

The non-linear constrained and the linear unconstrained responses to the unit step in distiitsamge
the suboptimaﬂ;'q{oo-controllerIN(oo given by (45) and the controllek” given by (46), are shown in Figures 9
and 10. From the simulations we see that the input saturates (it may be difficult to separate the unconstrained
input from the constrained input in Figure 9, since the unconstrained input only slightly exeg¢gdsith the
consequence that we loose stability of the plant for both controllers.

7 Two degrees-of-freedom control
In this section we consider the 2€lp controller where
u=Kir— Ksy(y+n) 47)

(the 1-DoF considered above follows by settiig = K, = K). For a 2-DoF controller the closed-
loop transfer function from referencégo outputsz; = wp(y — r) becomes

wp(SGK; — 1)R (48)

We then have the following “special” lower bound on this transfer function.
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Figure 9: Responses inandu due to unit step in disturbanegfor constrained|¢:| < 1) and unconstrained
input with K, given by (45)
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Figure 10: Responses inandwu due to unit step in disturbanegfor constrained|:| < 1) and unconstrained
input with K given by (46)

THEOREM 5. Consider theSiso plant G with N, > 1 RHP-zerosz; and N, > 0 RHP-polesp; €
C, . Let the performance weighip be stable and minimum phase, and let the closed-loop transfer
functionwp(SG K, —1)R be stable. Then for a two degrees-of-freedom controller the following lower
bound applies

|lwp(SGKy = 1)R||, = max  [wp(z))] - [Rms(2))] (49)

®© T RHP-zerosz;
Furthermore, the bound (49) is tight if the plant has dteP-zeroz, and the controllerds; and K,
which achieve the lower bound (49) are given by

Ky = By(2) Gryl(2) - (1= wp' (s) Ry (s)wp(2) Rus(2)),, (50)

K, = The controller given in Theorem 4, minimizif§G'(s)||. - (51)
REMARK 1. The bound (49) is clearly a lower bound (both for b#and 2-DoF controllers). The important
fact is that (49) provides a tight lower bound for a plant with om@Rero and with th@-DoF controller given
in Theorem 5.

REMARK 2. It follows thatK] is stable sincev,,' is stable and?;;! is stable. From Theorem 4 it follows that
K, is stable.

The bound in (49) should be compared to the corresponding bound farle@ntroller (32):
lwpSR(s)ll > _ max Jwp(z)] - B, ()| - [Rms(25)] (52)

RHP-zerosz;
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The fact that the lower bound (49) is tight when the plant has one-Zro and2-DoF is applied
makes it possible to conclude thatlythe RiP-zero pose limitations in this case. Thus, witb-BOF
controller there is no additional penalty for havingiRpoles inG when performance is measured
asz = wp(y — r). However, from (52) we see that the penalty for having bothHa-Rero z; and
RHP-poles is|B, " (z;)| > 1 for a1-DoF controller.

8 Discussion

Form the lower bounds on input usage (see Section 5.2) we can gasihtify how much mea-
surement noise and the magnitude of disturbance we can tolerate to avoid that the input exceeds some
prespecified limits. We find this quantification appealing, and it should be useful for control engineers
doing practical control design. We therefore used the term “engineering bounds” for this application
of the lower bounds in the second part of Example 1. Here we will only stress that these bounds are of
fundamental theoretical importance, and they are (in many cases) tight for the best possible controller.
So the bounds are exact, i.e. these bounds are not rules of thumb.

In the?# .-controller design procedure, ti&,.-norm of some weighted closed-loop transfer func-
tion is minimized. It has been shown that the resulting minimization problem is a convex problem,
which can be solved numerically for example by introducing Linear Matrix Inequalities (LMI) or
using~-iteration.

In this paper we have looked at single closed-loop transfer functions which can be wriftéh as
or SV. Practical*.-controller designs are usually set up as a stacked transfer function consisting
of several closed-loop transfer functions. Usually the sensitivity appears as a factor in one or more
of the closed-loop transfer functions, which is the origin to the name “mixed sensitivity”. The con-
troller designed will then reflect a trade-off between the different requirements expressed in each of
the closed-loop transfer functions. For example, it is common to put weight on both the output per-

formance and input usage. This can be expressed as in the §)i¥éfl # ., controller design where
wpS

the problem is to find the controlléf such that thé<{.,-norm of [w xS

L1

Lower and upper bounds on ti&,.-norm of the mixedS/ K S sensitivity are

] iS minimized, i.e.

min
K

wpS(s)

ma{[[upS(s) | |waKS(s) |} < H ookt

)} Hw < V2 max{|wpS(s) |l 0 KS(3)]l.0}

which shows that our individual lower bounds ¢wpS(s)||,, and ||w,KS(s)|,, provide useful
information also for practical .,-controller designs.

