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1 INTRODUCTION

For many real-life multivariable control problems, traditional single-loop control theory is

clearly incomplete. This occurs when it is di�cult or impossible to select and design a

set of single-loop controllers which together satisfy the control objectives. Indeed, from

our background in chemical process control, it appears that the proportion of such control

problems is increasing. This is caused by tighter integration of heat and mass in modern

chemical plants, and the decreased volumes (or removal) of bu�er tanks between processing

steps. Thus, disturbances will spread more rapidly and widely throughout a modern chemical

plant than in older plants. This puts greater demands on the control system in modern plants

than in older plants.

There exists sophisticated theories for the synthesis of multivariable controllers. Model

based predictive control even makes it relatively simple to handle process constraints in a

systematic fashion. Nevertheless, modern chemical plants still have a very large number of

single-loop controllers. In a typical chemical plant, the control system can be decomposed

into a hierarchical structure, as depicted in Fig. 1.

� The fundamental layer of the control system is the Regulatory control layer. This

consists mainly of single-loop controllers, together with some feedforward and ratio

controllers. Truly multivariable controllers are rare at the regulatory control level.

The regulatory control level keeps a number of controlled variables close to setpoints

determined by operators or higher levels in the control system. This serves to stabilize

the plant, and it is usually possible for trained operators to keep the plant in operation

with only the help of the regulatory control level.

� Above the regulatory control level there is often a Supervisory control level. This

level coordinates the action of the individual controllers in the regulatory control layer.

This is the layer where truly multivariable control is most often implemented, and some

simpli�ed optimization of individual chapters of the plant is often performed.

� The highest level of the control system is the Plant optimization level. At this level

the operation of the entire plant is optimized to maximize pro�ts subject to constraints

such as equipment capacity, safety and environmental regulations.

Note that there is a separation in timescale between the di�erent layers of the control

system. The purpose of the regulatory control level is to stabilize and maintain safe operation

conditions, and commonly operates on a timescale of minutes or seconds (which is considered

fast in the chemical processing industry) or even faster if necessary. The supervisory control

system normally operates on a timescale of several minutes or hours. This is sensible since
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process variations on the timescale of seconds seldom a�ect the pro�tability of the plant -

unless they cause plant shutdown, which a well designed regulatory control system should

avoid. The production planning level typically operates on the timescale of days.

Although the higher levels in the control hierarchy can be said to be more advanced than

the regulatory control level, it would be misleading to conclude that the higher levels are more

important - since the higher levels depend on the regulatory control level for implementing

the changes to the process that the higher levels have determined to be desirable. Thus, a

well designed regulatory control level will make the design of the higher levels in the control

system simpler. Conversely, a poor regulatory control system can make it impossible to

achieve the process improvements found by the higher levels in the control system.

Having observed that that it is customary to impose structure on control systems for large

plants, it is pertinent to ask the question whether this is a sensible thing to do. After all,

it is clear that imposing structure on the control system restricts the controller design, and

in most cases the theoretically optimal controller will be one big centralized controller which

perfectly coordinates all control actions. It should come as no surprise to the reader that we

believe that a structured control system is actually an advantage. Some reasons are:

� Economics. The concept of optimality common in control theory only refers to con-

trollers in operation, and does not cover the costs of modeling a plant and updating

such models. Single loop feedback controllers get most of the information about the

plant from the feedback itself, and often very little explicit process model information is

required for implementing such controllers. On the other hand, in order to successfully

coordinate control actions, a centralized controller would require a very accurate model

of the plant. With the separation in timescale of the layers of the control system, the

modeling required for the supervisory control level is greatly simpli�ed, since the fast

dynamics of the plant are normally not relevant for the supervisory control system.

� Robustness. Even after spending considerable e�ort in modeling a system, it is not

reasonable to expect the resulting model to be perfect unless the system considered is

quite trivial. Since the supervisory control level operates within the bandwidth of the

regulatory control level, the regulatory control level e�ectively removes uncertainty a

seen from the supervisory control level. The regulatory control level is relatively robust

to model uncertainty, for two reasons: a) it relies mostly on feedback and not on a

model for information about the plant, and b) the structure of the regulatory control

system, consisting mostly of single loop controllers, makes it relatively robust at the

expense of (theoretical) performance (see e.g. [59]).

� Startup and shutdown. The behavior of a plant during startup or shutdown is
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normally very di�erent from the behavior in the normal operating region. Developing

models that include startup and shutdown as well as normal operating conditions is

usually very challenging, and even if such a model is obtained it may be very di�cult

to design a controller that performs adequately both in normal operation and during

startup and shutdown.

During plant startup, it is normal practice to put most controllers in manual. The

controllers of the regulatory control system can then be put in operation one by one

as conditions allow. When the regulatory control system for a section of the plant is

operating adequately, the supervisory control system can be put in operation. The

reverse sequence of events take place during controlled shutdowns. Structuring the

control system thus facilitates easier startup and shutdown.

� Redesign and retuning. It may be necessary to modify the control system as a

result of changing operating conditions, raw materials, or equipment. With a structured

control system such modi�cations are much easier to accomplish, and it will often be

possible to make the necessary changes in the regulatory level only, thus leaving the

higher levels in the control system unchanged.

� Operator acceptance and understanding. It is important that the operators un-

derstand the control system. Operators with insu�cient understanding of the control

system may otherwise cause plant shutdowns. Such shutdowns should rightly be blamed

on the control system (or on the people who designed and implemented the control sys-

tem), since operators are an integral part of the plant operation. Structured control

systems, and particularly the regulatory control level, are easier for operators to under-

stand than a centralized control system.

The discussion above has focused on control systems for large plants. For smaller plants,

as well as non-critical (in terms of economics) sections of large plants, there may actually be

no supervisory control level at all. Ful�lling the objectives of the supervisory control system

is then a task for the plant operators. Obviously, a well-designed regulatory control system

will be of great help to the operators in such cases.

Anyway, the task of designing a control system includes much more than just designing

a set of controllers for controlling a given set of measurements with a given set of manip-

ulated variables. The task of control system design actually starts with determining what

manipulated variables and what measurements should be used for control. This part of the

control system design has traditionally received little attention in the control literature, but

may often be quite involved. This is especially the case when designing new plants, and one
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needs to determine both the types and locations of both measurements and actuators - in

this case the number of alternatives can be very large.

The topics addressed in this chapter are:

� Limitations on achievable performance in control systems.

� Measures of interaction in control systems.

� Selection og controlled and manipulated variables for control.

� Integrity to control loop failure.

� Choice of pairing of controlled and manipulated variables for fully decentralized (i.e.,

single loop) control.

� Approaches to the tuning of decentralized controllers

The reader is assumed to be familiar with basic linear algebra and frequency domain

analysis - at least for single-input single-output systems. The tools presented in this chapter

require a model of the plant to be available; this may appear contradictory to the statements

made above about the cost of obtaining models and the issue of robustness. However, some

of the tools can give useful information about the control properties of the plant even with

very simple models, like for instance steady state models. Also, very simple tools can give

indications of problems with robustness. Whether these indications of robustness problems

are themselves robust to model uncertainty is not a critical issue - any indication of robustness

problems is su�cient cause for searching for an alternative control structure.

The motivation and examples used in this chapter are taken from the area where the

authors are most at home, that is chemical process control. However, it is our �rm belief

that similar problems can be found in other areas where control engineering is applied, and

that the techniques described in this chapter can be put to successful use in these areas.

There are no limitations in the techniques themselves that restrict their applicability to

chemical process control. For instance, readers with a background from aircraft control may

see parallels between the regulatory control level and the stabilization layer in aircraft control

systems, and between supervisory control and guidance.

1.1 Notation

The model of the plant is given by

y(s) = G(s)u(s) + Gd(s)d(s) (1)
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where:

y is the vector of measurements,

u is the vector of manipulated variables,

d is the vector of disturbances, and

G and Gd are transfer function matrices of appropriate dimensions. s is the Laplace variable,

which will be suppressed when not needed for clarity. gij is the element in the i'th row

and j'th column of G, similarly gdij is the element in row i and column j of Gd. Gij can

be obtained from G by deleting row i and column j. The controller is denoted K. For

decentralized control, both K and G are square, and it is assumed that the order of inputs

and outputs has been rearranged such that the elements of G that connect the paired inputs

and outputs appear on the main diagonal of G. K will then be a diagonal matrix, and the

i'th element on the diagonal is denoted ki.

The vector of references (or setpoints) is denoted r and the vector of control o�sets, y�r,

is denoted e. We then have e = S(d � r) and y = SGdd + Tr, where S is the sensitivity

function and T = I � S the complementary sensitivity function. These are given by

S = (I +GK)�1 (2)

T = GK(I + GK)�1 (3)

The matrix ~G consists of the diagonal elements of G, and for decentralized control the

matrices of sensitivity functions and complementary sensitivity functions for the individual

loops are given by ~S = (I+ ~GK)�1 and ~T = ~GK(I+ ~GK)�1. Note that the diagonal elements

of ~S di�er from the diagonal elements of S.

When we want to distinguish between the model of the plant and the true plant, the true

plant is denoted P .

1.2 Scaling

All interpretations and examples in this paper assumes that appropriate scaling has been

performed. In general, the variables should be scaled to be within the interval �1 to 1,

that is, their expected magnitudes should be normalized to be less than 1. This is done by

dividing the unscaled signals by their expected maximum allowed change. Let G0 and G0
d

denote the unscaled transfer matrices and u0, y0, d0, e0 and r0 denote the unscaled inputs,

outputs, disturbances, errors and references. De�ne the maximum allowed change in each of

the signal, u0i;max, d
0
i;max, e

0
i;max, r

0
i;max and collect the scalers in the diagonal matrices

Du = diagfu0i;maxg; Dd = diagfd0i;maxg;
De = diagfe0i;maxg; Dr = diagfr0i;maxg (4)
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then the scaled error can be written

e = D�1
e G0Du| {z }

G

u +D�1
e G0

dDd| {z }
Gd

d�D�1
e Dr| {z }
R

~r (5)

where u0 = Duu, d0 = Ddd, e0 = Dee, r0 = Dr~r, y0 = Dey and r0 = Der, and we have jej < 1,

juj < 1, jdj < 1 and j~rj < 1. The scaling of variables are depicted in Fig. 2. Note the

appearance of the matrix R = D�1
e Dr this matrix is equal to the identity matrix if the error

and the reference signals are scaled with the same magnitude.

1.3 Use of the term `Controllability'

The term `controllability', as used in this chapter, is a plant property which re
ects how easy

it is to control the plant. The controllability of a plant depends on many di�erent aspects,

such as: time delays, transmission zeroes in the right half of the complex plane, actuator

constraints, disturbance magnitudes and sensitivity to uncertainty. This use of the term

controllability is in accordance with how Ziegler and Nichols [70] used the term.

In contrast, in much of control literature the term `controllability' has only weak connec-

tions to the ease with which a plant can be controlled. A state x is termed `controllable' if,

for any initial state x(0) = x0, any time t1 > 0, and �nal state x1, there exists an input u(t)

such that x(t1) = x1. We will use `state controllability' to distinguish this interpretation of

the term from the way we interpret it.

It can be perfectly feasible to control the outputs from a plant with some states which are

not state controllable. It may also be di�cult in practice to obtain acceptable control of a

plant even if all states are state controllable. The clearest connection between controllability

and state controllability is that any unstable state must be both state controllable and state

observable, i.e., it must be possible to close feedback paths around all unstable states and

thereby stabilize them. In addition, for decentralized control, an unstable state must not

correspond to a decentralized �xed mode [63] for the chosen pairing of inputs and output.

That is, the decentralized feedback structure must allow for feedback around an unstable

state; state controllability and observability is not always su�cient to ensure this.
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2 LIMITATIONS TO FEEDBACK PERFORMANCE

2.1 Universal Limitations - Constraints on S and T

For the closed loop system to follow setpoints and reject disturbances, we would like the

sensitivity function S to be small. On the other hand, sensitivity to measurement noise is

reduced if the complementary sensitivity function T is small. Clearly, these objectives can

not both be met at the same frequency, since

S(s) + T (s) = I (6)

Thus, at a given frequency one is forced to give priority to either setpoint following and

disturbance rejection or to the sensitivity to measurement noise. Usually, setpoint following

and disturbance rejection is more important at low frequencies, whereas sensitivity to mea-

surement noise take priority at high frequencies. There will of course also be other reasons

why the system bandwidth is �nite, and T will roll o� at high frequencies.

Another constraint on S is the well known Bode Sensitivity Integral. Assume that the

open loop SISO transfer function L = GK is stable and has at least two more poles than

zeros. Then the following result from Bode [6] holds:

Z 1

0

ln jS(j!)jd! = 0 (7)

This can be generalized to MIMO systems [21], giving

Z 1

0

ln jdetS(j!)jd! = 0 (8)

Equations (7) and (8) may at �rst glance not appear to impose any strong restriction

on the achievable control quality. Although improved control at one frequency (smaller

S) must necessarily imply poorer control at other frequencies, it appears that S (or detS)

can be made only in�nitesimally larger than unity over an in�nite frequency range at high

frequencies. Freudenberg and Looze [22] point out that this is naive; in practice bandwidth

constraints and roll-o� requirements force most of the positive area in Eqs. (7) and (8) to

be around the bandwidth frequency. As a result, one must also expect a larger peak in the

sensitivity function when S is made smaller in a certain frequency range.

The presence of RHP poles or zeros in the plant G(s) cause modi�cations to Eqs. (7) and

(8) above. These modi�cations are presented below in the relevant sections.

