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Abstract

Prefractionator arrangements are often preferred from an energy point of view when
separating ternary mixtures. The prefractionator performs a separation between the heaviest
and lightest component, whereas the intermediate component distributes to both products.
The energy usage in the prefractionator itself has a very sharp minimum for a particular
distribution, which is the \preferred separation" of Stichlmair (1988). On the other hand,
the energy usage in the downstream main column has a minimumwhen the two parts of the
column, above and below the side stream, are \balanced". In the paper we derive simple
analytic expression for the total energy usage of the two-column sequence as a function of
the separation in the prefractionator. We �nd that although the preferred separation is
optimal, at least for sharp splits in in�nite columns, the energy usage is almost the same
for any separation between the \preferred" and the \balanced". The same results are shown
numerically to hold for columns with �nite number of stages and non-sharp separation, as
well as when the prefractionator and main column are directly coupled, as in the Petlyuk
arrangement. Finally, some implications for the operation and control of such columns are
discussed.
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1 Introduction

The task of �nding the minimum energy input for multicomponent separations has received
considerable interest in the literature. No doubt the most well known methods are those due
to Underwood (e.g. Underwood (1948)), for which minimum 
ows are obtained through an
exact (iterative) solution of the material balance equations corresponding to in�nite columns.
In order to enhance the understanding of minimum energy conditions beyond that of nu-
merical computations, Petlyuk and coworkers dedicated a series of papers (e.g. Petlyuk and
Platonov (1964), Petlyuk et al. (1965) and Petlyuk et al. (1966)) to the task of selecting
the thermodynamically optimal distillation scheme. Based on the concept of reversible dis-
tillation, the authors argue that one of the optimality conditions, is that in each bisectional
column only the components with extreme volatilities should be separated. For the ternary
case this implies that to ensure reversible mixing of streams, the �rst split is taken between
the light and heavy component, so that the intermediate component distributes between the
bottoms and top products. Any other split between adjacent components will inherently
introduce additional exergy loss and thus increase the energy usage. However, we strongly
emphasize that the concept of reversibility also requires uniform distribution of utility (con-
densing and boilup) along the column, which is not realized in columns with one reboiler
and one condenser. Thus, although arguments based on reversibility may provide expedient
guidelines, one needs a more detailed analysis to provide conclusions for real columns.

The issue of minimum energy usage under the presence of distributing components was
also examined by King (1971). The author introduced a shortcut (group) method to compute
the minimum energy, but until present it remains somewhat unclear as to under which
conditions the results of King (1971) apply. Stichlmair (1988) coined the phrase preferred
separation, to denote the separation in the prefractionator that requires the minimumenergy
input. This particular split occurs when all components have a pinch at the feed location,
and the author demonstrates that the optimality of this particular split is due to colinearity
between the distillation and equilibrium lines at the feed point. However, the author does
not elaborate on whether carrying out the preferred separation as the �rst split should give
the overall minimum energy input for a sequence of columns, although is is stated that it
\usually" is so.

In this paper we consider separating ternary mixtures in the prefractionator arrangements
shown in Figure 1. This includes a \conventional" prefractionator (a) as well as the Petlyuk
column (b), where the prefractionator and main columns are directly coupled so that the
prefractionator has no heater or cooler. Both of these arrangements are interesting alterna-
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Figure 1: Prefractionator arrangements for separation of ternary mixtures
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tives for industrial implementations. The task for the prefractionator is to split the heavy
and light components, whereas the intermediate component distributes to both products.
The downstream main column is a side-stream column where the three components may be
recovered as pure products.

Several authors have considered methods to obtain the minimum energy usage for the
Petlyuk column (see e.g. Cerda and Wersterberg (1981), Fidkowski and Krolikowski (1986),
Nikolaides and Malone (1988), Glinos and Malone (1988) and Carlberg and Westerberg
(1989)). Without going into detailed discussions of these previous works, we put emphasis
on the important �nding by Fidkowski and Krolikowski (1986). Using a comprehensive
analysis of the Underwood equations, the authors showed that that there is a region for
the recovery of the intermediate component in which the minimum energy usage in fact is
constant. According to Glinos and Malone (1988) the formulas presented by Fidkowski and
Krolikowski (1986) was previously derived in a thesis of Stupin (1970). In this work we
give results from numerical simulations which demonstrate that the results of Fidkowski and
Krolikowski (1986) carry over also to columns with a �nite number of stages. The results are
obtained from numerical simulations of columns with a su�ciently large number of stages,
assuming constant molar 
ows and constant relative volatilities. In this paper we provide
results also for the prefractionator arrangement in Figure 1 (a). In particular, whereas the
previous works consider exact solutions using Underwood's method, we in this work propose
approximate explicit expressions that proves useful in the analysis of the prefractionator
arrangement. By �rst considering the prefractionator arrangement, we also obtain physical
insight related to the regions of constant energy usage (Fidkowski and Krolikowski 1986) for
the Petlyuk column.

For the prefractionator arrangement, we demonstrate that there is a similar \
at" region
where the energy usage remains relatively constant. We show analytically and numerically
that this region is characterized by recoveries of the intermediate component corresponding
to the preferred separation and a balanced main column. We then elaborate on an important
issue that has not been given appropriate attention by the previous authors. This refers
to the importance that this \
at" or constant region has for practical operation. In terms
of practical operation, we �nd for both column arrangements that one may control the
composition only at one end in the prefractionator and \overpurify" the other column end
(\one{point control") without signi�cant increases in the energy usage. Which end to control
depends on whether the preferred or a balanced separation requires the largest recovery of
intermediate component in the prefractionator.

We also consider brie
y the issue of non{sharp separations, for which we present re-
sults from numerical simulations where the product purity of the intermediate component
is decreased relative to a pure product. The results show that the minimum energy usage
moves away from the preferred separation for sharp splits, which in itself is hardly surpris-
ing. We give an account for the results by considering the distribution of the light and heavy
components in the prefractionator for non-sharp separations.

Finally we stress that for ideal mixtures it is always optimal in terms of boilup to use
a vapor feed when possible. This is also discussed in the forthcomong thesis (Christiansen
1997), where we �nd that taking this into account has a strong impact on previous results in
the literature (e.g. the optimality regions for the direct and indirect split schemes presented
by Glinos and Malone (1988)). Hence we consider prefractionator arrangements in which
partial condensers are used for upstream columns, providing vapor feeds to downstream
columns. In order to analyze such prefractionator arrangements we \decompose" the task,
so that we �rst consider the prefractionator column and then the main column. Knowledge
from these �ndings are then combined to understand the behavior when we consider the
column sequence. In total we hope to provide a lucid and comprehensive overview of the
literature, that may clear up some apparent misunderstandings.
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2 Degrees of Freedom Analysis

One of the important aspects to be addressed in this paper, is how one should utilize the
degrees of freedom (DOFs) for the prefractionator arrangements in Figure 1 in a \optimal"
manner. For both arrangements we have after stabilization of levels and pressure �ve DOFs
available for operation. Three of these are then consumed if we specify one purity in each
product. The objective of this paper is then partly to indicate how one should treat the
remaining two DOFs. In a sense, they are both related to the prefractionator column, even
though the DOFs in a strict sense apply to the column arrangement.