In the v-iteration the?# .-minimization over the controllek is transformed to a convex mini-
mization problem in the free variable which is the? ..-norm of the closed-loop transfer functfon
Most packagesperform they-iteration using the bisection method. That is, given a high and a low
value of~ (upper and lower bound) and a stabilizing controller, the bisection method is used to iter-
ate on the value of. This “modern” controller synthesis shows one application of lower and upper
bounds on thé&{,,-norm of general closed-loop transfer functions. The lower bounds derived in this

2In MATLAB Robust Control Toolbox is the inverse of thé{..-norm of the closed-loop transfer function.
3See MATLAB, p-tools or Robust Control Toolbox.
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paper can be used as the low valueyadupplied to they-iteration. This follows since the largest
singular value of matrix is larger than the largest element in the matrix. So, the largest lower bound
on theH .-norm of a $s0 transfer function in a larger multivariable stacked transfer function matrix
still is a lower bound on th&{..-norm of the stacked closed-loop transfer function in question.

9 Conclusion

e We have derived tight lower bounds on closed-loop transfer functions. The bounds are inde-
pendent of the controller, and therefore reflects the controllability of the plant.

e The bounds extend and generalizes ti@oSesults by Zames (1981), Doyle et al. (1992) and
Skogestad and Postlethwaite (1996) to also handle non-minimum phase and unstable weights.
This allow us to derivaenewlower bounds on input usage due to disturbances, measurement
noise and reference changes.

e The new lower bounds on input usage make it possibdgigmtifythe minimum input usage for
stabilization of unstable plants in the presence of worst case disturbances, measurement noise
and reference changes.

e It is proved that the lower bounds atght, by deriving analytical expressions for stable con-
trollers which achieves a#i...-norm of the closed-loop transfer functions equal to the lower
bound for large classes of systems.

e Theorem 5 express the benefit of applyingtBoF controller compared to &DoF controller
when the plant is unstable and hasarPZero.

e The application of the lower bounds have been illustrated and the implications have studied
in several examples. Nonlinear simulations have been used to find the amount of noise and
disturbances which in combination with input constraints, cause loss of stability for unstable
plants. The results show good agreement between this amount of noise and disturbances and
the corresponding values predicted by the lower bounds, in the examples studied.
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A Proofs of the results

Proof of Lemma 1The first identity in (11) follows since extractingHR-zeros in the product B in terms of
the all-pass filtei3,(AB), does not change ti#.,.,-norm. The reason is of course tha(AB) is all-pass for
s = jw. To prove the latter identity, assurehas RiP-zeros which does not appear in the proddd, then
B has Rip-poles for those Rp-zeros, and theseH®-poles can be factorized & '(B). Similarly, if B has
RHP-zeros which does not appear in the proddd?, then A has Rip-poles for those Rp-zeros, and these
RHP-poles can be factorized &' (A). We obtain

AB =B, (A) B.(A) Ams B, ' (B) B.(B) Bms = 53,;1(,4) B.(A) B, (B) B.(B) Ams Bs

/

-~

=B.(AB) =(AB)m
Since,AB is stable thef AB),,, = A5 Bms, and it follows that

Note that,B, " (A) B.(B) are the Rip-zeros of B which arenot RHP-poles inA andB.(A) B, ' (B) are the

RHP-zeros ofA which arenot RHP-poles inB. O

Proof of Theorem 2
1) Factor out RHP zeros and poles inS and V. Lemma 1 gives

1SV ()lloo = 11Sms Vins ()l oo = 1SmVims () [l

where the last equality holds sinéés stable, i.e.S,,s = Sm.
2) Introduce the stable scalar functionf(s) = Sy, Vins(s).
3) Apply the maximum modulus theorem to f(s) at the RHP-zerosz; of G.

1 ()]l = 1 (25)]
4) Resubstitute the factorization of RHP-zeros in S, i.e. useSy,(z;) = S(z;)B, *(z;) to get
f(z]) = Sm(zj)vms(zj) = S(zj)B;I(zj)Vms(zj)

5) Use the interpolation constraint (16) for RHP-zerosz; in G, i.e. useS(z;) = 1.
6) Evaluate the lower bound.

1 ()] = 1By ()] - [Vims (25)] (53)
Note thatf(z;) is independent of the controlléf if V' is independent oK.
Since these steps holds for aliRzerosz;, Theorem 2 follows. O

Proof of Theorem 3 The transfer functionP is stable, sincé/,,!(s) is stable and the remaining matrices
B, (p) andV;,s(p) are finite constant matrices. Considér=13,(s)P(s)) which has a Rp-zero fors = p

(1 &B.(s)P(s)) = By(s) (1 ©B.(s)P(s))m Or (1 &B.(s)P(5))m = B, '(s) (1 &B:(s)P(s))

We obtain
L(s) =GK(s) =B, ' (s) B.(s) K, = ——~— = 1



where

Since,S~! =1+ L = ;; we have

S(s) = 1eM(s)=16B:(s) B7'(p) Vims(p) Vins (5) = 1 ©Bx(s) P(s)

=P (s)