2.2 Plant Characteristics Limiting Feedback Performance

In this section we discuss inherent limitations to feedback performance, that is, fundamental

limitations that are independent of the type of controller used. In the cases where the

implications for decentralized and centralized control di�er, such di�erences are pointed out.
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A useful concept for understanding the limitations of feedback control is the Internal

Model Control structure [29]. In Figure 3 both the conventional and the Internal Model

Control (IMC) feedback structures are shown. With IMC, we use a model of the plant

in parallel with the real plant, and the feedback signal is just the di�erence between the

real plant and the model. The feedback signal thus arises only from errors in the model,

unmeasured disturbances or measurement noise. This is intuitively appealing, if we have a

perfect model and exact knowledge about all disturbances, we can control the plant outputs

with feedforward control, and feedback is not necessary.

Note that the IMC structure and the conventional feedback structure are equivalent, the

IMC controller Q and the conventional feedback controller K are related by

Q = K(I +GK)�1 (9)

K = Q(I �GQ)�1 (10)

From Fig. 3 we see that the nominal (i.e., assuming the plant model to be perfect, G = P )

transfer function from reference r to plant output y is y = Hr = PQr. We also see that

nominal stability is guaranteed if both the plant and the IMC controller are stable.

Perfect control can therefore be obtained by choosing Q = G�1. Any phenomenon which

makes it impossible to construct the plant inverse is therefore a cause for imperfect control.

Such causes for imperfect control are:

1. The plant contains time delays, and it's inverse therefore contains predictive elements

(G�1 is not causal). Perfect predictions about the future is obviously impossible.

2. The plant contains RHP transmission zeros which will become poles in the inverse. The

transfer function from reference (or disturbance) to controller output therefore becomes

unstable, and the controller output will increase until some physical constraint in the

manipulated variable is met.

3. Constraints in the manipulated variables. If the magnitudes of the manipulated vari-

ables are constrained, this will limit the magnitudes of reference signals or disturbances

for which perfect control can be achieved, since u = Q(r � d). On the other hand,

if the rates of change of the manipulated variables are constrained, this will limit the

frequency range for which perfect control can be achieved. Exactly how the frequency

range of perfect control is limited will depend on the magnitudes and dynamics of the

reference signals and disturbances. Both the magnitudes and the rates of will be con-

strained for most real systems, but it varies from case to case whether such constraints

seriously limit the control quality obtained. Constraints in the manipulated variables
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will also limit the region in the state space for which stability is achievable when the

plant is open loop unstable1.

4. A related cause for imperfect control is pole excess in the plant. The number of plant

poles exceed the number of plant zeros for real plants. The inverse would therefore

contain more zeros than poles, resulting in an improper controller. In�nite controller

power would be required for implementation. A proper IMC controller can be obtained

by adding a low pass �lter (of su�ciently high order) to the controller.

5. If the model is inaccurate, perfect control is clearly not obtained by choosing the IMC

controller to be the inverse of the model. Model uncertainty therefore limits achievable

performance. Particularly disastrous e�ects on performance (and even stability) can

result if the plant in addition is highly interactive.

It is well known that perfect control is obtained in the limit as the controller gain ap-

proaches in�nity. This can be seen from the conventional feedback structure:

y = (I + GK)�1[GKr+ Gdd] (11)

Clearly, as the controller gain approaches in�nity (�(GK)! 1) we get that y ! r and

the control error e = y � r ! 0. We also have that y = Gu + Gdd. Then, as the controller

gain approaches in�nity and the control error approaches zero, we get that

e = y � r! 0 ) u = G�1[r� Gdd] (12)

Thus one can implicitly obtain the inverse of the plant as the closed loop controller transfer

function, and thereby also obtain perfect control, without an exact plant model. It may

therefore appear that cause 5 for imperfect control above is not a fundamental restriction on

control performance. However, high gain can only be used to achieve (almost) perfect control

at low frequencies, because of points 1 - 4 above. On the other hand, model uncertainty

is not very important at high frequencies where points 1 - 4 above make the loop gain low

anyway. Thus, the main concern for model uncertainty is at intermediate frequencies, in the

crossover region.

2.2.1 Manipulated variable constraints

Manipulated variable constraints can limit the ability to follow setpoint changes and reject

disturbances. In the following, we will concentrate our discussion on disturbance rejection,

but it is trivial to apply the same reasoning to setpoint following.

1IMC controller design for unstable plants require special considerations, see [47] for details.
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We will here consider limitations in control performance caused by manipulated variable

constraints alone, and thus assume that there are no other phenomena that limit achievable

control performance for the plant.

Some of the relevant questions that can be asked in this context are:

1. What disturbances can be perfectly rejected?

2. For disturbances too large to be perfectly rejected, what is the minimum achievable

o�set in the controlled variable?

3. For what disturbances can acceptable control be achieved?

In order to answer these questions quantitatively, we must have a �rm idea about what

constitutes acceptable control, what the limitations in the manipulated variables are, and

what disturbances can be expected. The transfer function matrices G(s) and Gd(s) should

be properly scaled to re
ect this knowledge, as explained in the introduction.

Question 1 is easiest to answer. We here assume that we have at least as many manipulated

variables as controlled variables, otherwise it is clearly impossible to achieve perfect control

of all controlled variables. For perfect control (and a setpoint of zero), we have

u = �G�1Gdd (13)

For the case with more manipulated than controlled variables, the pseudo-inverse has to

be used in Eq. (13) above. Perfect control can be achieved provided juij � 1. Thus, if the sum

of the absolute values of the elements in row i of G�1Gd are less than one, perfect control

can be achieved for controlled variable i. Large elements of G�1Gd indicate disturbances

that are hard to reject, if j[G�1Gd]ij j > 1, disturbance j alone can cause imperfect control of

controlled variable i.

Questions 2 and 3 are signi�cantly harder to answer. Wol� et al. [64] formulated the

corresponding optimization problems. For question 2 this is:

max
d

(min
u

k y k1) (14)

such that k d k1� 1

k u k1� 1

y = Gu+Gdd (15)

and for question 3 the corresponding optimization problem is:
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max
d

(min
u

k d k1) (16)

such that k u k1� 1

k y k1=k Gu+ Gdd k1� 1 (17)

Here k x k1 is the in�nity norm of the vector x, i.e., the magnitude of the largest

vector element. In solving these optimization problems, there is no requirement that there

should be at least as many manipulated variables as controlled variables. Unfortunately,

the optimization problems in Eqs. (14) and (16) are di�cult to solve. Their solution is the

subject of [8].

Skogestad and Postlethwaite [61] argue that the most insight is gained by considering one

disturbance at the time, and derive the approximate requirement for achieving k y k1� 1:

�i(G) � jUH
i gdj � 1 at frequencies where jUH

i gdj > 1 (18)

Here �i(G) is the i'th singular value of G and Ui the corresponding output singular vector,

and gd is the column of Gd corresponding to the disturbance being considered. Because of

simpli�cations in the derivation of Eq. (18), the results may be o� by a factor of at mosr
p
ml,

where m is the number of outputs and l is the number of manipulated variables. However,

the results of Eq. (18) are normally much more accurate. Equation (18) can be used to assess:

1. For which disturbances and which frequencies input constraints may cause problems.

This may give ideas to which disturbances should be reduced, for example by redesign

or the use of feedforward control.

2. In which input direction i the plant gain i is too small. By looking at the corresponding

input singular vector Vi, one can determine which actuators should be redesigned to

get more power in certain directions.

3. By looking at the output singular vector Ui, one can determine for which outputs one

may have to reduce one's performance requirements.

If , in addition to considering each disturbance separately, one only looks at steady state,

the problem of checking whether the input constraints allow for acceptable control becomes

much easier. This is because all variables have to be real, and the worst possible disturbance

has to be d = 1. The problem is then to �nd

u� = min
u
k u k1 such that k Gu+ Gd � 1 k1� 1 (19)
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and the requirement for achieving acceptable control is that u� � 1. Equation(19) may

be formulated as a linear programming problem, and can hence be readily solved.

It should be noted that the e�ects of the disturbances are not additive, because of the

constraints. Acceptable control may be achieved independently for two disturbances, but

their combined e�ect may still exceed the limits for acceptable control. On the other hand,

disturbances may also cancel each other, giving acceptable control for cases where this is not

possible for the individual disturbances. In some sense, it is a matter of design philosophy

whether disturbances should be considered separately or jointly - it may be argued that several

independent disturbances are unlikely to obtain their worst possible value at the same time,

and that designing for such a scenario would lead to overdesign of the plant. The opposing

view would be that it is imprudent to rely on chance or nature's good will for acceptable

plant performance, and that the worst case combination of disturbances therefore should be

considered.

2.2.2 Time delays

The e�ect of deadtime on achievable performance is addressed in [29, 52]. We will here give

a brief summary of the results of Holt and Morari [29], who address the e�ect of achievable

performance within the IMC framework. Other factors than time delays that may limit

achievable performance are not considered in this section.

A lower bound for the settling time for output i is given by

�i = min
j

pij (20)

where pij is the time delay in element gij.

Clearly, �i is the minimum time necessary for any input to a�ect output i. It will often

not be possible to achieve a settling time of �i for all outputs i, but the �i's can serve as

measures against which a control system can be judged.

The minimum necessary closed loop time delays that are achievable and allow for decou-

pled control of all outputs, can be shown to be:

�j = max
i
(max(0; q̂ij � p̂ij)) (21)

where q̂ij is the minimum delay in the denominator of element ij of G�1, and p̂ij is

the minimum delay in the numerator of element ij of G�1. Holt and Morari propose that

the above �j is viewed as a lower bound on achievable performance, since it will often be

possible to achieve faster responses in some of the outputs if dynamic interactions are allowed.

Dynamic decoupling is seldom a reasonable requirement. Unless there is large di�erences in

the importance of the outputs, it is reasonable to reduce the o�set from setpoint in one output
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at the cost of introducing modest o�sets in other outputs. If there are large di�erences in

the importance of the outputs, one-way decoupling may be justi�ed, whereas Eq. (21) gives

the minimum closed loop time delays for two-way decoupling.

The only case when the upper and lower bounds on achievable performance due to time

delays are equal for all outputs (i.e., �i = �i 8i), occurs when the rows and/or columns of G

can be rearranged such that for each row in G the element with the smallest time delay is on

the main diagonal. The time delays along the main diagonal of the rearranged G will then

be the best possible settling times for the corresponding outputs, and decoupled control will

be achievable with these settling times.

Increasing time delays may improve controllability!

Holt and Morari argue that whilst it is often di�cult to reduce time delays in a plant, it may

be possible to increase time delays, for instance by increasing pipe lengths between process

units. They give an example of a heat exchanger network, for which a simpli�ed transfer

function matrix involving only deadtimes is

G(s) =

2
664
e�6s e�11s e�2s

e�11s 1 e�12s

e�8s e�13s 1

3
775 (22)

and the minimum delays for a dynamically decoupled system are

� = [e�6s; 1; e�4s] (23)

By increasing the deadtime between two heat exchangers (and thereby increasing the time

delay in some o�-diagonal elements of G(s)), the new matrix of delays becomes

G(s) =

2
664
e�6s e�11s e�6s

e�11s 1 e�16s

e�8s e�13s 1

3
775 (24)

and the corresponding minimum delays for a dynamically decoupled system are

� = [e�6s; 1; 1] (25)

showing that faster control is possible with increased delays in som elements. The reason

why faster control is possible with increased delays, is that in the original matrix of delays

(Eq. (22) element (1,3) has a delay than is 4 units smaller than the delay in element (1,1).

In order to achieve a decoupled response, the controller therefore has to delay the control

action in input 3 by 4 time units.
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Changes in delays may also a�ect the degree of interaction in a control system, and can

therefore a�ect the control properties of the plant even if we don't require dynamic decoupling.

Consider the following example

G =

2
4 1 (1� �)e��s

1 1

3
5 (26)

As � ! 0 the matrix G approaches singularity at steady state. With � = 0:01, we get a

condition number of 399 and an RGA value �11 = 100. If we are able to choose the deadtime

such that g12 is -0.99 at the desired bandwidth frequency, we get a condition number of

1.01 and RGA value �11 = 0:5, and thus a plant that is only moderately interactive at the

bandwidth.

Further implications of time delays for decentralized control.

The results on achievable performance in the presence of time delays hold for full (centralized)

controllers. If one restricts the controller to be decentralized even the lower bound on settling

times in Eq. (21) may not be achievable - and the responses will certainly not be decoupled.

Clearly, for decentralized control the minimum time required for a change in setpoint i to

a�ect output i will be the time delay in gii (assuming inputs and outputs are rearranged to

bring the paired elements to the diagonal). If the time delay in gii is �ii, an approximate

upper bound on the bandwidth of loop i is !Bi < 1=�ii (see e.g. [61]).

2.2.3 Right half plane transmission zeros

In this section we will consider the implications of Right Half Plane (RHP) zeros for feedback

control. It is assumed that the reader is familiar with the concept of RHP zeros in SISO

systems. Nevertheless, this section initially goes into some details about the implications of

RHP zeros in SISO systems, for the following two reasons:

� The individual loops of a decentralized control system are usually required to be stable

and perform acceptably on their own. The implications of monovariable RHP zeros are

therefore relevant also for multivariable, decentralized control systems.

� It will serve as a background for the presentation Right Half Plane Transmission zeros,

the MIMO counterpart of RHP zeros in SISO systems.

The implications of RHP transmission zeros are addressed in the latter part of this sec-

tion. Although MIMO RHP zeros were discovered some time ago [55], we believe that this

phenomenon and it's implications for control are less well known among control practitioners

in industry.
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This section does not attempt an exhaustive review of the literature on RHP zeros. More

details can be found in, e.g., [28, 22, 47, 18, 13, 69]. Also, we will not go into details of

how to compute the zeros of a transfer function (matrix), since this can be done by standard

software.