For the Petlyuk column in Figure 1 (b), one might imagine that one of the remaining
DOFs could be used to control one of the impurities in the sidestream product. The last
DOF is then used to minimize the energy usage. However, due to the coupling between
the upper and lower parts of the main column, it is in practice not possible to control two
purities in the sidestream. Wol� and Skogestad (1995) showed that \holes" may appear in
certain operating regions in this case. A detailed explanation for this behavior was later
given by Morud (1995). The conclusion is that one should control only one composition in
each product for the Petlyuk column. In this work we show that for \optimal" operation
one in practice needs to use one DOF to stay within a certain operating region where the
energy usage in fact remains relatively constant.

3 The Prefractionator Column

In this section we present expressions for the minimum energy usage Vmin for ternary sep-
arations in a prefractionator column, using a group method previously introduced by King
(1971). The feed is assumed to be saturated liquid (in Appendix A we also give the formulas
that apply for saturated vapor feeds). Note that we in the following use subscript min to
denote a column with an in�nite number of stages, and that we use lowercase letters to
denote the distillate (d) and bottoms (b) 
ows to avoid confusion with the components (B)
and the superscripts for the direct split scheme (e.g. V D).

3.1 Vmin and the preferred separation

Our starting point is the \binary equation" for the minimum re
ux in a column with an
in�nite number of stages and a saturated liquid feed (King 1971)

�
L

F

�
min

=
�dL � �LH�

d
H

�LH � 1
(1)

Here L denotes the re
ux, F the feed, �di the fractional recoveries of light and heavy compo-
nents in the distillate d and �LH the relative volatility between the two components. More
precisely, the fractional recoveries are given by

�di =
dxdi
Fzi

(2)

where zi denotes the feed composition of component i. Actually, equation (1) applies to any
two components in a multicomponent mixture if we assume that all components pinch at the
feed stage, and King (1971) states that (1) applies if all non-key components distribute. In
practice this means that the non-key components must be intermediate relative to the two
(key) components.

If we then consider the separation of a ternary mixture ABC, for which we want to obtain
a top product depleted in the high boiler (C) and a bottoms product depleted in the low
boiler (A), equation (1) is valid if B has a pinch at the feed location. This is the \preferred"
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separation of Stichlmair (1988), and the corresponding preferred recovery of B is denoted
�pref . For the separation between components A and C equation (1) gives

�
L

F

�pref
min

=
�dA � �AC�

d
C

�AC � 1
(3)

where we use the superscript pref to make clear that it only applies to the case of the
preferred separation where all components have a pinch at the feed stage. The corresponding
minimum boilup is

�
V

F

�pref
min

=

�
L

F

�pref
min

+

�
d

F

�pref
(4)

In this case equation (1) applies also to the (non{sharp) separation between components A
and B, i.e.

�
L

F

�
min

=
�dA � �AB�

d
B

�AB � 1
(5)

By equating (3) and (5) for given values of �dA and �dC , and solving with respect to �dB , we
obtain the \preferred" recovery of B in the distillate

�pref �
�
�dB
�pref

=
�dA (�BC � 1) + �BC�

d
C (�AB � 1)

�AC � 1
(6)

The distillate 
ow is then

dpref

F
= �dAzA + �prefzB + �dCzC (7)

and we derive the desired expression for Vmin

�
V

F

�pref
min

=
�dA � �AC�

d
C

�AC � 1
+ �dAzA + �prefzB + �dCzC (8)

For the special case of a sharp split between A and C (�dA = 1, �dC = 0) we get

�pref =
�BC � 1

�AC � 1
; dpref

F
= zA + �BC�1

�AC�1
zB (9)

and for the boilup

�
V

F

�pref
min

=
1

�AC � 1
+ zA +

�BC � 1

�AC � 1
zB (10)

This is the same expression as was previously presented by Stichlmair (1988) for the preferred
separation.

However, the question remains as to how Vmin changes if �dB di�ers from the particular
value �pref , and what is the additional cost? This is the central question to be addressed in
the next section.

3.2 Vmin for splits other than the preferred separation

In the following we want to derive an expression for Vmin for sharp splits between A and C
that applies to any recovery of the intermediate component, i.e. for all �dB 2 [0; 1].

Introductory example.
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Table 1: Data for ternary separation in an \in�nite" column
Number of stages N = 100 (NF = 50)
Feed compositions zF = [1=3; 1=3; 1=3]
Molar feed F = 1 [kmol/min]
Relative volatility � = 4 : 2 : 1
Impurity spec.'s xbA � �

ydC � �

In order to address this issue, we �rst consider an introductory example for the separation
of an equimolar saturated liquid feed with data given in Table 1. For the simulations we
specify that the composition of light component A in the bottom, and the composition of
heavy C in the top, should be equal to or less than a given upper bound, i.e. xbA � � and
ydC � �. Note that for a sharp split � ! 0, but in the numerical calculations we mostly use
� = 10�4 (we should also mention that we used a �nite number of stages N = 100, but exact
calculation with the Underwood equations for in�nite columns give almost identical results
for Vmin). The purpose of this numerical example is to compute Vmin as a function of the
distillate 
ow d with �dB 2 [0; 1].

By specifying d we �x one degree of freedom, and since we have only two degrees of
freedom for a single column at steady state, we will �nd that only one of the impurity
speci�cations (i.e. xbA � � or ydC � �) will be active as an equality. Numerically we thus
obtained two solution curves where we selected xbA = � = 10�4 and ydC = � = 10�4. The
curves were computed using the continuation scheme presented in (Christiansen 1997), and
are shown in Figure 2. As seen from the Figure we �nd that there is a sharp minimumlocated
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Figure 2: Vmin as a function of distillate 
ow d for sharp A=C split, i.e. � = 10�4.

at the intersection, which is the point corresponding to the preferred separation. Along the
curves extending from this point we have that both purity speci�cations are satis�ed, one
as an equality the other as an inequality (see Figure 4). The only point where both appear
as equalities (xbA = ydC = �) is at the intersection, which as mentioned is at the preferred
separation.