ConsiderS at the complex valug

We can therefore write

S(s) = By(s) Q(s) & Q(s) = B, (s)(1 ©B.(s) P(s))

whereQ is stable. SinceP, Q andG,,. are all stable we have thaf is stable. Furthermore,

T =B, '(5) B:(s) P(s)Q ' (5)By(s)Q(s) = B(s)P(s)

and we get

() BZ'(9) Vins (p) Vi (5) Bo(V () By (V'(5)) Vims (5)
7 (1) Vins (p) B2 (s) Bo(V(s)) By (V (s))

TV(s) = B
B

TheHso-norm of T'V is

1TV (9)lloe = 1BZ' ()] - [Vins ()] (54)
sinceB,(s) B,(V (s)) Bp_l(V(s)) is all-pass fors = jw. Since the value of 7'V (s)|| ., in (27) is the same as
the lower bound (18), this is the controller which minimjZ&V (s)|| ... O

Proof of Theorem 4 The transfer functiorQ is stable, sincé/,;!(s) is stable and the remaining matrices
Bp—l(z) andV,,,(z) are finite constant matrices. Considér=5,(s)Q(s)) which has a Rp-zero fors = z

(1 &By(5)Q(s)) = Ba(s) (1 &By(5)Q(s))m  0r (1 &By(s)Q(5))m = B; ' () (1 &By(5)Q(5))

We obtain

L+ L(s) = 14+GK(s)=1+B,"(5)B:(8) GmsGmsKo =1+ B, (s) B.(s) K,
= 1+B, (s) (1eB,(s)Q(s)) Q*I(s) =1+ (B;l(s) Q*I(s) <:>1)
= Bp‘l(s) Q'(s)

Which implies that
S(s) = By(s) Q(s)
Since bothQ)(s) andB,(s) are stable, it follows thaf(s) is stable. At the complex valug we have

Qz) =B;'(2) and S(2) = B,(x)Q(2) = 1
It then follows thatl’ = 1 < S'is stable and has aH®-zero fors = z
T(z)=1<S(z)=1<1=0
SinceT'(s) =1 <S(s) = 1 ©B,(s)Q(s), we obtain

T(s) = B:(s) P(s) & P(s) = B, (s) (1 &By(s) Q(s))
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whereP is stable. Since), P andG;,! are all stable we have thaf is stable. We get

=V(s)
SV(s) = By(s) By (2) Vins(2) Vi (5) B=(V (5)) By (V(5)) Vims )
= By '(2) Vins(2) By(s) Bo(V () By ' (V (s)) (55)
TheH -norm of SV is
1SV ()l = 1B, (2)] - [Vins (2)] (56)
sinceB,(s) B.(V (s)) B, *(V (s)) is all-pass fors = jw. Since the value of SV (s)||, in (31) is the same as
the lower bound (20), this is the controller which minimjz&V (s) || .. - O

Proof of Theorem 5We first prove the lower bound (49). From Lemma 1 we have

Jwp(SGKy S1)R(s)| o = [lwp(SGKL & 1)ms Rims(s)]]

o0

sincewp is stable and minimum phase. Consider the scalar fungtieh= wp(SGK; <1),,5s Rms Which is
analytic (stable) in Rp since the closed-loop system is stable. By applying the maximum modulus theorem to
f(s) we get

lwp(SGKL < 1)ms Bims(s)ll oo = 17 (s)lo = 1/(2))]

We get
£ (2)| = lwp(SGKy < 1) msRms|s—,, = lwp(2;) (1) Rims (2))] = [wp(z))] - | Rms(25)]

The second equality follows sinég& K| must have Rp-zeros fors = z;, sinceG has Rip-zeros fors = z;,
and S and K1 must be stable (no #Re-poles inS or K7 to cancel the Rp-zeros inG). It then follows that
(SGK, <1) has no RipP-zeros fors = z;.

We next prove that the controlleds; and K> given in Theorem 5, achieves this lower bound for the case
when the plant has oneHR-zero z. From equation (55) in the proof of Theorem 4 we find th&t with
K = K5 (minimizing ||SG(s)|| ) andV = G becomes

SG(s) = Bp_l(Z)Gms(z)Bz(s)

We obtain
RHP—zergfors =z
SGK\(s) &1 = B.(s)(1 owp (s)RoL(8)wp(2) Boms(2))m <1
= B.(5)B. ' (s) (1 wp' (s) Ry (s)wp(2) Rins (2)) &1
= cwp! (5) Ry ()wp (2) Rins (2)
which gives

wp(SGK1(s) ©1)R(s) = <B.(R) B;I(R) wp(2)Rms(2)

Sincewp(SGK(s) <1)R(s) is stable, so if3,(R) Bp—l(R) wp(2)Rms(z) and R4P-poles inR may only

cancel against Rp-zeros inSG K, <-1. It follows that
lwp(SGK1(s) 1) R(s)|l o = [wp(2)| - | Rms(2)]

and the controllerd{; and K given in (50) and (51) minimizes ti#&..-norm ofw,(SGK; <1)R(s). O
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