Right Half Plane Zeros in SISO systems

Here we consider a SISO transfer function g(s). The zeros of g(s) are the roots of its

numerator polynomial, and a zeros is a right half plane zero if its real part is positive. Some

of the properties of plants with RHP zeros are:

1. If zR is a a RHP zero of the plant transfer function g(s), there exists an input u(t) of

the form ezt and a set of initial conditions such that the output y(t) = 0 for t = 0. [41]

2. For a stable plant with an odd number of RHP zeros displays an inverse response to a

step change in the input [28].

3. The zeros are invariant under state and output feedback [39].

4. The zeros are the poles of the plant inverse.

Properties 3 and 4 show that RHP zeros pose fundamental problems for feedback systems,

and that perfect control is not achievable for plants with RHP zeros.

A more quantitative result on the e�ect of RHP zeros on feedback control is due to

Freudenberg and Looze [22], who found that for a system that is open loop stable, with an

RHP zero at z = x+ jy (and x > 0), the sensitivity function must satisfy

Z 1

�1
log jS(j!)j x

x2+ (! � y)2
d! = 0 (27)

This means that if log jS(j!)j is plotted as a function of frequency !, the area under the

line jSj = 1 (i.e., log(jSj) = 0) must be \balanced" with the area above the line jSj = 1.

The area above jSj = 0 must come mainly at frequencies below ! = jzj, since the weight

x=(x2 + (! � y)2) decreases rapidly for higher frequencies. Therefore, if we want to improve

control (make jSj smaller) in a certain frequency range, we must also accept poorer control

at other frequencies below ! = jzj.
Thus RHP zeros impose bandwidth limitations on the closed loop system. Skogestad

and Postlethwaite [61] use several di�erent design approaches to illustrate that a reasonable,

approximate constraint on the open loop crossover frequency !c for a real RHP zero at s = z

is
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!c < z=2 (28)

RHP zeros in MIMO systems

Several di�erent de�nitions of zeros of multivariable have been proposed. The de�nition

that has become commonly accepted is that of a Transmission Zero.

De�nition of Transmission zeros. Transmission zeros are those values of s for which the

rank of G(s) drops below its normal value [41].

This de�nition of transmission zeros show that transmission zeros are relatively uncommon

for non-square plants, unless they are associated with a particular subsystem of the plant,

such as a particular output (for plants with more inputs than outputs) or a particular input

(for plants with more outputs than inputs). This is because, if r is the normal rank of G(s),

all minors of order r are unlikely to loose rank at the same value of s.

There are alternative de�nitions of transmission zeros, (see e.g., [55, 41, 38]). The dif-

ference between these de�nitions are of no practical importance with regard to the control

properties of a plant with transmission zeros, although they point to di�erent approaches for

calculating transmission zeros.

Note that there is not necessarily any direct connection between zeros in the individual

elements of G and transmission zeros in G. Zeros in the individual elements of G do not

imply transmission zeros (unless all the elements in a row or column of G have a zero for the

same value of s), and G(s) may have a transmission zero at a value of s where none of the

elements have a zero.

Another di�erence between monovariable zeros and multivariable transmission zeros, is

that a multivariable plant can have poles and zeros for the same value of s.2 If G(s) have a

pole and a transmission zero at the same value for s, one singular value of s will be in�nite

and another singular value will be zero at this value for s. This can cause problems if one

tries to determine the transmission zeros of a square plant by setting the determinant to

zero. However, the only transmission zeros that have implications for the achievable control

performance of the plant are those in the right half plane. For open loop stable plants, there

can be no cancellation of poles and RHP zeros in the determinant, and the RHP transmission

zeros are the roots of the numerator of the determinant in the RHP.

Some of the properties of RHP transmission zeros are:

� Let z be a transmission zero of G(s). Then there exists an input of the form ueztl(t),

where u is a complex vector and l(t) is the Heaviside unit step function, and a set of

2This can happen even for a minimal realization of the plant transfer function matrix, i.e., even if all states
are both controllable and observable.
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initial conditions such that y(t) = 0 for t > 0 [41].

� Consider a square plant G(s) of dimension n�n, and let n�1 of the outputs be perfectly
controlled by n � 1 of the inputs3. The transmission zeros in G(s) will then appear in

the scalar transfer function between the unused input and the uncontrolled output [28]

(see also Eq. (32)). Thus, if G(s) has an odd number of RHP transmission zeros, there

will be an inverse response from the unused input to the uncontrolled output.

� The transmission zeros are invariant under feedback [39].

� The transmission zeros are the poles of the plant inverse.

The similarities between the properties of monovariable zeros and transmission zeros are

striking. The main di�erences are that the \transmission blocking" property hold for a

multivariable as opposed to a monovariable signal, and that perfect control of other outputs

is required to obtain an unambiguous manifestation of the inverse response associated with

RHP zeros.

Zero direction. If the plant G(s) has a zero at s = z, then G(s) looses rank at s = z. Thus, if

we perform an SVD of G(z), we will �nd that one singular value is zero. The output singular

vector corresponding to the zero singular value is termed the zero output direction, and is

here denoted by yZ . Similarly, the input singular vector corresponding to the zero singular

value is termed the zero input direction, and is here denoted by uZ . Clearly, then we have

G(z)uZ = 0; yHZ G(z) = 0 (29)

We will be primarily interested in the zero output direction yZ . In order to preserve

internal stability of the feedback system, the controller K cannot cancel the zero in G, and

we get (e.g., [61]).

yHZ T (z) = yHZ G(z)K(z)(I + G(z)K(z))�1 = 0 (30)

yHZ S(z) = yHZ (I � T (z)) = yHZ (31)

Thus, not only the location of zeros cannot be changed by feedback control, but also the

zero directions are invariant under feedback control. The e�ect of an RHP transmission zero

must therefore appear in (one or more of the) outputs corresponding to nonzero elements in

yZ . This was �rst observed by Bristol [11], who termed zeros whose zero direction vector yZ

3This assumes that it is possible to obtain perfect control of the n � 1 outputs using the n � 1 inputs,
which implies that the transfer function matrix from the chosen inputs to the chosen outputs have no RHP
transmission zero.
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have some elements equal to zero pinned zeros, since such zeros are \pinned" to the outputs

corresponding to nonzero elements in yZ . Pinned zeros are quite common in practice. If

there is an inverse response or a time delay in the measurement of a plant output, this e�ect

cannot be moved to another output. Similarly, if uZ contains some zero elements, the zero is

\pinned" to the inputs corresponding to the nonzero elements of uZ .

Moving the e�ect of an RHP transmission zero to a speci�c output. Consider a transfer

function matrix G(s) that is square and of full rank in most of the complex plane, but has a

single RHP transmission zero at s = z and no pole at s = z. Assume that the RHP zero at

s = z is the only restriction of the performance under feedback control4. Let the k'th element

of yZ be nonzero. Then it is possible to obtain \perfect" control for all outputs j 6= k, with

no steady state o�set in output k. One possible choice for the complementary sensitivity

function T (s) is:

T (s) =

2
6666666666664

1 0 0 � � � 0 � � � 0

0 1 0 � � � 0 � � � 0
...

...
�1s
s+z � � � �k�1s

s�z
�s+z
s+z

�k+1s

s�z � � � �ns
s�z

...
...

0 � � � 0 0 � � � 0 1

3
7777777777775

(32)

where

�j = �2 yZj
yZk

for j 6= k (33)

It can easily be veri�ed that yHZ T (z) = 0. For a complete proof of the above result see [47].

Implications of RHP transmission zeros on the sensitivity function.

Generalizations of the sensitivity integral relation in Eq. (27) to multivariable systems

can be found in [13, 69]. One result from Zhou [69] provide a simple illustration that the

implications of RHP zeros for MIMO systems are similar to the implications for SISO systems:

Assume that the open loop transfer function L = GK is proper5. Then, for any RHP

transmission zero z = x+ jy

Z 1

1
ln ��(S(j!))

x

x2+ (! � y)2
� � ln ��(S(z)) (34)

4This implies that G�1(s) is proper and causal.
5The technical assumption that must be satis�ed is

lim
R!1

max
�2[��=2;�=2]

j ln ��(S(Rej�))j

R
= 0
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Note that since yHZ S(z) = yHZ , ln ��(S(z)) � 0. In the same way as for SISO systems, the

frequency range where ��(S(j!))> 1 must be mainly at frequencies ! < jzj.

Alignment between zero directions and disturbances. The closed loop performance will be

poor if the direction of the disturbance is aligned with the zero direction. If the plant G(s)

has a RHP zero at s = z, a requirement for acceptable disturbance rejection is [61]:

jyHZ gd(z)j < 1 (35)

where gd is the column of Gd corresponding to the disturbance in consideration.

2.2.4 Limitations imposed by RHP poles

The implications of open loop RHP poles on the closed loop properties of the system will

�rst be presented for SISO systems, and then the generalizations to MIMO systems will be

made. It is assumed that the concept of an RHP pole (unstable mode) of a system is familiar

to the reader both for the SISO and MIMO cases.

RHP poles in SISO systems. When the system contains RHP poles, Bode's Sensitivity

Integral relationship must be modi�ed. In addition to the assumption that the open loop

transfer function has at least two more poles than zeros, assume that the open loop transfer

function has Np RHP poles (including multiplicities) at locations pi. Freudenberg and Looze

[22] found that the sensitivity function must satisfy

Z 1

0

ln jS(j!)jd! = �

NpX
i=1

Refpig (36)

for the closed loop system to be stable. Thus, the RHP poles increase the \positive area" in

Eq. (36) by an amount proportional to the distance of the pole from the imaginary axis.

Another constraint imposed by an RHP pole, is that for internal stability of the control

system, we must require T (p) = 1 if p is a RHP pole of the open loop system. This, together

with the maximum modulus theorem, can be used to show that

k wTT k1� jwT (p)j (37)

Choosing wT = 1, we �nd that k T k1� 1, which shows that control is needed to stabilize

an unstable plant, since K = 0 (no control) implies T = 0. Eq. (37) is used by Skogestad

and Postlethwaite [61], together with a reasonable weight wT (s) to argue that for a real RHP

pole at s = p one must expect an open loop crossover frequency !c > 2p in order to achieve

acceptable control.

RHP poles in MIMO systems. In the same way as for RHP transmission zeros, RHP

poles also have directions. If s = p is an RHP pole of the plant G, the input and output
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pole directions can be found from a singular value decomposition of G(p), and are the input

and output singular vectors corresponding to the in�nite singular value of G(p). We will be

most interested in the output pole direction, which we will denote yP . The SISO constraint

T (p) = 1 for an RHP pole at s = p for MIMO systems becomes

T (p)yP = yP (38)

Note that a MIMO system may have a pole and a zero at the same value of s. Their

directions are then always orthogonal. The alignment of the directions of the RHP poles and

RHP transmission zeros are important when considering the combined e�ects of RHP poles

and RHP transmission zeros, as will be shown in the next section.

The Bode Sensitivity Integral relation for MIMO systems with RHP poles is [22]:

Z 1

0

ln jdetS(j!)jd! = �

NpX
i=1

Refpig (39)

A lower bound on the integral of ��(S) is given in [69], based on a factorization of the

plant into a minimum phase part and an allpass part.

2.2.5 Combined e�ects of RHP poles and RHP zeros

SISO systems. For a SISO system with a RHP zero at z = x + jy and Np RHP poles at

locations pi, the sensitivity function must satisfy

Z 1

�1
ln jS(j!)j x

x2+ (! � y)2
d! = � ln

NpY
i=1

����z + �pi
z � pi

���� (40)

In the same way as for open loop stable systems, most of the positive area must be at

frequencies below ! = jzj. In addition, the value of the integral is increased by the presence

of open loop RHP poles, and increases further at the RHP zero approaches an RHP pole.

Skogestad and Postlethwaite [61] give lower bounds on the peak values of S and T . Let

the open loop system have Np RHP poles at locations pi, and Nz RHP zeros at locations zi.

For any RHP zero z, de�ne

c1 =

NpY
i=1

����z + �pi
z � pi

���� (41)

and for and RHP pole p de�ne

c2 =
NzY
i=1

���� �zi + p

zi � p

���� (42)

Then, lower bounds on the peaks of S and T are
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k S k1� c1; k T k1� c2 (43)

Thus, not only the integral of lnS, but also the peak values of S and T increase as RHP

poles and zeros are moved closer.

In theory, any linear plant can be stabilized irrespective of the locations of its RHP poles

and zeros. In practice, it is highly desirable that stable controllers are used. Youla et al. [66]

showed that a linear plant can be stabilized by a stable controller if and only if every real

RHP zero in G(s) lies to the left of an even number (including 0) of real RHP poles. The

presence of complex RHP poles or zeros does not a�ect this result. Thus, if we have a plant

G(s) with one real RHP zero at z and one real RHP pole at p, we must require that z > p

in order to be able to stabilize the plant with a stable controller. In [61] it is argued that in

order to achieve acceptable performance, a more realistic requirement i z > 4p.

MIMO systems. For MIMO systems the directions of RHP poles and zeros are impor-

tant for their combined e�ects on S and T . A generalization of Eq. (40) to MIMO systems

can be found in [69]. Whereas the increase in the integral of ln jS(j!)j depends strongly on

the directions of the zero and the poles, the frequency region in which most of this increase

in sensitivity occurs depends only on the location of the zero.