Figure 3 which gives Vmin for other values of �, illustrates that selecting � = 10�4 indeed
gives the limiting value of Vmin corresponding to a sharp separation. For example, the curves
for purities of � = 10�3 and � = 10�4 are as shown in Figure 3 practically indistinguishable.
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One may also note that there is a well de�ned minimum also for non-sharp separations, an
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Figure 3: Vmin as a function of distillate 
ow d for non-sharp separations with � 2 [10�4; 10�1].

issue to be discussed later. In Figure 4 we have plotted on a semi-log scale the corresponding
impurities at the column ends which is purer than required. We see that the impurities are
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Figure 4: Impurities at column end which is purer than required for � =
0:1; 0:05; 10�2; 10�3; 10�4. The left branches give ydC < � when xbA = � is kept constant, and the
right branches give xbA < � for constant ydC = �.

satis�ed as inequalities for all values of d, except for the preferred separation where they are
both satis�ed as equalities. Similar observations were also made by Carlberg and Westerberg
(1989), in a detailed analysis of the Underwood equations for a simple non-sharp column.
The authors showed that minimumre
ux behavior (in�nite column) divides into four distinct
regions depending on the recovery of intermediate. Each region is then characterized by the
recoveries of light and heavy in the distillate being either at their lower bound, upper bound
or intermediate. Note that we have instead assigned bounds on the mole fractions of heavy
key in the top and light key in the bottom, whereas Carlberg and Westerberg (1989) consider
the recoveries of light and and heavy in the top. Using either mole fractions or recoveries is
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however somewhat complementary from a mathematical point of view, since the recoveries
depend linearly on the mole fractions. In practice, the mole fractions will however have more
of a physical signi�cance. We will later demonstrate that these observations are of great
importance for practical operation of prefractionator arrangements and the Petlyuk column.

To further verify the numerical results, we compute from equation (10) the minimum
vapor 
ow for a sharp split ( with data from Table 1)

V pref
min = 0:778 (11)

and the corresponding distillate 
ow using equation (7) is

dpref = 0:444 (12)

which agrees with our numerical simulations.

3.3 Analytical Results

In this section we will derive approximate analytical expressions for Vmin as a function of
the distillate 
ow d for the prefractionator arrangement. The reader may note that we here
choose to use d as the independent variable, since it represents a variable of grater physical
signi�cance than for instance the recovery �dB. From King (1971) we have the following exact
expression for the minimum boilup

�
V

F

�
min

=
�AC�

d
A

�AC � �i
+

�AB�
d
B

�BC � �i
+

�dC
1� �i

(13)

where �i is the appropriate solution of the Underwood following 2nd order equation

�ACzA
�AC � �i

+
�BCzB
�BC � �i

+
zC

1� �i
� F (1� q) = 0 (14)

Here q is the feed enthalpy and q = 1 for saturated liquid feeds. For a sharp split between
A and C (�dA = 1, �dC = 0) we get

�
V

F

�
min

=
�AC

�AC � �
+

�AB�
d
B

�BC � �
(15)

This proves that the relationship between V and �dB, and thus between V and d = FzA +
F�prefzB, is given by straight lines. This was already observed from the numerical results
in Figures 2 and 3. The break in the straight lines at the preferred separation corresponds to
a switch of Underwood root �i. As illustrated in Figure 2, the straight lines extend from the
preferred separation to the two end points. The left end point is where all intermediate B
leaves in the bottom, i.e. the direct A=BC split. Here d = dD and Vmin = V D

min. The right
end point is where all B is taken over the top, i.e. the indirect AB=C split. Here d = dI and
Vmin = V I

min. This is further illustrated graphically in Figure 5.
Since the relation between Vmin and d yields a straight line for sharp splits and in�nite

columns, we thus �nd from Figure 5 the desired relationships

V C1
min = V pref +

V D
min � V pref

dpref � dD
�
dpref � d

�
; d < dpref (16)

V C1
min = V pref +

V I
min � V pref

dI � dpref
�
d� dpref

�
; d > dpref (17)

(We write V C1
min with superscript C1 to make clear that these relationships apply only to the

prefractionator column C1.) For sharp splits we have

dD

F
= zA;

dpref

F
= zA +

�BC � 1

�AC � 1
zB ;

dI

F
= zA + zB (18)
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Figure 5: Boilup V for sharp A=C split as a function of the distillate 
ow d. The results are
shown for an equimolar feed mixture with �AB = �BC = 2

Furthermore, Glinos and Malone (1984) derived reasonably accurate analytical expressions
for V D

min and V I
min for sharp splits�
V I

F

�
min

=

�
zB + zC
�BC � 1

+
zA

�AC � 1

�
1

1 + zAzC
+ zA + zB (19)

and �
V D

F

�
min

=
zA + zB

f (�AB � 1)
+

zC
f (�AC � 1)

+ zA (20)

where f = 1 + zB=100. The authors claim that these equations yield average errors in the
order of 4% compared to exact methods (i.e. Underwood) and thus serve our purpose well.
From (8) and (18){(20) we derive the following expressions for the slopes in Figure 5

V D
min � V pref

dpref � dD
=

(�AC � 1) (zA + zB)

fzB (�AB � 1) (�BC � 1)
+

zC � 1

fzB (�BC � 1)
� 1 (21)

V I
min � V pref

dI � dpref
=

zA � (1 + zAzC)

zB (�AC � �BC) (1 + zAzC)

+
(zB + zC) (�AC � 1)

zB (�AC � �BC) (1 + zAzC ) (�BC � 1)
+ 1 (22)

As one will expect we �nd that the slopes of the curves extending from the minimum (pre-
ferred separation) towards the direct and indirect splits, depend on the di�culty of the
separation, i.e. on the ratio �AB=�BC . In the next section we use expressions (17){(21) to
determine (analytically) whether it is always optimal to produce the preferred separation as
the �rst split for the Prefractionator arrangement in Figure 1 (a).