The bounds on S and T in Eq. (43) can also be generalized to MIMO systems [61], and

this generalization also show the importance of the pole and zero directions. For the case

with only one RHP zero z and one RHP pole p, we get that

k S k1� c1; k T k1� c2 (44)

where

c1 = c2 =

s
sin2 � +

jz + pj2
jz � pj2 cos

2 � (45)

and � is the angle between the output directions of the pole and the zero.
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3 ANALYSIS OF INTERACTION IN

MULTIVARIABLE PLANTS

A fundamental di�erence between monovariable and multivariable plants is interaction in

multivariable control systems. It is obvious that changing one plant input in a multivariable

plant will a�ect several plant outputs. It may require a little re
ection to understand that

this means that the control of one output from a multivariable plant depends on how the

other outputs of the plant are controlled. How strong this dependence on the control of the

other outputs is, depends on the gains in the di�erent directions of the plant, and how these

directions are aligned to the plant inputs and outputs. What do we mean by the `directions'

of the plant? Intuitively, the plant inputs and outputs may appear to represent the natural

directions of the plant. The eigenvectors of the plant transfer function matrix is another

intuitively reasonable de�nition of the plant directions, in this case the eigenvectors would

represent the corresponding gains. However, the most useful concept of plant directions is

that resulting from the Singular Value Decomposition (SVD) of the plant transfer function

matrix. We expect most readers to be familiar with the SVD, and we have already used it

brie
y in the preceding section. Details of its computation and mathematical properties can

be found in standard textbooks on linear algebra, e.g. Golub and Van Loan [23]. Using the

SVD, a transfer function matrix G(s) can for a given value of s be decomposed into

G(s) = U(s)�(s)V H(s) (46)

where the superscript H represents the complex conjugate transpose. For a transfer function

matrix with r outputs and c inputs, U has dimensions r � r, � has dimensions r � c and

V has dimensions c � c. The column vectors of U are orthogonal and of unit length, and

represent the output directions of the plant. Likewise, the column vectors of V are orthogonal

and of unit length, and represent the input directions of the plant. � is a diagonal matrix,

with the elements ordered by decreasing magnitude along the main diagonal. The elements

on the main diagonal of � are called the singular values of G. The singular values are always

real and positive. The i'th singular value is denoted �i, the largest singular value is denoted

��, and the smallest singular value is denoted �. The gain from input direction i (i'th column

of V ) to output direction i (i'th column of U) is thus given by �i. The largest gain in any

direction of a multivariable plant is given by �� and the smallest gain is given by �. Denoting

the eigenvalues of G by �i, we have

�(G) � j�i(G)j � ��(G) 8i (47)

Some advantages of the SVD over the eigenvalue decomposition for analyzing gains and

directionality of multivariable plants are:
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� The singular values give more representative information about the gains of the plant

than the eigenvalues, as explained above. Only for hermitian matrices (G = GH) are

the SVD and eigenvalue decompositions equal. Consider for example the matrix

A =

2
4 0 100

0 0

3
5 : (48)

Both eigenvalues of A are zero, but the largest singular value of A is 100. The largest

singular value is the gain from input direction [0 1]T to output direction [1 0]T , i.e.,

the input and output directions are di�erent. In contrast, the eigenvalues only measure

gains when the input and output directions are equal.

� The plant directions obtained from the SVD are orthogonal. In contrast, if one wishes

to analyze plant gains and plant directionality using the eigenvalue decomposition, one

will have to include the angle between the eigenvectors in the analysis.

� The SVD applies directly also for nonsquare plants, i.e., plants where the number of

inputs and the number of outputs di�er. For a plant transfer function matrix G of

dimension r� c, the number of singular values equals the smaller of r and c (assuming

G to be of full rank). If r > c, columns c+ 1 to r of U then represents combinations of

outputs that are una�ected by the inputs. Similarly, if c > r, columns r + 1 to c of V

represent combinations of inputs whose e�ect on the outputs exactly cancel, giving no

change in the outputs.

If it had been possible to send in inputs to the plant perfectly aligned with the input directions

(from the SVD), and project the measurements on the output directions, multivariable control

design would in many cases reduce to a set of single loop designs. Unfortunately, U , � and

V in general vary with frequency in ways that cannot be described by rational, realizable

transfer functions, making it impossible to use the SVD directly in control design. Strictly

speaking, the symbol s in Eq. (46) should therefore interpreted as a given complex number,

and not as a continuous variable. There are however design approaches that utilize the insight

gained from the SVD. One may approximate the SVD at some speci�c, important frequency

with real matrices [37]. In other cases, knowledge about the physical structure of the plant

can make it possible to use a slightly modi�ed SVD for controller design in a very direct way

[30, 33, 36]. With this introduction to the concept of interactions in multivariable plants, we

will next introduce some tools for analyzing interactions.

3.1 The minimum singular value as an indicator of plant controllability

It follows from Eq. (18) that if �(G) is small, this can be an indication that disturbances can

be impossible to reject, because of input constraints. Similarly, a small �(G) implies that
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in some directions only small setpoint changes can be made, and that it may not always be

possible to follow changes in the optimal operating point. These observations of course rest

on the assumption that the plant G is appropriately scaled.

3.2 The Minimized Condition Number.

Consider a case where the plant gains in di�erent directions are signi�cantly di�erent, but for

which we have similar performance speci�cations for all plant directions. We will then want

to have similar loop gains in all directions. Thus, we will want a much higher controller gain

in the low gain direction of the plant than in the high gain direction. However, it is rarely

possible to align the inputs to the plant exactly to the plant directions, for several reasons:

� In general the SVD of the plant cannot be represented by realizable transfer function

matrices, as pointed out above.

� It is naive to expect the plant model G(s) used for control design to be exact. For

highly interactive plants the directions corresponding to high and low gains may vary

signi�cantly even for small variations in the elements of G(s).

� It is also naive to expect the plant inputs to be exactly equal to the controller out-

puts, because of uncertainties in actuators. This can be particularly detrimental to the

alignment of plant inputs to the plant directions.

For these reasons, we will not be able to align the plant inputs perfectly with the plant

directions. The high controller gain that we want in the low gain direction of the plant

will therefore `miss', and a component of the high gain of the controller will in reality be

in the high gain direction of the plant. Similarly, a component of the low gain direction of

the controller will be in the low gain direction of the plant. The result may be that control

performance is signi�cantly di�erent in the di�erent directions of the plant, and in severe

cases instability may result.

The additional di�culty with multivariable control design arises when the gain in di�erent

plant directions are not the same. A natural measure of this additional di�culty caused by

the plant interactions is therefore the ratio of the largest to the smallest possible gains in the

plant. This is known as the condition number of the plant, and is denoted by 
.


(G(s)) = ��(G(s))=�(G(s)) (49)

One problem with the condition number is that it depends on the scaling of the plant G.

This means that 
 depends on the units used for measuring the plant inputs and outputs. This

is obviously unreasonable - the condition number could for instance show that it is simpler

25



to control a plant if pressure is measured in bar than if pressure is measured in Pascal. To

avoid this sort of ambiguity, we may use the minimized condition number 
�, which is found

by minimizing the condition number by pre- and postmultiplying G by diagonal, real scaling

matrices, D1 and D2.


� = min
D1;D2


(D1GD2) (50)

The minimized condition number of a transfer function matrix G of dimension n� n can be

calculated from [7, 14]


�(G(j!)) = inf
D1;D2

��2

0
@
2
4 D�1

2 0

0 D1

3
5
2
4 0 G(j!)�1

G(j!) 0

3
5
2
4 D2 0

0 D�1
1

3
5
1
A (51)

The minimization in Eq. (51) is the same minimization used for calculating the upper bound

on the structured singular value (�). This minimization is convex, and can be performed

with commercially available software (e.g., [1]). As indicated in Eq. (51), a new optimization

has to be performed for each frequency ! of interest.

Example

Consider a plant with the steady state gain matrix

G(0) =

2
4 100 0

0 1

3
5 (52)

Here we get 
(G(0)) = 100, which would indicate severe interactions at steady state. This is

obviously erroneous, since G(0) is diagonal, and thus completely decoupled (non-interacting)

at steady state. Of course, it is easy to scale G(0) to minimize 
(G(0)):

D1G(0) =

2
4 1 0

0 100

3
5
2
4 100 0

0 1

3
5 =

2
4 100 0

0 100

3
5 (53)

The minimized condition number, 
�(G(0)) = 1, indicating a non-interactive plant.

3.3 The Relative Gain Array

The Relative Gain Array (RGA) was introduced by Bristol in 1966 [9], and has since been

widely applied in chemical process control for analysis of interactions and for pairing plant

inputs and outputs for decentralized control. References to the use of the RGA in the liter-

ature are too numerous to cover, some worth mentioning are [10, 44, 58, 24, 62, 59, 31, 32].

The RGA is de�ned as

�(G(s)) = G(s)� (G�1(s))T (54)

where � represents element-by-element multiplication (Hadamard or Schur product). It can

be shown (e.g., [24]) that the ij'th element of �, �ij, is the ratio of the open loop gain from
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input j to output i when all other outputs are uncontrolled, to the gain from input j to

output i when all other gains are perfectly controlled. The RGA therefore measures how the

loops interact. Perfect control can of course only be achieved at steady state, and therefore

the interpretation of the RGA as the ratio of open loop to closed loop gain has lead many

authors to discard the use of the RGA at frequencies other than zero. This is unfortunate,

as the RGA as a function of frequency can give useful information and is easily computed.

Some useful mathematical properties of the RGA are:

� It is independent of scaling of the inputs and outputs of the matrix G.

� Rearranging the order of rows and columns of G (corresponding to di�erent pairings of

inputs and outputs for decentralized control), only results in the same rearrangement

in the order of rows and columns in �(G).

� All row and column sums of �(G) equal 1.

In this section we will concentrate on the use of the RGA for analysis of interactions and

as an indicator of robustness problems. The use of the RGA for selecting pairings of inputs

and outputs for decentralized control will be addressed later.

3.3.1 The RGA and the minimized condition number

Plants with large elements in G(j!) will also have a large minimized condition number at

the same frequency !. Nett and Manousiouthakis [48] show that

2maxfk �(G(j!)) k1;�(G(j!)) k1g � 
�(G(j!))+
1


 � (G(j!)) (55)

where k � k1 is the induced 1-norm (maximum sum of absolute values of the elements of one

column in the matrix), and k � k1 is the induced in�nity norm (maximum sum of absolute

values of the elements of one row in the matrix).

Thus, since the RGA is independent of scaling of inputs and outputs, large elements in

�(G) imply a large 
 � (G), and we know that the plant is ill-conditioned without having to

perform the optimization in Eq. (51).

3.3.2 The RGA and individual element uncertainty

Theorem 1 The (complex) matrix G becomes singular if we make a relative change �1=�ij
in it's ijth element, that is, if a single element of G is perturbed from gij to gPij = gij(1� 1

�ij
).

Theorem 1 was originally proven by [67], and a much simpler proof is given in [31].

Some implications of this theorem for control are:
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� Element uncertainty. Consider a plant with transfer function matrix G(s). If the

relative uncertainty in an element at a given frequency is larger than j1=�ij(j!)j then
the plant may have j!-axis zeros and RHP zeros at this frequency. However, the

assumption of individual element uncertainty is often a poor one from a physical point

of view because the elements are normally coupled in some way.

� Process identi�cation. Models of multivariable plants G(s) are often obtained by iden-

tifying one element at the time, for example, by using step or impulse responses. From

Theorem 1 it is clear that such methods for process identi�cation are very unreliable

if there are large RGA elements within the bandwidth where the model is intended

to be used. Useless models (e.g., with wrong sign of det(G(0)) or non-existing RHP

zeros) can easily result. Consequently, identi�cation must be combined with physical

knowledge if a good multivariable model is desired in such cases.

� Uncertainty in the state matrix. Consider a stable linear system written on state

space form; dx=dt = Ax + � � �. Then changing the ijth element in A from aij to

aij(1 � 1=�ij(A)) yields one eigenvalue of A equal to zero. Thus, we may conclude

that systems with large RGA-elements of A will become unstable for small relative

changes in the elements of A. Note that the RGA only gives the magnitude of the

relative perturbation necessary to make one eigenvalue of A equal zero, even smaller

perturbations may cause a complex conjugate pair of eigenvalues to cross the imaginary

axis.

3.3.3 The RGA and diagonal input uncertainty

We mentioned above that it is naive to expect the plant inputs to be exactly equal to the

controller outputs, any control system should be designed to tolerate some uncertainty in

the inputs. Let the nominal plant model be G(s), and the true (perturbed) plant be Gp =

G(I+�). � = diagf�ig is a matrix consisting of the relative uncertainty (error) in the gain of

each input channel. If an \inverse-based" controller (decoupler) is used, K(s) = G�1(s)C(s),

where C(s) is a diagonal matrix, then the true open loop gain GpK is

GpK = (I + G�G�1)C (56)

The diagonal elements of G�G�1 are directly given by the RGA [59]:

(G�G�1)ii =
nX

j=1

�ij(G)�j (57)

Thus, if the plant has large RGA elements and an inverse-based controller is used, the overall

system will be extremely sensitive to input uncertainty.
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Control implications. Consider a plant with large RGA-elements in the frequency range

of importance for feedback control. A diagonal controller is robust (insensitive) with respect

to input uncertainty, but will be unable to compensate for the strong directionality of the

plant, even for the nominal plant model. On the other hand, an inverse based controller may

yield excellent performance for the nominal plant G(s), but will be very sensitive to input

uncertainty. Applied to the true plant Gp(s) the inverse-based controller must therefore be

expected to perform poorly.

3.4 Diagonal Dominance

The concept of diagonal dominance is used both for analyzing interactions and for design of

non-decentralized compensators. The work in this �eld is based on Gershgorin's theorem:

Theorem 2 The eigenvalues of a n�n matrix A are contained within the union of n circles

in the complex plane. The centers of these circles are located at

aii; i = 1; � � � ; n (58)

and the radii of the circles are given by

ri =
X
j 6=i

jaij j (59)

Alternatively, the sum of magnitudes of the o�diagonal elements in column i can be used

for the radius of circle i, which should be obvious since A and AH have the same eigenvalues.

One has to sum either column-wise for all circles or row-wise for all circles to �nd the radii,

the two ways of �nding the radii cannot be mixed.

If jaiij > ri 8i, the matrix A is called \diagonally dominant", either \row dominant"

or \column dominant", depending on how the radii are calculated. The concept of diagonal

dominance can be used to design compensators such that the compensated plant is diagonally

dominant. The interested reader is referred to [56, 42], such techniques are not explained here.

Economou and Morari [19] propose the use of the ratio jgiij=ri as a measure of interaction in

a transfer function matrix G. This is what is known as the IMC Interaction Measure, and

can be plotted as a function of frequency. Interaction cannot cause instability if

j~ti(j!)j < jgii(j!)j=ri 8i; 8! (60)

Hence, if jgiij=ri > 1 8!, there is no bandwidth limitation in loop i caused by interactions.

Alternatively one may plot the \Gershgorin bands" of G(j!), i.e., plots of the loci of

gii(j!) in the complex plane, with circles of radius ri(j!) superimposed. If the Gershgorin
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bands include the origin, bandwidth limitations because of interactions may occur. How-

ever, it is easier to see from plots of IMC interaction measures for what range of frequency

interaction is a problem.

3.4.1 The structured singular value interaction measure

Let Ĝ be a block diagonal matrix with blocks along the diagonal Ĝi that are equal to the

corresponding blocks of the plant G. Similarly, let K = diagfKig be a block diagonal matrix

of controllers, each controller of compatible dimension with the corresponding diagonal block

of Ĝ. Assume that Ĝ and G contain the same number of RHP poles 6, and let Ki be a

stabilizing controller for Ĝi, that is, T̂ = ĜK(I + ĜK)�1 is stable. Grosdidier and Morari

(1986) found that the overall system is stable if

��(T̂ (j!)) < ��1(E(j!))8! (61)

where E = (G � Ĝ)Ĝ�1. The value of � is computed with respect to the structure of

T̂ . The measure �(E) is known as the Structured Singular Value Interaction Measure (SSV-

IM). The result in Eq. (61) follows easily from the Multivariable Nyquist Theorem and the

de�nition of the structured singular value, by observing that

(I + GK) = (I +EĤ)(I + ĜK) (62)

Eq. (61) provides the tightest possible norm bound on T̂ , in the sense that if ��(T̂ ) >

��1(E) then there exists another system T̂ 0 such that ��(T̂ 0) = ��(T̂) corresponding to an

unstable overall system T .

It is clear that if the controller K has integral action, then T̂ (j0) = I , and in order to

guarantee stability with integral action we must require �(E) < 1. Furthermore, in order to

guarantee stability of the overall system, the bandwidths of the individual subsystems must

be constrained to the frequency range for which �(E) < 1.

The SSV-IM is 
exible since it does not require the control system to be fully decentralized

(single loops only), multivariable subsystems can easily be included in the analysis. However,

it provides a single bound that applies to all subsystems. In [25] it is indicated how to use

weights to give preference to speci�c subsystems.

Like other interaction measures that give guarantees for stability of the overall system,

the SSV-IM is conservative. It is often possible to design decentralized control systems that

perform satisfactorily even though the bound in Eq. (61) is violated.

6Normally, this assumption only holds if G is stable.
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4 SELECTION OF INPUTS AND OUTPUTS FOR

CONTROL

In this section we will give guidelines on how to select inputs and outputs to be used for

controlling a plant. We emphasize that there is no substitute for physical understanding of

the plant, the engineer needs a clear understanding of what is required of the control system

and how the di�erent parts of the plant interact.

In the early stages of plant design, the numbers and locations of measurements and

actuators can be changed relatively easily, and the number of decisions a control engineer has

to make can be enormous. In the late stages of design, and for plants that have already been

constructed, changes to the instrumentation are costly and should if possible be avoided.

This di�culty of changing the instrumentation in simpli�es the task of the control engineer,

in the sense that the number of decisions that has to be made is reduced. On the other hand,

the control engineer is then also constrained by the decisions that already have been made

(whether these decisions are made consciously or not), and the quality of control that can

be obtained may su�er from bad decisions that already have been made. The engineer must

then argue that the plant design imposes fundamental and severely restrictive limitations on

the control quality that can be obtained (because of, e.g., time delays, RHP transmission

zeros or interactions), and that design modi�cations are therefore required.

Traditionally the control engineer gets involved relatively late in the design of a plant,

and many decisions have then been made - often without considering how such decisions

a�ect the control of the plant. Several authors have argued that control should be considered

throughout the design project (e.g., [70, 20]), but the control engineer then needs e�ective

tools (in addition to physical understanding) to aid in making the numerous decisions in the

early stages of plant design.

The quality of the information about the plant that is available to the control engineer

also varies depending on what stage of the design or operational life the plant is in. Below

we will �rst give a qualitative description of the role of the control engineer in the di�erent

stages of design and operational life, and thereafter present some tools that can be used to

determine which inputs and outputs should be used for control. The qualitative description

probably re
ects most accurately the typical situation in chemical process control, but the

tools presented have general applicability.

4.1 The Early Stages of Design

A rough sketch of the plant, showing only the main components of the plant, is often all

that is available at the early stages of design. A steady state model of the plant is also often

available at a relatively early stage of the design. In cooperation with the design engineers,
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one may use physical understanding to identify variables that are important for plant op-

eration and safety or product quality. Where possible, such variables should be measured

directly. If some variables cannot be measured directly, or the available measurement is slow

or unreliable, one should search for secondary measurements that are easily measurable that

have a strong relationship with the primary variable. A typical example of this is distillation,

where temperatures are often used for control although the product compositions are the vari-

able that is relevant for product quality. One may then either use temperatures to estimate

product compositions [46], or control the temperatures directly and update the temperature

setpoint if the product compositions are found to be o� speci�cations.

One should also consider which variables relating to plant safety need to be continuously

controlled and which variables will be left uncontrolled during normal operation. For example,

vibration in a pump is normally not controlled continuously, but if the vibration exceeds

an alarm limit some remedial action is taken - possibly shutting down the plant. We will

subsequently only consider measured variables for which continuous control is found to be

necessary, and the term \plant outputs" will only refer to such variables.

For each of the plant outputs that should be controlled independently, there must be at

least one plant input (manipulated variable) which has an e�ect on the plant output. The

number of independent plant inputs should allow for assigning at least one plant input to

the control of each of the plant outputs, in such a way that a plant input has an e�ect on

the output to which it is assigned. This will ensure that the plant outputs can be controlled

independently. Such "degrees of freedom analysis" has been addressed for chemical plants

by Ponton [53]. However, many manipulated plant inputs will a�ect several plant outputs,

and we recommend that the �nal pairing of inputs and outputs is postponed until later in

the design, when more detailed information about the plant is available.

4.2 Later Stages of Design

In the later stages of plant design, it is often possible to develop a dynamical model of the

plant. This makes it possible to take into account more sophisticated criteria when selecting

inputs and outputs for control. The accuracy of the model will depend strongly on the type

of plant being designed. For example, for some chemical processes only very crude models

exist, whereas fairly accurate models for 
exible structures in satellites can be developed

from fundamental physical relationships. Paradoxically, the availability of accurate models

at the design stage often does not imply that the task of designing a control system becomes

easier. If you have access to an accurate model, so will probably also your competitor, and

the availability of an accurate model merely translates into stricter performance requirements

for the control system.
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As the design progresses, more information about the plant becomes available - but on

the other hand it also becomes progressively more di�cult to make changes to the design. It

should therefore be determined as early as possible what types and numbers of measurements

and actuators that are needed for control, and where these should be installed. This means

that a dynamical model of the plant should be established as early as possible in the design

phase, but a very 
exible modeling tool must be used to allow for easy modi�cation of the

model when changes are made to the design. The modeling tool should also enable extraction

of simpli�ed models from the rigorous model, such as linearlized models for controllability

analysis and controller design.

4.3 Existing Plants

With existing plants, models can be tuned to match the observed behavior of the plant.

Thus relatively accurate models can be made available - at least if identi�cation experiments

on the plant can be allowed. On the other hand, modi�cations to the plant design are now

quite costly, even simple design modi�cations like installing new measurements and actuators

usually involves shutting down the plant. In some plants, design modi�cations are clearly

unacceptable or impossible - such as for space based structures. This means that the engineer

should try very hard to achieve acceptable control with the plant inputs and outputs that

are available. In many cases the number of available inputs and outputs is large even for

existing processes, and some guidelines are needed for choosing the inputs and outputs used

for control.

4.4 Selection of Plant Outputs for Control

Plant outputs are selected to a large extent based on physical understanding of the plant.

Preferably, variables that are important for plant safety and product quality should be chosen

as controlled outputs. All states that are not asymptotically stable must a�ect at least one

of the measurements used for control, otherwise it will not be possible to stabilize the state.

Ideally, the measurement of a controlled output should be fast and direct, with little or no

time delay or inverse response. This avoids limitations to control performance that are due

to the measurements, and are not caused by the plant per se. In some cases, it is not possible

to obtain fast and direct measurements of an important plant variable. One should then

consider obtaining fast estimates of the plant variable using fast secondary measurements.

Care should be taken to ensure that the controlled variables are independent of each other.

A trivial example of dependent variables are the mole fractions of the chemical components

of a product - since the mole fractions must sum to 1, the mole fractions of all components

cannot be determined independently. If the controlled outputs are dependent of each other,
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the control system will not behave acceptably. Such inconsistencies are normally avoided if

physical insight is used when choosing controlled outputs.

4.5 Selection of Plant Inputs for Control

Physical understanding is invaluable also when selecting plant inputs for control. The selected

inputs should have a fast and direct e�ect on the plant outputs, and any state that is not

asymptotically stable must be state controllable with the selected inputs.

The number of plant inputs for control should be equal to or larger than the number of

controlled outputs from the plant, if o�set-free control of all the controlled outputs is desired.

When the plant outputs have been identi�ed, a lower bound on the number of plant inputs for

control has thus also been established. On the other hand, the types of plant inputs to use,

and the locations of the plant inputs still need to be determined. The number of alternatives

of plant inputs for control may therefore be very large at the early stages of plant design. Note

that some alternatives may be mutually exclusive, and therefore one needs to ensure that the

selected inputs are independent of each other. For example, if two tanks are connected by a

pipeline, one cannot use the 
ow out of the �rst tank to control the level in the �rst tank,

and at the same time use the 
ow into the second tank to control the level in the second

tank.

4.5.1 The RGA for non-square systems and selection of inputs and outputs

The RGA has been applied to non-square systems [68, 12, 27]. Naturally, the de�nition in

Eq. (54) needs to be modi�ed in order to apply the RGA to non-square systems. For a matrix

G of dimension m� n the non-square RGA is de�ned as

�(G) = G� (G+)T (63)

where G+ is the pseudoinverse. Similar to the RGA for square systems, the non-square

RGA can be interpreted as the ratio of open loop to closed loop gain, but some attention is

needed to de�ne what closed loop gain is considered, see [12] for details.

Some properties of the non-square RGA are [12]:

� If m � n and rank(G) = m then any row of � sums to one, if m � n and rank(G) = n

then any column of � sums to one.

� If m � n and rank(G) = m then � is output scaling independent, if m � n and

rank(G) = n then � is input scaling independent.

� Any permutation of rows or columns of G results in the same permutation of the rows

and columns of �(G).
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When choosing plant inputs for control, we prefer inputs which have a strong e�ect on

the outputs. Similarly, when choosing plant outputs for control, we prefer outputs in which

the plant variations are easily observed. The Single Input E�ectiveness (SIE) and the Single

Output E�ectiveness (SOE) provide quantitative measures of how well a speci�c input or a

speci�c output ful�ll these criteria.

Let vj be the projection of a single input uj on the column space of G. Cao and Biss [12]

de�ne the Single Input E�ectiveness of input j is the ratio k vj k2 = k uj k2. Similarly, let

zi be the projection of a single output yi on the row space of G. Then the Single Output

E�ectiveness of output i is the ratio k zi k2 = k yi k2.
The RGA and the input and output e�ectiveness are related [12, 27] through

�2j =
mX
i=1

�ij ; �2i =
nX

j=1

�ij (64)

where �j is the input e�ectiveness of input j and �i is the output e�ectiveness of output

i.

For plants with more inputs than outputs, the input e�ectiveness can be used to discard

inputs with low e�ectiveness, since these inputs will have little e�ect on the outputs. Con-

versely, for plants with more outputs than inputs, the output e�ectiveness can be used to

discard outputs with low e�ectiveness since the variations in these outputs will be small and

the outputs with low e�ectiveness contain little information about the plant G.

4.6 Partial Control

When selecting inputs and outputs for control one can easily come in a situation where

the number of outputs for which control is desired di�ers from the number of plant inputs

available for manipulating the plant. In other cases the numbers of inputs and outputs

are equal, but the overall plant has undesirable controllability characteristics, such as very

strong interactions. Thus, one may come in a situation where one wants to investigate using

only subsets of the available inputs and outputs for control. We will use the term \partial

control" to denote a control system in which some of the plant outputs are deliberately left

permanently uncontrolled. This should not be confused with the situation where a subset of

the control loops are taken out of service (switched to manual mode), which is a situation

that occurs from time to time in most control systems, e.g., during maintenance.

The need for control can arise from three possible causes:

1. The need for stabilizing an unstable plant.

2. A need for rejecting disturbances.
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3. A requirement for setpoint following.