4 The Main Sidestream Column

We here consider the energy usage (Vmin) in the main column with sharp separations between
components A, B and C. To derive the desired expression we �rst consider the 3{column ar-
rangement in Figure 6 (b), where the prefractionator is denoted C1 whereas the downstream
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columns are C2 and C3. Note that a partial condenser is used for the prefractionator column
C1, since using a total condenser increases the energy usage in C2 by a term proportional
to the feed of light key (FzA). For minimum re
ux calculations we can represent the main

A

V

V

ABC B

C

C1

main

C1

 main

(a) 3{column arrangement

V

A

B

V

ABC

B

C

C1

C2

C3

VC1

C2

C3

(b) Prefractionator

Figure 6: Prefractionator arrangements for separation of ternary mixtures

column of the Prefractionator in Figure 6 (a) as a special case of Figure 6 (b), and we then
refer to columns C2 and C3 in order to distinguish between cases when the upper or lower
feed controls for the main column. The required energy usage in the main column is thus

V main
min = max

�
V C2
min; V

C3
min

�
(23)

depending on whether the lower feed (V C3) or upper feed V C2 controls, i.e. is the larger. To
compute V C2

min and V
C3
min we make use of the following exact expressions for a sharp separation

of a binary mixture:
The feed to column C3 is saturated liquid, and for a sharp split between A and B we

have from (1)

V C3
min =

FC3

�BC � 1
+ dC3 (24)

where dC3 = F
�
1� �dB

�
zB is the distillate 
ow and FC3 = F

�
1� �dB

�
zB + FzC is the

feed to column C3. F is as before the overall feed to the prefractionator C1, and �dB is the
fractional recovery of the intermediate component B in the distillate of the prefractionator.
We then get for column C3

�
V

F

�C3
min

=

�
1� �dB

�
zB + zC

�BC � 1
+
�
1� �dB

�
zB (25)

The feed to columnC2 is a saturated vapor, and a similar derivation for a sharp split between
B and C yields

�
V

F

�C2
min

=
FC2

�AB � 1
=

zA + �dBzB
�BC � 1

+
�
1� �dB

�
zB (26)

To compute V main
min need to determine when the lower and upper feed controls respectively,

for di�erent mixtures and di�erent values of �dB . The \switch{over" value for �
d
B occur when

the main column is \balanced (i.e. V C3
min = V C2

min), and by equating (25) and (26) we �nd

�bal =
(1� zA) (�AB � 1) + zB (�AB � 1) (�BC � 1)� zA (�BC � 1)

zB (�BC � 1) + zB (�AB � 1) + zB (�AB � 1) (�BC � 1)
(27)
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We thus have the following three operating regimes for the main sidestream column

(i) �dB < �bal Lower feed controls, i.e. V main
min = V C3

min

(ii) �dB = �bal Balanced column, i.e. V main
min = V C2

min = V C3
min

(iii) �dB > �bal Upper feed controls, i.e. V main
min = V C2

min

Since V C3
min decreases as we increase �dB, and since V C2

min increases as we increase �dB, we �nd
for the main (sidestream) column that

min
�d
B

V main
min (28)

is obtained for �dB = �bal. Thus when we consider only the energy consumption in the main
column, then the best choice is to operate the prefractionator such that �dB = �bal. This is
illustrated in Figure 7. Before proceeding we mention that if we instead use a total condenser

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Fractional recovery, φB
d

V,
 [k

m
ol

e/
m

in
]

C3 V C2,

V
C2

V

bal

C3

φ

V

= max  ( )V main

Figure 7: Minimum energy usage Vmin for the main sidestream column as a function of the
fractional recovery of intermediate �dB for � = 4 : 2 : 1 and zF = [1=3; 1=31=3]. The Figure
illustrates that the overall Vmin corresponds to a balanced column and occurs for �dB = �bal.

for the prefractionator so that the feed to C2 is a saturated liquid, then V C2
min will increase

and the value for �bal decreases. of columns?

5 Is the Preferred Separation Optimal for the Column

Sequence?

In the previous sections we found that the minimumenergy usage in a prefractionator column
usually displays a very sharp minimum at the fractional recovery of intermediate component
corresponding to the preferred separation (�pref ), whereas the main column displays a similar
sharp minimum for a balanced column (�bal). The question should then be posed: Which
of these values, if any, is best when considering the overall energy consumption in the two
columns. As mentioned in the introduction, Petlyuk (1997) and Stichlmair (1988) argue
that the prefractionator dominates so that the preferred separation should be used. On the
other hand, Triantafyllou and Smith (1992) base their short cut design procedure on the
assumption that the main column should be balanced. Using the expressions derived in
section 5.2 and 5.3 we will in this section derive approximate analytical equations for the
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optimality conditions for the prefractionator arrangement in Figure 1 (a) with an in�nite
number of stages and sharp splits. Based on these expressions we show that the preferred
separation is indeed optimal for all cases, but the overall optimum is quite \
at" for values
of �dB in the range between �pref and �bal.

The overall energy consumption

Vmin = V C1
min + V main

min (29)

can be easily computed as a function of �dB using the analytical expressions for V C1
min in (17)

and (16), and for V main
min in (23). Note that we can alternatively use the distillate 
ow leaving

the prefractionator as our independent variable, since there is a unique (linear) mapping from
�dB to d:

d = F

nX
i=1

�di zfi = F
�
�dAzA + �dBzB + �dCzC

�
(30)

Note in particular that for sharp splits the di�erentials are related by

@d = zB � @�
d
B (31)

since the amount of A and C are constant in the distillate, i.e. �dA = 1 and �dC = 0.

5.1 Introductory example

In order to motivate for analyzing the optimality conditions of the preferred separation, we
�rst consider a introductory example where we compute Vmin as a function of the fractional
recovery �dB, and compare the results also for the prefractionator V C1

min and the main column
V main
min . We here consider a mixture with a large amount of intermediate B. Figure 8

shows Vmin as a function of the recovery �dB for the example with relative volatilities of
� = 4 : 2 : 1 and feed compositions zF = [0:1; 0:8; 0:1]. We �nd for this example that
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Figure 8: Minimum boilup V as a function of the fractional recover of intermediate �dB for
� = 4 : 2 : 1 and zF = [0:1; 0:8; 0:1]. The Figure illustrates that there is a large region enveloped
by �pref and �bal, in which V remains close to the overall minimum.

Vmin for the sequence of two columns indeed corresponds to using the preferred separation
as the initial split. However, as mentioned we �nd that there is a relatively large region in
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which the energy usage is almost constant, independent of the recovery, i.e. the decrease
in V main = V C3 is approximately equal to the increase in V C1. This region covers all
intermediate recoveries between �pref and �bal. Note that �pref < �bal in this case, but for
other cases we may have �pref > �bal, as shown in Figure 9. In this case the region with
approximately constant Vmin is between �bal and �pref .
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Figure 9: Minimum boilup V as a function of the fractional recover of intermediate �dB for
� = 4 : 3 : 1 and zF = [0:1; 0:8; 0:1]. The Figure illustrates that there is a large region enveloped
by �pref and �bal, in which V remains close to the overall minimum.

5.2 Analytical results

We here use the previously derived analytical expressions to show that for sharp splits it
is always optimal to use �dB = �pref in the prefractionator, i.e. d = dpref . We do this by
comparing the slopes (i.e. derivatives) for the prefractionator and the main column with
respect to the distillate 
ow, i.e. @V C1=@d and @V main=@d.

First consider the prefractionator C1. Using equations (17) and (22) we thus obtain for
d > dpref , (i.e. �dB > �pref

@V C1

@d
=

V I � V pref

dI � dpref

=
zA � (1 + zAzC)

zB (�AC � �BC) (1 + zAzC)

+
(zB + zC) (�AC � 1)

zB (�AC � �BC) (1 + zAzC) (�BC � 1)
+ 1; (d > dpref ) (32)

Conversely we obtain using equations (16) and (21) for d < dpref (i.e. �dB < �pref )

@V C1

@d
=

V D � V pref

dpref � dD

=
(�AC � 1) (zA + zB)

fzB (�AB � 1) (�BC � 1)
+

zC � 1

fzB (�BC � 1)
� 1; (d < dpref ) (33)

Next consider the main column, for which we obtain from (25) and (26)

@V main

@d
=

@V C3

@d
= �

�BC
�BC � 1

; (d < dbal) (34)
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and

@V main

@d
=

@V C2

@d
=

1

�AB � 1
; (d > dbal) (35)

Note that these derivatives are exact for sharp splits and binary mixtures, since the minimum
energy usage for the main column is equal to the binary separation requiring the largest
energy. Our objective is now to determine whether the preferred separation is always optimal
for the directly coupled Prefractionator. A simple analysis shows that we must consider the
slope in the \
at" region for the two cases of

(1) dpref > dbal

and

(2) dpref < dbal

Case 1 : dpref > dbal (Figure 10)
In this case the upper feed controls in the \
at" region and the preferred separation is not
optimal if for dbal < d < dpref we have @V=@d positive, i.e. the overall energy usage (V ) is
smaller for some value of d than for dpref . From (32) and (35) this is the case if and only if

1

�AB � 1
>

(�AC � 1) (zA + zB)

fzB (�AB � 1) (�BC � 1)
+

zC � 1

fzB (�BC � 1)
� 1 (36)

After substituting for �AC = �AB�BC and zC = 1 � (zA + zB) and some algebra, we �nd
that the condition is equivalent to

(zA + zB) (�AC � 1� �AB + 1)� fzB (�BC � 1) (�AB � 1 + 1)

fzB (�AB � 1) (�BC � 1)
< 0 (37)

+

�AB (zA + zB) (�BC � 1)� �ABfzB (�BC � 1)

fzB (�AB � 1) (�BC � 1)
< 0 (38)

+

�AB (zA + (1� f) zB)

fzB (�AB � 1)
< 0 (39)

Since the nominator is always larger than zero, we consider only the denominator. After
substituting for f = 1 + B=100 we derive

@V

@d
> 0 i� zA < (f � 1)zB =

z2B
100

(40)

which is satis�ed only when zA is very small. From this result we see that the preferred
separation is optimal in almost all cases, but we are lead to believe that there may exist some
limiting cases with zA small where the preferred separation is not optimal for the column
sequence. However, it should be noted that (40) is based on the analytical expressions
of (Glinos and Malone 1988) which are are not quite exact. In order provide the exact
optimality conditions for the preferred separation, one will have to use exact methods such
as Underwood's method as shown by Fidkowski and Krolikowski (1986).

To verify the optimality condition (40) we give in Figure 10 numerical results for an ex-
ample where we also applied Underwood's method to compute V D and V I used in equations
(17) and (16). According to condition (40) we have that for this case (zA < z2B=100), the
true Vmin should not correspond to the preferred separation. However, using Underwood's
method instead of the approximate expressions by Glinos and Malone (1984), we �nd that
the preferred separation indeed gives the true Vmin. Thus it is for all separations, at least
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Figure 10: Analytical results for boilup V as a function of the fractional recover of intermediate
�dB for � = 4 : 3 : 1 and zF = [0:005; 0:99; 0:005]. The Figure shows that the overall Vmin

corresponds to using the preferred separation (�pref) as the initial split. The solid line is obtained
using the approximate equations by Glinos and Malone (1984), and the dashed line gives the
exact solution obtained from Underwood's method.

for sharp splits, optimal to use the preferred separation in the prefractionator. More impor-
tantly, the Figure also illustrates that there is a large region of recoveries enveloped by �pref

and �bal, in which V remains close to the overall minimum. This is not stressed in any of
the previous works, and is of great import for practical operation to be discussed later.

Case 2 : �bal > �pref (Figure 11 )
In this case the lower feed controls in the \
at" region between �pref and �bal, and From
(33) and (34) the preferred split is not optimal if and only if

�BC
�BC � 1

>
zA � (1 + zAzC)

zB (�AC � �BC) (1 + zAzC)

+
(zB + zC) (�AC � 1)

zB (�AC � �BC) (1 + zAzC) (�BC � 1)
+ 1 (41)

In this case it becomes somewhat di�cult to extract simple algebraic conditions as was the
case for upper feed control, i.e. equation (40). However, after considering numerically a large
range of mixtures, we have in fact not found any case for which condition (41) is satis�ed.
Nevertheless, we �nd as shown in Figure 11 that for low values of �BC for which �bal is
large, there may be very large regions in which Vmin is relatively constant. Note that we
in this case did not �nd any signi�cant di�erences between the approximate equations and
Underwood's method. One may note, although hardly surprising, that as �BC ! 1 we have
that �bal ! 1 and �pref ! 0, hence the lower feed controls for all recoveries.

Case 3 : dpref = dbal (Figure 12 )
A special limiting case is when �pref = �bal. Such cases are obtained by equating expressions
(9) and (27). It becomes somewhat complicated to derive simple conditions for when this
may occur in the general case. However, for cases where the A=B split and B=C split are
equally di�cult so that �AB = �BC we derive after some algebra that �pref = �bal if and
only if

zA =
1 + zB (�� 2)

2
(42)
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Figure 11: Analytical results for Vmin as a function of the fractional recover of intermediate �dB
for � = 4 : 1:3 : 1 and zF = [0:005; 0:99; 0:005]. The Figure illustrates a large region enveloped
by �ref and �bal where Vmin stays relatively constant.

Note that equation (42) may not apply for all compositions zB , since we must require zA � 1.
For the particular case where � = 2 the equality �pref = �bal occurs always for zA = 0:5.
Figure 12 illustrates one such case with a sharp minimum where �pref = �bal. Finally we
also recognize that the \
at" regions become smaller if a total condenser is used in the
prefractionator (C1), since �bal moves closer to �pref . This is because the region in which
the upper feed controls becomes larger so that �bal is decreased, i.e. V C2 increases with a
term proportional to FzA.