As noted previously, the need for stabilizing an unstable plant results in the requirement

that any unstable state must be observable in the set of plant outputs chosen for control and

controllable from the set of inputs used for control.

We will here consider more closely how to determine whether disturbance rejection and

setpoint following requirements result in a need for controlling a speci�c output with a speci�c

set of inputs. Consider a case where we have m outputs for which control is desired, and

n inputs that can be used for control, and we consider using only k inputs and outputs for

control, with k � m and k � n. We then partition the outputs into two complementary

subsets y1 containing m � k outputs and y2 containing k outputs. Similarly we partition

the inputs into two subsets u1 and u2, with u1 containing n � k inputs and u2 containing

k inputs7. We want to investigate whether y1 needs to be controlled when y2 is controlled

using u2, leaving u1 unchanged. We then have

e = y �Rr = Gu+Gdd�Rr (65)

m2
4 e1

e2

3
5 =

2
4 G11 G12

G21 G22

3
5u+

2
4 Gd1

Gd2

3
5 d+

2
4 R1 0

0 R2

3
5
2
4 r1

r2

3
5 (66)

If u2 is used to control y2 perfectly, we have that e2 = 0, and we get

u2 = �G�1
22 [Gd2d� R2r2] (67)

+
e1 = G11u1 � R1r1 + [Gd1 �G12G

�1
22 Gd2]d+ G12G

�1
22 R2r2 (68)

Obviously, for the o�sets e1 to be small, the setpoint changes for y1 must be small, i.e. R1

must be small. Thus, it is natural to choose as uncontrolled outputs the outputs for which

no (or small) setpoint changes are anticipated. Assume therefore that R1 = 0, and when u1

is constant we get that the e�ect of the disturbances on the uncontrolled outputs is given by

[Gd1�G12G
�1
22 Gd2], and the e�ect of setpoints for the controlled outputs on the uncontroller

outputs is given by [G12G
�1
22 R2].

Whether disturbances and setpoints should be considered separately or simultaneously is

a matter of design philosophy. It may be considered unlikely that several disturbances attain

their worst possible values simultaneously. If disturbances and setpoints are considered sep-

arately, the requirement for acceptable o�sets in e1 is that all elements of [Gd1�G12G
�1
22 Gd2]

7Note that u1 may be empty, but y1 must be non-empty for the subsequent analysis to make sense.
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and [G12G
�1
22 R2] should have magnitude less than one. If we consider the combined e�ects

of setpoints and/or disturbances on output yi in y1, we must sum the magnitudes of the

elements of row i in [G12G
�1
22 R2] and/or [Gd1 � G12G

�1
22 Gd2].

Clearly, this analysis will depend on the scaling of inputs, outputs, disturbances and

setpoints. Furthermore, the results also depend on the choice of the sets u1 and y1. That

is, the e�ects of disturbances and setpoints on uncontrolled output yi depend not only on

what inputs are used for control, but also on what other outputs are left uncontrolled. For

large systems, there may therefore be a large number of possible choices of u1 and y1, and

searching for the best choice of u1 and y1 may be laborious and time-consuming. In order

to alleviate this problem, the input and output e�ectiveness (see Eq. (64)) can be used as a

guide to selecting unused inputs and uncontrolled outputs.

After this preliminary analysis for selecting a set of outputs y2 to be controlled and a set

u2 of inputs to use for control, the controllability of the resulting plant (G22 above) should

be analyzed with respect to interactions, input constraints, RHP transmission zeros and time

delays.

4.7 Analyzing and Modifying the Selection of Inputs and Outputs

Assume that a preliminary selection of inputs and outputs for control have been made,

resulting in a vector of n outputs y controlled by the same number of inputs u. Controllability

analysis may show that the candidate sets of inputs and outputs are unacceptable. Here we

consider what remedial action can be taken in such cases.

Input constraints. A value of k y k1 in Eq. (14) larger than one or a small �(G)

indicates that problems with input constraints may be expected. If k y k1> 1 in Eq. (14),

one should consider

1. The individual outputs in y with unacceptably large o�sets. Are the speci�cations for

these outputs too tight? Consider whether the speci�cations for the outputs can be

relaxed with only minor implications for plant safety of product quality.

2. The inputs that reach their constraints. Consider replacing the physical device which

sends the input to the plant. For example, this could mean replacing a valve with a

larger one.

3. The individual disturbances that contribute strongly to constraining the plant input.

In large plants, control actions in one section of the plant can cause disturbances to

another plant section. One should in such cases consider changes to the control in the

section of the plant where the disturbance originates. For example, if the 
ow out of

a tank is used to control the tank level, fast level control can result in large 
owrate
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disturbances for the process unit receiving the 
ow from the tank. One should then

consider slower control of the tank level, thus using the tank as a bu�er to �lter 
owrate

disturbances to the downstream process unit.

If �(G) is small, one should study the corresponding input and output singular vectors.

If the output singular vector is closely aligned to a speci�c output, this may indicate that

the speci�cations for that output are unrealistic, see point 1 above. Similarly, an input

singular vector closely aligned to a speci�c input indicates that a larger input is needed see

point 2 above. On the other hand, is the input and output singular vectors corresponding to

�(G) have signi�cant elements in the direction of more than one input/output, this indicates

that the problem with input constraints is truly multivariable in nature. One may then

consider changing the sets of inputs and outputs used for control. An illustration can be high

purity binary distillation, which has a small �(G) in the output direction corresponding to

increasing the purity of both products at the same time. Increasing the purity in one of the

products is easy if one accepts that the other product then becomes less pure. In practice,

many distillation columns are operated with control of only one composition, either the top

composition is controlled using the re
ux 
ow, or the bottom composition is controlled using

the boilup to the reboiler.

Interactions. If the plant is strongly two-way interactive (as measured by the minimized

condition number or the RGA), this may indicate that there are strong couplings between

di�erent plant outputs. With a little luck, this can mean that it is not necessary to control

all outputs simultaneously, and partial control should be investigated.

Similarly, large interactions can also be caused by the inputs having similar e�ects on

the plant, i.e, the inputs being close to colinear. In this case one can also consider partial

control; dropping one or more of the interacting inputs. If partial control is found not to be

acceptable, one should try to identify alternative inputs for control.

If one cannot modify the selections of inputs and outputs, one should try to minimize the

implications of the interactions. It has been noted previously that interactions are particularly

troublesome if the plant model is uncertain. E�orts should therefore be made to reduce

the uncertainty about the plant as much as possible. This can involve using high quality

actuators and measurements, or using local feedback loops. For example, the 
ow through

a valve may be uncertain because of wear, inaccurate valve position, variations in upstream

or downstream pressure, and nonlinear valve characteristics if a linear model is used. Much

of this uncertainty can be removed if the 
ow through the valve is measured and the valve

position is used to control the 
owrate. The higher level controls must then use the setpoint

to the 
ow control loop as an input for control, instead of using the valve position as an

input.
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With large interactions, the issue of what type of controller to use is particularly impor-

tant. Multivariable controllers which counteract the interactions in the plant model, may be

sensitive to any uncertainties in the model. If a multivariable controller is chosen, one should

therefore take robustness into account when designing the controller, see e.g. Morari and

Za�riou [47]. Decentralized control is more robust to uncertainties, but will not be able to

counteract the interactions even if the model is assumed to be perfect.

Right half plant transmission zeros. One should make an e�ort to understand how

RHP transmission zeros occur. In some cases, the RHP transmission zero is caused by an

inverse response in the measurement of the output, and the RHP transmission zero will then

be pinned to that speci�c output. If it is considered important to control the output with

the pinned RHP transmission zero, two options are available:

1. Install an improved measurement which does not have any inverse response.

2. If option 1 is not available, one will have to accept that the control performance will

su�er. However, analyzing the causes for control o�set may give indications to how

remedial action can be taken. For instance, feedforward control from disturbances or

local control loops in cascade with the main loop may counteract disturbances before

they can a�ect the main controlled output.

If the RHP transmission zero is truly multivariable (not pinned to a speci�c output), then

one can make use of the observation that transmission zeros are unlikely for non-square plants,

and add one or more extra inputs to the control problem. Consider the plant y = [G1 G2]u =

Gu, where u = [uT1 uT2 ]
T . We wish to control y using u18, but because of RHP transmission

zero(s) in G1 input vector is augmented with u2, with u2 chosen such that G has no RHP

transmission zero within the desired bandwidth. One may then to �nd a compensator KZ

such that GKZ is square and has no RHP transmission zero within the desired bandwidth.

Example. Consider the plant

y(s) =
1

f(s)

2
4 s + 1 s + 4 s+ 5

1 2 4

3
5u(s) (69)

Inputs u1 and u2 are the primary inputs chosen for control, with input u3 added because

of an RHP transmission zero. Using only inputs 1 and 2, there is a transmission zero at

s = 2, using inputs 1 and 3 there is a transmission zero at s = 1=3, and using inputs 2 and 3

there is a transmission zero at s = �3. Considering only controllability, it therefore appears

preferable to use only inputs 2 and 3 for control. However, other considerations can make it

necessary to minimize the use of u3, we will here assume that u3 is much more expensive to

8y and u1 are both assumed to be of dimension n1.

39



use than u1. Therefore u3 is used only at high frequencies, whereas at frequencies su�ciently

below the RHP transmission zero u1 is used. The result may be termed parallel control. This

can be done by de�ning the original inputs as linear combinations of new inputs:2
664
u1

u2

u3

3
775 = KUu

0 =

2
664

1

�s+1
0

0 1
�s

�s+1
0

3
775
2
4 u01

u02

3
5 (70)

Choosing � = 0:8, we �nd that GKU has transmission zeros at �1:59, �1:25, and �0:79, i.e.,
all in the left half plane. Decentralized controllers may now be designed using u01 and u02 as

inputs for control. With KU chosen as in Eq. (70), one should take some care when imple-

menting the controller to avoid pole-zero cancellations between the decentralized controller

and KU , particularly if an integrating controller is used. In Fig. 4, it is shown how to avoid

this problem when an ordinary PI controller is used for u01 (k1(s) = kI
�Is+1
�Is

), by combining

the PI controller and KU .

An alternative is to implement the control in a cascaded manner; �rst use u3 to control

y1, and then use u1 to control u3 to it's optimal value. This alternative implementation has

the advantage of being relatively simple to tune on line, �rst tuning the loop u3 � y1 to be

fast and thereafter tuning u1�u3 to be slower. However, with this cascaded implementation,

all control of y1 is lost if u3 is lost as a manipulated variable. The parallel implementation

will retain some (albeit slower) control of y1 if u3 is lost.

Time delays. Time delays often occur because of transportation delays in the plant or in

measurements. Holt et al. [29] give an example where controllability is improved by increasing

one time delay in a multivariable plant (see also Eq. (26)), but normally it is desirable to

have the time delays as short as possible. Unfortunately, removing time delays by placing

equipment closer together is not always possible. One should then consider feedforward

control or local control loops in cascade with the main control loop, as described above for

RHP transmission zeros in a single output.
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5 INTEGRITY TO CONTROL LOOP FAILURE

Control loops may fail for a variety of reasons, for example

� Measurement (plant output) failure.

� Actuator (plant input) failure or saturation.

� Operator intervention - switching controllers to manual.

The possible reasons for equipment malfunction will depend on both equipment type and

design, the operating environment, and how the equipment is installed. Lost communication

between controllers and actuators or measurements will also cause control loop failure.

Operators may switch controllers to manual because of poor controller performance, in

which case the individual controller or a larger part of the overall control system should be

redesigned or retuned. However, there are also valid reasons for operators to switch controllers

to manual which do not imply that the control system is performing poorly, such as

� Maintenance of equipment in the control loop. Preferably, it should be possible to do

as much as possible of equipment maintenance without having to close down an entire

plant.

� Change of operating point. When moving between operating points, plant dynamics

may be signi�cantly di�erent from the dynamics at any of the steady state operating

points of the plant. Ideally, one would like to design a control system that makes

changing the operating point easier for the operators, but this may be di�cult to

achieve. In many plants, it is therefore common to switch parts of the control system

to manual when changing operating points, even if there are only trivial di�erences

between the control systems that are used in the di�erent operating points.

� Startup and shutdown. The control system is often put into service gradually (loop by

loop) during startup, and taken out of service gradually during controlled shutdowns.

In addition to outright failure of control loops, the dynamics of the individual loops may

also change, due to either changes in the plant (e.g., changes in feedstock or operating point)

or changes to the controller tunings.

We would like the control system to be robust to all such changes. Both for outright

failure of the loops and for moderate changes in the plant or controller dynamics, we would

like the control system to remain stable and the performance to deteriorate in a graceful

manner.
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The issue of designing decentralized controllers which are robust to changes in the plant

dynamics and the controller tuning parameters is addressed in a subsequent section. In this

section we will give simple necessary conditions, in terms of the steady state gain matrix

G(0), for the existence of controllers yielding a closed loop system with integrity to loop

failure. These necessary conditions assume that o�set free control is obtained at steady state

(implying use of integral action) and that the open loop transfer function GK rolls o� at

high frequencies. These assumptions are not very restrictive, and the assumption of o�set-

free control at steady state can in practice be relaxed somewhat, the results will hold provided

high gain is used at steady state ( �T(0) � I).

Failure detection is not considered here, it is assumed that the failures are discovered and

the corresponding actuator is locked in an acceptable position.

Tolerance to loop failure will depend on the control structure, i.e., how the plant inputs

and outputs are connected for control. We will therefore here assume that a pairing of inputs

and outputs is chosen, and that the plant transfer function matrix G(s) is rearranged to bring

the paired elements on the diagonal.