6 Implications for Operation

We have so far shown in terms of analytical and numerical results that for sharp splits it
is optimal to use the preferred separation as the initial split. This preferred separation
corresponds to a certain fractional recovery of the intermediate in the distillate from the
prefractionator. However, we have also shown that there usually is a range of recoveries
between �pref and �bal for which the energy usage (boilup) remains close to the minimum.
For practical operation we want to maintain operation in this \
at" region. Again we have
three cases

�pref < �bal In this case we want to maintain �dB � �pref (d � dpref ). With reference to Figure
2 we see that to achieve this in the prefractionator, we want to keep the top product
(ydC) at a given composition, and overpurify in the bottoms, i.e. a bottoms product
almost completely depleted in the low boiler A. This means that it may be su�cient to
use only one point control in the top of the prefractionator (i.e. use re
ux for control)
and set the the boilup in the bottoms at a value which is equal to or higher than the
optimum value corresponding to d = dpref ..

�pref > �bal This is the reversed case, for which we want to maintain �dB � �pref (d � dpref ).
This may be achieved by controlling the bottom composition (xbA) and overpurify in
the top of the prefractionator, i.e. a distillate product almost completely depleted in
the high boiler C. In this case one may use one point control in the bottoms of the
prefractionator, e.g. use re
ux for control and set the boilup in the bottoms at a value
which is equal to or higher than its optimal value corresponding to d = dpref .
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Figure 12: Analytical results for boilup V as a function of the fractional recover of intermediate
�dB for � = 4 : 2 : 1 and zF = [0:5; 0:1; 0:4]. The Figure shows that there is a sharp minimum
Vmin where �pref = �bal.

�pref = �bal In this case Vmin has a sharp minimum, so there is no \
at" region in which we can
operate the column. This case may pose great di�culties for practical operation if one
wants to achieve the minimum energy usage. Tight control is most likely needed in
both ends of the prefractionator, i.e. use both re
ux and boilup for control purposes.

Similar results are expected to hold also for the Petlyuk column, but there the vapor split
(RV ) takes the role of the boilup to the prefractionator. These results show the importance
of knowing whether �pref is smaller or larger than �bal.

7 Optimal Splits for the Petlyuk Column

As shown in Figure 1 (b) the Petlyuk columns shows a strong resemblance with the pre-
fractionator arrangement studied above. Thus, one may expect that there is a region of
recoveries of the intermediate component, approximately between �bal and �pref , for which
Vmin remains almost constant. Indeed, this is the case, and for sharp separations we have in
fact a region in which Vmin is exactly constant. This is shown in the insightful analysis of
Fidkowski and Krolikowski (1986).

To complete the foregoing analysis of the prefractionator columnwe here present the main
results from this work. Through a careful analysis of the Underwood equations, Fidkowski
and Krolikowski (1986) show that the minimum re
ux for a sharp split between components
A, B and C is given by

�
L

F

�
min

= maxf
zA�1

�AC � �1
;

zA�2
�AC � �2

+
�BCzB
�BC � �2

g (43)

and corresponding for the minimum boilup
�
V

F

�
min

= maxf
�ACzA
�AC � �1

;
�ACzA
�AC � �2

+
�BCzB
�BC � �2

g (44)

where �1 and �2 are the solutions of the Underwood equation (14). These roots may be
computed for the absolute minimum solution for the prefractionator, which as previously
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discussed corresponds to the preferred separation. They then carry over to the solutions
for the upper and lower part of the main sidestream column. The authors further show
that Vmin is constant between the fractional recoveries �pref given in equation (9) and the
recovery �R given by

�R =
Lmin (�AC � �BC)� FzA�BC

Lmin�AC � (Lmin + FzA + FzC)
(45)

As noted by Carlberg and Westerberg (1989) this constant minimum re
ux region is consti-
tuted by 4 di�erent sets of speci�cations for the recoveries and Underwood roots. We thus
have that for Petlyuk columns with a su�ciently large number of stages, one may operate
that column at any value between �pref and �R without any increase in the energy usage.
For completeness, we also note that Carlberg and Westerberg (1989) extended the analy-
sis for the Petlyuk column also to multicomponent mixtures with an arbitrary number of
components.

We may further comment that �R for the Petlyuk column has the same signi�cance as
�bal for the prefractionator arrangement. However we stress that for the latter we found
that the minimum energy usage is always smaller for �pref (although only slightly in many
cases). We may compare the extent of the \
at" regions in the prefractionator arrangement
and the \constant" region of the Petlyuk column. The di�erence between these depend only
on the recoveries of �bal and �R, since the other limiting value is that of �pref which is the
same for both columns. In Table 2 we give values of �bal and �R obtained from equations
(27) and (45) for a feed composition of zF = [0:1; 0:8;0:1] and di�erent volatilities. We also
give Vmin for the two column arrangements.

Table 2: Comparison of prefractionator arrangement and Petlyuk column for sharp separations
of a ternary mixture with zF = [0:1; 0:8; 0:1]

Volatilities �R �bal �pref V petlyuk
min V prefrac

min

� = 4 : 2 : 1 0.6535 0.6667 0.3333 1.828 1.867
� = 4 : 3 : 1 0.2691 0.2639 0.6667 2.830 2.867
� = 4 : 1:3 : 1 0.9038 0.9740 0.1000 3.924 3.967

8 Preferred Separation in Real Columns Using a Finite

Number of Stages

The analytical results presented in the previous sections apply to the special case of sharp
splits and in�nite columns. To verify the analytical results, and to examine the impact of
\�nite" columns, we now consider numerical simulations for simple, but detailed stage by
stage models of distillation columns. The assumptions are the same as for the analytical
results; i.e. constant molar 
ows and constant relative volatilities. Our objective is thus
to establish whether using the preferred separation yields the minimum energy inputs for
complex columns with a �nite number of trays and �nite purities. Results are presented
both for the prefractionator arrangement and the Petlyuk column in Figure 1.

8.1 Optimal split-sequence for sharp splits

In this section we present numerical results from nonlinear simulations of staged columns
assuming constant molar 
ows and constant relative volatilities. The process data for the
simulations are given in Table 3. Here Ni = 30 denotes the number of stages in each of the
six column sections, giving a total of 180 stages for all arrangements. The product purities
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Table 3: Data for ternary separations in real (\�nite") column
Number of stages Ni = 30
Feed compositions zF = [0:1; 0:8; 0:1]
Molar feed F = 1 [kmol/min]
Relative volatility � = 4 : 2 : 1
Purity spec.'s xPi = 99:8%

xbA � 10�3

ydC � 10�3

are given by xPi = 99:8% whereas xbA and ydC denote the purities of A and C in the bottoms
and distillate 
ows from the prefractionator (C1), for which we for sharp splits chose the
value of � = 10�3. Note that we for all cases plot the boilup versus the distillate 
ow.
This has however no practical implications since there is a unique (linear) mapping from the
recoveries to the distillate given by equation (30).

For the arrangements in Figure 1 we have 5 DOFs at steady state. Since three of these are
consumed in order to keep the product purities at the respective set points, there is only one
DOF left if we are to vary d freely. This last DOF is here used to keep either the purity ofA in
the bottoms (xbA) or C in the distillate (ydC) at their set-points of � = 10�3. The procedure for
obtaining the desired numerical results can then be outlined as follows. We �rst compute the
minimum boilup using the gradient projection method discussed in (Christiansen 1997), for
which we optimize with respect to the two remaining DOFs. Using this optimumas an initial
point we then obtained the uniquely de�ned solution corresponding to xbA = ydC = 10�3, for
which all the DOFs are consumed. To determine whether the optimum corresponds to the
preferred separation also for (real) columns with a �nite number of stages, we then obtained
solutions for di�erent values of d by continuation along lines of constant xbA and ydC . We thus
use the value of d corresponding to xbA = ydC = 10�3 in order to switch between the solutions
branches. Note also that as for the initial example in Figure 4, the impurity speci�cations
are satis�ed as inequalities for all other values of d.

8.2 Prefractionator arrangement

In Figure 13 we give numerical results for the prefractionator arrangement in Figure 1, using
the data in Table 3. Figure 13 (a) illustrates an important feature with respect to practical
operation. We �nd that the energy usage stays relatively constant in a region where we keep
the composition in the top constant, i.e. ydC = 10�3. As shown in Figure 13 (b), this region
corresponds roughly to the region between the preferred separation (dpref ) and the balance
main column (dbal). Figure 13 (b) also illustrates the comparison between the numerical
results and the analytical results shown in Figure 8. The di�erence owes mainly to the fact
that the simulations correspond to a column with a �nite number of stages. An important
issue to bear in mind, is that by introducing direct coupling between columns C2 and C3,
we have that only a certain fraction of the impurities that enter from the distillate (C) or
bottoms (A) of the prefractionator C1 will appear as impurities in the sidestream product
B. This situation is di�erent from a prefractionator arrangement with three columns, in
which case any impurity either in the top or bottoms from the prefractionator leaves in
the intermediate product streams. The impact of this direct coupling becomes even more
pronounced as we decrease the product purity of the intermediate, and hence allow a larger
fraction of impurities to enter from the top and/or bottoms of C1. This is treated later when
considering non-sharp splits. We now proceed to give results for the Petlyuk column.
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Figure 13: Boilup for prefractionator arrangement in Figure 1 as a function of the intermediate
distillate 
ow d with � = 4 : 2 : 1 and zF = [0:1; 0:8; 0:1]. The solid line in Figure (a) corresponds
to xbA = 10�3 and the dashed line to ydC = 10�3. Figure (b) gives comparison between numerical
and analytical results.
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8.3 The Petlyuk column

As previously discussed one may use the Underwood equations to obtain exact analytical
solutions for the minimum re
ux conditions in Petlyuk columns (Fidkowski and Krolikowski
1986). However, we have not derived any explicit analytical results in this paper for the
Petlyuk column, although its analogy to the prefractionator is close. We thus expect that
the main results for the prefractionator carry over to the Petlyuk column. Note that for the
Petlyuk column the net distillate 
ow and fractional recovery are given by

d = RV V � RLL (46)

and

�dB =
RV V y

d
B � RLLx

d0

B

FzB
(47)

Here RV and RL denote the vapor and liquid split ratio from the main column to the
prefractionator, ydB the vapor composition of B leaving the prefractionator and xd

0

the liquid
composition entering in the top of the prefractionator. We should comment that �dB in
this case may extend outside the range [0; 1] and that the (net) distillate 
ow may become
negative. In Figure 14 (a) we show the energy usage V versus d for the Petlyuk column,
when using the remaining DOF to �x either the impurity of light in the bottoms (solid line)
or heavy in the top (dashed line).

We recognize that instead of consuming the last DOF for purity control, we may of course
also use it for optimization purposes. To obtain the \true" optimal solutions for each value of
d, we may optimize using for instance the values along constant xbA and ydC as initial guesses.
The optimized curve is given in Figure 14 (b). The results indicate that the overall minimum
boilup is constant within a large region of distillate 
ows, and for this example close to the
curve given by ydC = 10�3. According to the discussion in section 6 this is as expected, since
�R > �pref so that the lower feed controls. These results thus con�rm that the �ndings
of Fidkowski and Krolikowski (1986) easily carry over also to columns with a �nite number
of stages. We furthermore expect that the opposite situation applies to mixtures for which
the upper feed controls. Hence if the upper feed controls, the boilup V should be relatively
insensitive to changes in d along the line of constant xbA.

Comparison with results from the literature
We may now compare the results to the analytical results by Fidkowski and Krolikowski
(1986). According to the authors V is constant (at least for in�nite number of stages) in
the region between �pref and �R. Computing �pref and �R from equations (9) and (45)
we �nd for a sharp A=C split that they correspond to distillate 
ows of dpref = 0:3934
and dR = 0:6228. Comparing these to the optimized curve in Figure 14, we �nd excellent
agreement which con�rms the applicability of the analytical results also to columns with a
�nite number of stages. Note also that from equation (44) we obtain Vmin = 1:83 and from
the simulations we computed Vmin = 1:86.

Furthermore we recognize that the regions plotted for constant xbA and ydC correspond
to the qualitatively di�erent regions characterized by Carlberg and Westerberg (1989). For
instance we have that the left part in Figure 14, where the light component is kept constant at
the upper bound xbA = 10�3, and the distillate is practically depleted in the heavy component
(i.e. ydC � 10�3), corresponds to what Carlberg and Westerberg (1989) denote as region I.
Note that keeping xbA at the upper bound, implies that the recovery of A in the top is at
its lower bound. The other regions correspond to where ydC increases and �nally reaches its
upper bound of ydC = 10�3.

Implications for operation
The implications for operation of the Petlyuk column are in general the same as for the
prefractionator arrangements in section 5.5. Furthermore, since there is a region in which
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Figure 14: Boilup for Petlyuk column as a function of the net distillate 
ow d. The solid line in
(a) corresponds to xbA = 10�3 and the dashed line to ydC = 10�3. The solid line in (b) represents
lines for constant xbA and ydC and the circles the optimized (minimized) solutions.

22



Vmin is constant, one may in fact choose any of the operating points within this region without
increasing the energy usage compared to the overall minimum. The Petlyuk column thus
proves to be a rather 
exible arrangement, in that optimal operation is rather insensitive
to changes and disturbances (at least for sharp splits). Although it may appear obvious,
we should emphasize that the minimum energy usage is not independent of both DOFs
in the prefractionator. Hence it is still required to use (at least) one point control in the
prefractionator to maintain operation in the vicinity of the optimum. Furthermore, we
acknowledge some important di�erences between the prefractionator and the Petlyuk column,
owing to the direct coupling between the prefractionator and the main (sidestream) column.
From a practical point of view it is most likely di�cult to use on{line control of the vapor split
RV , so that one may in practice choose to design the column so that RV during operation
is within the optimal region.