5.1 Stable Plants

The Relative Gain Array. If a pairing corresponding to a negative steady state RGA

element �ii(G(0)) is chosen, and integral action is used in the controllers in all the loops , at

least one of the following will be true (e.g., [24]):

1. Loop i is unstable by itself, or

2. the system will become unstable if loop i is taken out of service, or

3. the overall system is unstable.

All of these three possibilities for instability are undesirable, and instability of the overall

system is clearly unacceptable. However, for systems of dimension larger than 2� 2, it may

not be possible to choose a pairing of inputs and outputs corresponding to only positive

relative gains. In such cases one will either have to try to �nd new inputs and/or outputs for

control, or if this is not possible, ensure that the instability occurs where it can most easily

be accepted (usually this means that one single loop, which is unlikely to operate without

other loops in operation, is chosen to be unstable).

Note that for cases where only a subset of the loops are in operation, the RGA of the

corresponding submatrix of G is also of interest.

The Niederlinski Index. The Niederlinski Index [50], NI , is de�ned as

NI =
detG(0)

det ~G(0)
(71)
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where ~G = diagfg11; g22; � � � ; gnng. With a pairing corresponding to a negative NI is used,

and integral action is used in all loops, then

1. at least one of the loops is unstable by itself, or

2. the overall closed loop system is unstable.

For plants of dimension 2 � 2, the Niederlinski Index and the RGA are equivalent, but

for systems of larger dimension they contain di�erent information.

5.2 Unstable Plants

Unstable plants will require feedback control for stabilization, they will obviously not be

stable if all control loops are taken out of service. Furthermore, it is essential that the

decentralized control structure allows for stabilization of any unstable modes. The results in

this section on RGA and NI for unstable plants are taken from Hovd and Skogestad [32].

Decentralized �xed modes. A plant mode is called a decentralized �xed mode if it

cannot be changed by decentralized feedback [63]. Decentralized �xed modes are a structural

property of the plant, and depend only on the decentralized control structure used, but are

independent of the tuning of the decentralized controllers.

Normally it is not very di�cult to avoid decentralized �xed modes; any mode correspond-

ing to a pole in an element on the main diagonal of the plant transfer function matrix G(s)

can be moved by decentralized feedback9.

If it for some reason is not possible to choose pairings of inputs and outputs such that

all unstable poles appear in at least one of the elements on the main diagonal of G(s), the

most straight forward way to check whether an unstable mode ia a decentralized �xed mode

is to try with di�erent static controllers. If the location of an unstable pole is unchanged for

all these static controllers, the unstable pole corresponds to a decentralized �xed mode and

another pairing of inputs and outputs must be chosen. Any mode which is �xed for static

feedback will also be �xed for dynamic feedback. An alternative, more rigorous way of testing

for decentralized �xed modes can be found in Lunze [40].

The Relative Gain Array. Let nG be the number of unstable poles in G(s), and n
Ĝ
be

the number of unstable poles in Ĝ(s) = diagfgii(s); Gii(s)g, where Gii(s) is G(s) with row i

and column i removed. Note that normally n
Ĝ
> nG. If G contains one unstable pole which

appears both in gii and in Gii, then nG = 1 and n
Ĝ
= 2. The only case when it is possible to

have nG > n
Ĝ
is if an unstable pole appears only in o�diagonal elements in row i or column

i of G(s). In this case it is possible for the unstable pole to correspond to a decentralized

9This assumes that the order of the inputs and outputs are rearranged to bring the paired elements of G(s)
on the main diagonal.
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�xed mode - which obviously should be avoided. For unstable plants, in order to achieve

stability of loop i, the closed loop system with loop i out of service, and the overall closed

loop system, we must require that

sign�ii(0) = (�1)nĜ�nG (72)

Note that for stable plants we have nG = n
Ĝ
= 0, which is consistent with the requirement

that �ii should be positive.

The Niederlinski Index. Let nG be the number of unstable poles in G(s), and n ~G
be

the number of unstable poles in ~G(s) = diagfgii(s); g22(s); � � � ; gnn(s)g. Note that normally

n ~G
> nG. If G contains one unstable pole which appears in all diagonal elements of G(s),

then nG = 1 and n ~G
= n. In order to achieve stability of all the individual loops and the

overall system, we must require that

signNI = (�1)n ~G�nG (73)

Possible drawbacks with these criteria involving the RGA and NI for unstable plants, are:

� It is not su�cient to know only that the plant is unstable; the number of unstable

poles, the multiplicity of unstable poles, and the distribution of the unstable poles in

the transfer function matrix must be known.

� Obtaining G(0) for an unstable plant can be more involved for an unstable plant than

for a stable plant. It will obviously not be possible to obtain G(0) by performing step

responses on the uncontrolled plant.

Both these drawbacks are avoided if the plant model is obtained from a rigorous mecha-

nistic model, and such a model is normally preferable if they can be obtained and validated

at reasonable expense.

Example. Consider an unstable plant G(s) with one unstable pole. Let p denote an

element of G(s) in which the unstable pole appears, and x denote an element in which the

unstable pole does not appear. Assume that after rearranging inputs and outputs to bring

the paired elements to the main diagonal, the distribution of elements in G(s) containing the

unstable pole can be described by

G(�) =

2
664
x x x

p p p

p p p

3
775 (74)

Then we will want NI < 0, �11(0) > 0, �22(0) < 0, and �33(0) < 0. This illustrates that

the value of n
Ĝ
can depend on which loop is considered.
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6 LOOP GAIN REQUIREMENTS FOR SETPOINT

FOLLOWING AND DISTURBANCE REJECTION

We have earlier discussed the bandwidth requirements imposed by RHP transmission zeros

and poles. Here we will consider bandwidth requirements for setpoint following and dis-

turbance rejection using diagonal control. Throughout this section, it is assumed that a

candidate pairing of inputs and outputs have been chosen, and that the order of inputs and

outputs of the plant have been rearranged such that the elements of G that correspond to

the paired inputs and outputs appear on the main diagonal. It is also assumed that the

plant model G(s) is appropriately scaled, as explained in the introduction. For simplicity of

the exposition, we will take controller K(s) to be fully decentralized (i.e. K(s) is a diagonal

matrix), however the necessary adjustments to apply the analysis to partially decentralized

control (K(s) block diagonal) are relatively straight forward.

6.1 Performance Speci�cations

As a performance speci�cation, we will require that for any setpoint change rj the o�set ei

is bounded:

jei(i!)=rj(i!)j = j[SR]ij(i!)j < 1=jwri(i!)j; 8!; 8i; 8j (75)

Here wri(s) is a scalar performance weight. For any disturbance dk we require that

jei(i!)=dk(i!)j = j[SGd]ik(i!)j < 1=jwdi(i!)j; 8!; 8i; 8k (76)

Typically, both weights are large at low frequencies where small o�set is desired. jwrij
is often about 0.5 at high frequencies to guarantee an ampli�cation of high-frequency noise

of 2 or less. Thus we have a number of performance speci�cations we want to have satis�ed

simultaneously.

6.2 Bounds on Single-loop Designs

In this section we will use the above de�nition of performance to obtain bounds on the

individual loop transfer functions giiki at low frequencies. At frequencies below the bandwidth

!B we may usually assume

S = (I + GK)�1 � (GK)�1 (77)

We thus have
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e = �SRr + SGdd � �K�1G�1Rr +K�1G�1Gdd (78)

= �( ~GK)�1 ~GG�1Rr + ( ~GK)�1 ~GG�1Gdd; ! < !B (79)

where � = ~GG�1 is known as the Performance Relative Gain Array (PRGA), and �Gd is

known as the Closed Loop Disturbance Gain (CLDG). The steady state PRGA was intro-

duced by Grosdidier [26], whereas Hovd and Skogestad [31] �rst demonstrated how to use

the PRGA and CLDG as functions of frequency. This presentation di�ers from that of [31]

in that the diagonal scaling matrix R for the setpoints is used, to make explicit how di�erent

scalings can be used for o�sets and setpoints. The elements of � are denoted by 
ij, and the

elements of �Gd are denoted by �ik . The step from (78) to (79) requires that the diagonal

elements of G are nonzero. We have proven the following theorem:

Theorem 3 For plants with nonzero diagonal elements in G(s), and at frequencies ! < !B

where (77) holds, the performance speci�cations (75) and (76) are satis�ed i�

jgiiki(j!)j > j
ijRjjwri(j!)j; 8! < !B ; 8i; 8j (80)

jgiiki(j!)j > j�ijwdi(j!)j; 8! < !B ; 8i; 8k (81)

For a given choice of pairings, Theorem 3 provides lower bounds on the individual loop

gains to achieve nominal performance. We get one bound on the loop gain giiki for each

setpoint j and each disturbance k. The bounds may be di�cult to satisfy if 
ij or �ik are

large. A plot of j
ijRjj(j!)j as a function of frequency will give useful information about

for which input-output pairs we can expect interactions. A plot of j�ij(j!)j will give useful
information about which disturbances are di�cult to reject.

Comparison with all loops open. To get a better physical interpretation of the PRGA and

CLDG consider the response ei to a setpoint change rj and disturbance dk when all the other

loops are open. We get

ei = �(1 + giiki)
�1Rjjrj + (1 + giiki)

�1gdikdk (82)

When all the loops are closed simultaneously and we assume ~S � ( ~GK)�1 we get

e � � ~S�Rr + ~S�Gdd; ! < !B (83)

or

ei � �(1 + giiki)
�1
ijRjjrj + (1 + giiki)

�1�ikdk (84)
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Comparing (82) and (84) we see that for a setpoint change ri in loop i the performance

relative gain, 
ii, gives the approximate change in o�set caused by closing all the loops.

In addition, 
ijRjj gives the e�ect of setpoint change rj on output ei when all loops are

closed. That is, for ! < !B, we have sij=~sij � 
ij , and 
ij is thus a measure of performance

degradation at low frequencies. Similarly, we see that �ik is the approximate gain from

disturbance dk to o�set ei when all loops are closed, which explains why �Gd is called the

closed loop disturbance gain.

6.3 Comparisons Between the RGA and the PRGA

The PRGA is closely related to the RGA, as their names suggest. The diagonal elements of

the PRGA equal the diagonal elements of the RGA, but the o�-diagonal elements generally

di�er. Some disadvantages of the PRGA relative to the RGA are:

1. The o�-diagonal elements of the PRGA depend on the scaling of the outputs, but are

independent of the scaling of the inputs. The RGA is independent of scaling.

2. The PRGA depends on the chosen pairing, and needs to be recomputed for every pairing

under consideration. In contrast, the RGA for a new pairing can be found by simply

permuting the RGA matrix for the original pairing10. The RGA therefore only needs

to be computed once.

An advantage of the PRGA over the RGA is that the PRGA gives information about one-

way interactions, whereas the RGA only contains information about two-way interactions.

For example, the RGA of a triangular matrix is the identity matrix, but severe one-way

interactions may nevertheless be present.

6.4 The PRGA and the CLDG in the Bandwidth Region

It is apparent that the approximation in Eq. (77) that the PRGA and CLDG are based on,

breaks down in the bandwidth region. Nevertheless, experience shows that it is preferable to

chose a pairing corresponding to a PRGA (and hence also an RGA) element that is close to

unity in the bandwidth region. We will explain this in two di�erent ways, �rst by considering

closed loop stability and then by considering closed loop performance.

For stability, observe that the sensitivity function can be factorized as

S = (I + ~S(�� I))�1 ~S� (85)

10To bring the paired elements in G to the main diagonal for a new pairing, G must have its rows and
columns permuted. Permuting the rows and columns of G brings about the same permutations in the RGA
matrix.
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Assume that the individual loops have been tuned to be stable( ~S stable) and that both G

and ~G are stable and with no zeros in the right half plane. It then follows that the overall

system will be stable provided (I+ ~S(�� I))�1 is stable. Here ~S(�� I) is stable, and it then

follows from the spectral radius stability condition (see e.g. [61]) that the overall system is

stable if

�( ~S(�� I)) < 1 8! (86)

where � denotes the spectral radius, i.e., the magnitude of the largest eigenvalue. At low

frequencies, this condition is usually satis�ed because ~S is small. At higher frequencies where

the elements of ~S approach and possibly exceed one in magnitude, Eq. (86) may be satis�ed

if G(j!) is close to triangular, since (� � I) and hence ~S(� � I) is then close to triangular

with diagonal elements close to zero. The eigenvalues of ~S(�� I)(j!) are then also close to

zero, Eq. (86) is satis�ed, and we have stability of S.

This provides a theoretical justi�cation for choosing a pairing which gives a � close to

triangular, with diagonal elements close to one in the bandwidth region. This corresponds to

choosing a pairing with � � I in the bandwidth region.

For closed loop performance, we ideally want all o�-diagonal PRGA elements and all

CLDG elements to be small. The reason for this is that the loop gains can only decrease

at a limited rate around the bandwidth frequency - particularly if stability of the individual

loops is desired. The work of Bode [5] tells us that the faster we decrease loop gain with

increasing frequency, the more negative the phase of the open loop transfer function will

be. It is well known from classical single - loop control theory that in order to preserve

stability of loop i, the phase of gii(j!)ki(j!) must be larger than �180� at the frequency

!B where jgii(j!B)ki(j!B)j = 1. Thus, the gradient of the loop gain in the Bode magnitude

plot (log 10jgiikij vs. log 10!) must be larger than -2/decade. In practice a gradient closer to

-1/decade would be desirable in order to have su�cient phase margin at !B .

Thus, the accuracy of the approximation in Eq. (77) will improve gradually as one

moves from frequency !B to lower frequencies, it will not be totally o� at one frequency and

close to perfect at a frequency only slightly lower. If an element of the CLDG or an o�-

diagonal element of the PRGA is large in the frequency range approaching the bandwidth,

it is therefore likely that the approximation in Eq. (77) is su�ciently accurate to indicate

problems with performance in this frequency region even though the loop gain is not very

high. Although this argument cannot be used to reject pairings giving PRGA or CLDG

elements of magnitude 2 in the bandwidth region (although magnitudes of 1 or less would be

preferable), a PRGA or CLDG of magnitude 10 or more in the bandwidth region is a clear

indication that problems with performance can be expected.

What if one is unable to choose a pairing giving small CLDG's or PRGA's in the band-
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width region? Some suggestions are:

� For large j
ijRjj j, use feed forward from setpoint j to loop i. Alternatively, setpoint j

can be low pass �ltered.

� For large j�ikj, use feed forward from disturbance k to loop i. If disturbance k cannot

be measured or calculated from other measurements, one may consider changes to the

plant, for example installation of bu�er tanks between unit processes in a plant. The

CLDG may be used to estimate the needed holdup of such bu�er tanks.
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7 TUNING OF DECENTRALIZED CONTROLLERS

We have stated that one main advantage of decentralized control is the relative ease with

which it can be tuned online. Nevertheless, for large, interactive plants the online tuning

can be greatly simpli�ed by having reasonable initial guesses for the tuning parameters. We

will therefore consider design methodologies for decentralized control in this section. There

exists several synthesis methods for the design of multivariable controllers, i.e., for synthesis

of H2- or H1-optimal controllers. However, these synthesis methods cannot accommodate

any requirement for a speci�c structure for the controller. Indeed, the H2- or H1-optimal

decentralized controller is known to have an in�nite number of states [57].

In the absence of any closed form solution to the design of an optimal decentralized

controller, some pragmatic approaches to the design of decentralized controllers have evolved:

� Independent design [60, 35].

� Sequential design [43, 4, 49, 34].

� Simultaneous design using parameter optimization.

Below we will brie
y discuss each of these three approaches.

7.1 Independent Design

Independent design was introduced by Skogestad and Morari [60], within the H1/� frame-

work. With this approach, bounds on the sensitivity and complementary sensitivity functions

of the individual loops are found. Provided all controllers satisfy the bounds, the overall sys-

tem will be stable and satisfy the speci�ed performance criteria.

With the independent design of Skogestad and Morari, any type of controller can be

used in the individual loops, as long as the bounds are satis�ed. Although this gives a

lot of 
exibility to the design, it also results in the design often being conservative. This

conservatism can be reduced by choosing a speci�c parametrization of the controllers in the

individual loops, as demonstrated in [35].

Robustness to uncertainties in the plant model can easily be incorporated into independent

design. Allowable ranges of variation for controller parameters can also be found. Tolerance

to measurement or actuator failure can be ensured by performing independent designs for

subsystems of lower dimension, provided the following assumptions are made

1. Failures are detected and the controllers in the corresponding loops are taken out of

service.
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2. In the case of a failure it is acceptable to give up control of the output(s) of the loop(s)

in which the actuator(s) or measurement(s) has failed.

7.2 Sequential Design

Sequential design was introduced in the control literature by Mayne [43], but it is probably

fair to say that it has always been the most common way of designing decentralized controllers

in industry. In sequential design, the controllers in the individual loops are designed one at

the time. When designing the controller for a speci�c loop, it is assumed that the controllers

that have already been designed are in service.

One possible drawback with sequential design is that the result can depend on the order

in which the individual controllers are designed. A heuristic rule is to design (and close) �rst

the loops which have to be fast. The argument for this rule is that the fast loops are less

a�ected by the control action in the slow loops than vice versa. This argument often holds,

but there are some exceptions where there are strong one-way interactions from the slow loops

to the fast loops. The PRGA and CLDG can give valuable information about the bandwidth

requirements for the individual loops. In Hovd and Skogestad [34] such information is used

to approximate the e�ect of the loops that are still open on the loops that are closed.

When one individual controller is designed, and the corresponding loop closed, this may

cause unacceptable performance in a loop that has been closed previously. In such cases it

will be necessary to redesign the controller in the loop with unacceptable performance.

It is normal to require that the system is stable after designing each individual controller.

If this requirement is ful�lled, and no controller has to be redesigned, sequential design

automatically provides a limited degree of failure tolerance. The system will remain stable if

loops are closed in the same order as they were designed, or if loops are opened in te reverse

order. This limited degree of failure tolerance can be useful during startup or shutdown,

when it is common to bring loops into or out of service one at the time. However, this type of

failure tolerance is of less help in the case of actuator or measurement failure (or saturation),

which cannot be assumed to occur in any speci�ed order.

We therefore have the following guidelines to the order of designing the individual con-

trollers:

� Design �rst the controllers in the fast loops.

� If loops have to be put into operation in a speci�c order during plant startup, or taken

out of operation in a speci�c order during shutdown, use this information to determine

the order of designing the controllers.

� Individual elements or subsystems of the plant may have right half plane zeros that are
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not RHP transmission zeros of the overall plant. If such RHP zeros in subsystems im-

pose unacceptable bandwidth limitations in some loops, this problem should be avoided

by designing controllers for these loops at a later stage in the design, or by changing

the pairing of inputs and outputs. Beware that such changes in the order of designing

controllers will make the overall system sensitive to failure of some of the loops.

It can be problematic to take account of robustness with respect to model uncertainty

when performing sequential design. A practical way of approaching this problem is to design

for robustness of the subsystem under control at each step in the design. However, this does

not necessarily result in an overall design with very good robustness properties. Chiu and

Arkun [15] circumvents this problem by formulating each controller step as an independent

design problem for the loops that remain open. Thereby the conservatism of the independent

design method is introduced also into sequential design, and in order to be successful Chiu

and Arkun needs the independent design procedure to be feasible in the �rst step.

7.3 Simultaneous Design with Parameter Optimization

Conceptually, this approach to the design of decentralized controllers is the simplest. Parametriza-

tions of the individual controllers are chosen �a priori, and some criterion re
ecting the control

speci�cations is optimized with respect to the controller parameters. Problems with local

minima may occur, since the optimization problem is not necessarily convex. The resulting

decentralized controller can anyway only be optimal for the parametrization used.

Robustness with respect to model uncertainty may be achieved with parameter optimiza-

tion, if the criterion that is optimized takes robustness into account. On the other hand,

control performance need not be acceptable even with modest changes in controller param-

eters, and the method does not address failure tolerance, which must be checked separately.

The parameter optimization method provides no guidelines for how to achieve failure toler-

ance if this is not achieved with the original design.

7.4 Special Case: Decentralized Controller Design for 2 � 2 Systems

For the special case of decentralized control of plants of dimension 2� 2, Balchen (e.g. [3])

presents a graphical design procedure where the tradeo� between the design of the two loops

is very clear. This procedure is based on the Multivariable Nyquist Theorem. Assuming that

the plant is stable in open loop, the Multivariable Nyquist Theorem states that the closed loop

system will be stable provided the map under the Nyquist D-contour of det(I + G(s)K(s))

does not encircle the origin11.

11The Multivariable Nyquist Theorem is the same as the classical monovariable Nyquist stability theorem
except that one counts the number of encirclements of det(I + G(s)K(s)) around the origin instead of the
encirclements of g(s)k(s) around the point �1.
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Recall that for a decentralized controllerK(s) we have (I+G(s)K(s)) = (I+EH(s) ~T (s))(I+

~G(s)K(s)), where EH(s) = (G(s) � ~G(s)) ~G�1(s). Hence, if the open loop system and the

individual loops are stable, we can consider only the encirclements around the origin of

det(I + EH(s) ~T(s)). For a plant G of dimension 2� 2, we then get

det(I +EH
~T ) = (1 +

g12g21
g11g22

~t1~t2) = (1 + Y ~t1~t2) (87)

Here Y is known as the Rijnsdorp Interaction Measure [54, 2]. Instead of plotting

Y (s)~t(s)1~t(s)2 and checking for encirclements of the point �1, Balchen checks for \encir-

clements" of ~t(s)1~t(s)2 around �1=Y (s). This way, ~t(s)1~t(s)2, which depends on the con-

troller, is separated from �1=Y (s) which is controller independent. The tradeo� between

the two loops is clear since it is only the product of the complementary sensitivity functions

for the two loops which is plotted. This method can therefore be helpful when modifying an

unacceptable initial design. Unfortunately, the method does not generalize to systems with

more control loops. Full details and examples on the use of this method can be found in

Balchen and Mumm�e [3].
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8 CONCLUSION

In the introduction we started o� by stating that traditional single-loop control is clearly

incomplete for many control problems, which are by nature multivariable. After �rst describ-

ing the typical structure of control systems for large plants, and discussed the reasons why

structure is imposed on control systems, we addressed some fundamental issues which are

independent of the choice control structure:

� Fundamental limitations to what is achievable with feedback control.

� The presence of interactions in multivariable plants, and its implications for the choice

of control structure.

� How to determine what variables should be controlled, and what plant inputs should

be used for control. In some applications this is obvious, whereas in other applications

this is far from the case. The chemical processing industries, in which the authors are

most familiar, have many control problems which fall into the latter category.

The latter sections are focused on issues speci�c to decentralized control, which is extensively

used in the regulatory control level of large plants. issues covered in these sections are:

� Control system integrity. How to ensure that the behavior of the control system dete-

riorates gracefully when a part of the control system becomes inactive - in particular,

stability should be maintained. The relative ease of designing of integrity in a decentral-

ized control system is an important reason for the popularity of decentralized control

at the regulatory control level.

� What manipulated variable should be used to control a speci�c controlled variable.

Pairing of controlled and manipulated variables can be critical for the performance and

integrity of a decentralized control system.

� Approaches to the tuning of decentralized controllers. Mathematical controller synthesis

techniques cannot handle a requirement for a speci�c controller structure, but some

practical approaches to controller tuning have evolved instead. The relative merits of

these approaches have been discussed.

Despite the incompleteness of classical single-loop theory for multivariable control problems,

decentralized control is likely to remain an important part of the control system for large

plants. We hope this chapter have �lled some of the holes in the theory, and that it will

make it easier for the reader to understand what can be achieved with feedback control, and

to design (at least the regulatory layer of) a control system.
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A THE STRUCTURED SINGULAR VALUE

The Structured Singular Value (usually denoted � or SSV), was introduced by Doyle (1982)

as a tool for analyzing the robustness of a control system with respect to uncertainties in the

model of the plant. Both robust stability and robust performance problems can be addressed

using the SSV, and it provides a 
exible framework for specifying performance requirements.

Iterative procedures exist for designing controllers which optimizes robust stability or robust

performance within this framework (e.g. [1]).

We will here give a very brief introduction to the structured singular value, since it is

a tool that is used both for controllability analysis and design of decentralized controllers.

There exists a substantial literature on this subject, and more information can be found in

e.g. [16, 17, 51, 47, 69, 61]. The basic idea within the structured singular value framework

is to accept that no model of a physical system is perfect. One therefore attempts to model

the uncertainties in the model, i.e., its location, structure and magnitude. In Fig. 5 is an

example of a control system for which there is uncertainty in the plant inputs and the plant

outputs, represented by the perturbation blocks �I and �O, respectively. The weights WI

and WO are frequency-dependent and normalize the maximum magnitude of �I and �O to

unity. The individual perturbation blocks can can be restricted to have a certain structure.

For instance, individual inputs and outputs normally do not a�ect each other, therefore �I

and �O can be assumed to be diagonal.

Any block diagram with uncertainties represented by perturbation blocks can be rear-

ranged into the M � � structure in Fig. 6, if external inputs and outputs are neglected.

In Fig. 6, � is a block diagonal matrix with the perturbation blocks of the original block

diagram on the diagonal, and M contains all the other blocks in the original block diagram

(plant, controller and weights). For the speci�c case in Fig. 5, we have that

� = diagf�I ;�Og; M =

2
4 �WIKG(I +KG)�1 �WIK(I +GK)�1

WOG(I +KG)�1 �WOGK(I +GK)�1

3
5 (88)

Provided M is stable and � is norm bounded and stable (stable perturbation blocks),

It can be shown that the overall system is stable provided det(I �M�) 6= 0 8�; 8!. The

structured singular value, �, is de�ned such that

��1
�

= min
�
f�jdet(I �M�) = 0 for some �; ��(�) � �g (89)

The subscript � in �� emphasize that the value of � depends on the structure of �.

The perturbation matrix � contains structure on two levels, �rstly, it is a block diagonal

matrix of perturbation blocks, secondly, each perturbation block within � may themselves

be structured.
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If weights are used to normalize the maximum value of the largest singular value of �

to unity (��(�) = 1) at all frequencies, like in Fig. 5, the system will remain stable for any

allowable perturbation � provided sup! ��(M) < 1. To simplify notation, we use \�(M)"

in the meaning sup! ��(M).

It is possible to calculate �(M) exactly only in a few special cases, but reasonably tight

upper and lower bounds are readily available. Some useful properties of � are:

�(M) � �(M) � ��(M) (90)

�(M) � ��(DlMD�1
r ) (91)

Eq. (90) holds for any complex valued perturbation �, but � may be lower than the lower

bound if the perturbations are constrained to be real. Dl and Dr are real positive matrices

with a structure such that D�1
r �Dl = �. If all blocks in � are square, Dl = Dr. The

upper bound on the value of � in Eq. (91) is usually quite tight [17], and minimizing this

upper bound can be formulated as a convex optimization problem, which means that it is

computationally tractable.
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Figure 1: Hierarchical structure of a control system of a typical chemical plant.

61



Figure 2: Scaling of variables.

62



r u y

r u y

_

_

_

K

Q

P

P

G

d

d
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