Since some means for control in the prefractionator is needed, one may use the liquid
split RL for control. The probably easiest situation in terms of on{line operation, is thus
when the lower feed controls, for which one can use RL to control the impurity of the light
component in the top (and overpurify in the bottoms by having RV su�ciently large). If the
upper feed controls, it is somewhat more di�cult to control the prefractionator, since one
must use the liquid split in the top to control the bottoms composition.

8.4 Optimal split-sequence for non-sharp splits

To investigate the impact of non-sharp separations on the optimal split{sequence, we present
in this section numerical results for cases when we decrease the product purity of the inter-
mediate component B. Thus, we examine the impact of the separation in the downstream
(main) column on the optimal split for the prefractionator. This is in general a problem that
does not have a unique solution, since we have two DOFs for the prefractionator and may
specify any two of the six recoveries (i.e. top and bottom for all three components).

For the numerical examples we use the column data given in Table 3, but now we decrease
the product purity of intermediate to xPB = 98%. In Figure 15 we show that reducing
xPB moves the optimum away from the preferred separation. In fact, the overall minimum
energy usage does not correspond to using a sharp A=C split in the prefractionator! This
is hardly surprising, since reducing the product purity of B allows for a certain amount of
impurity to enter over the top and bottom of the prefractionator. It is thus possible to carry
out a non-sharp separation in the prefractionator which reduces the required energy input.
Importantly, we see that for the Petlyuk column that there is a \constant" region also for
non-sharp separations, which is about as large as for the sharp split case. For this example,
where the lower feed controls, one may in practice �x the vapor split at the optimal value
and use one-point control in the top where the liquid split controls the top composition.

In �gure 16 we compare the operating lines for constant ydC with the optimized curve, i.e.
using the last DOF to minimize V for each value of d.

In Table 4 we give results from numerical optimizations using the data in Table 3, where
minimum energy inputs are given for di�erent column arrangements and intermediate pu-
rities xPB. In the table we have in terms of rigor also included data for a heat integrated
implementation of a three{column prefractionator arrangement. It is interesting to observe

Table 4: Minimum energy usage for prefractionator arrangements and petlyuk column for dif-
ferent intermediate product purities

xPi = 99:8% xPB = 98% xPB = 95%
Heat integrated Vmin = 1:92 Vmin = 1:64 Vmin = 1:25
Prefractionator Vmin = 1:91 Vmin = 1:59 Vmin = 1:20
Petlyuk column Vmin = 1:86 Vmin = 1:53 Vmin = 1:08
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Figure 15: Boilup for prefractionator arrangement (a) and Petlyuk column (b) as a function of
the intermediate distillate 
ow d for non-sharp A=C split and intermediate product purity of
xPB98%. The solid lines correspond to xbA = 2 � 10�4 in Figure (a) and xbA = 2 � 10�5 in Figure
(b). The dashed lines correspond to ydC = 3 � 10�2 in Figure (a) and ydC = 1:4 � 10�2 in Figure
(b).
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that the savings for the Petlyuk column relative to the prefractionator arrangements increase
as the intermediate purity xPB is decreased. For xPB = 95% the additional savings are as large
as 10%. One may also note that conventional arrangements such as the direct or indirect
schemes require, a minimum energy usage of Vmin = 2:73 for sharp separations of the given
mixture in an in�nite column. This value is easily obtained from Underwood's method.

A useful feature of the optimization procedure is that we may obtain the sensitivities
for the energy usage with respect to the product purities, by computing the Lagrangian
multipliers at the optimal solutions. The details of the calculation procedure is given here
in (Christiansen 1997). In table 5 we give Lagrangian multipliers for two product purities
for the Petlyuk column. Using the information contained in these multipliers proves very

Table 5: Lagrangian multipliers for the intermediate product purity
xPi = 99:8% Vmin = 1:86 � = 43
xPB = 98% Vmin = 1:53 � = 15

useful, although we should emphasize that the results in general apply only locally since it is
based on approximating the optimal surface as a quadrature. For instance we �nd that for
xPB = 0:98 � = 15. Hence if xPB is reduced to xPB = 0:95, we have that the predicted reduction
in the energy usage is �V = 15 � (0:98� 0:95) = 0:45. Compared to the results in table 4 we
thus �nd excellent agreement since �V = 1:53� 1:08 = 0:45! For the sharp split case, the
results are however not that accurate. This is is however as expected since there is a large
relative decrease from xPB = 0:998 xPB = 0:98. Thus it is correct for smaller reductions in xPB .

9 Prefractionator or Petlyuk Column?

We have in this paper discussed some important features of the prefractionator arrange-
ments and the Petlyuk column, which proves useful for both operation and design. We
may summarize these �ndings by comparing certain advantages and drawbacks for the two
designs.
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1. The Petlyuk column always give a lower Vmin as shown by Fidkowski and Krolikowski
(1990), although the di�erence is usually small. The lower energy usage owes to sup-
plying all heat (boilup) in the bottoms of the Petlyuk column, and all cooling (re
ux)
in the top, so that one in fact increases the internal 
ows in all sections. For the
prefractionator arrangement a given part of the energy input is \only" used in the
prefractionator column.

2. The Petlyuk column has a region between certain recoveries for the intermediate com-
ponent, given by �dB 2 [�pref�R], where Vmin is constant. The prefractionator on the
other hand displays a \
at" region where Vmin may increase only little for changes in
the recoveries in the region �dB 2 [�pref�bal] where Vmin. This has important implica-
tions for operation, since one may use control in only one end of the prefractionator
column and \overpurify" in the other end. The Petlyuk column thus have a slight
advantages in terms of 
exibility, since one may allow for operation within a certain
range of recoveries, without paying a penalty of increased energy input.

3. For operation and control it is also important to recognize that it is probably easier
to control external 
ows (i.e. re
ux and boilup) rather than manipulating the internal
splits (vapor RV and liquid RL). For the prefractionator arrangement it thus proves
useful to have an external condenser and reboiler compared to the directly coupled

ows in the Petlyuk column. The latter may also act in favor of the prefractionator
arrangement, since \two{point" control (i.e. in both column ends) is easier to imple-
ment.

4. The Petlyuk column is in general more favorable with respect to energy loads (\�rst law
e�ects") than energy levels (\second law e�ects"). Since the Petlyuk column consumes
all heat at the highest temperature (reboiler) and all cooling at the lowest temperature
(bottoms), the utilities may be more expensive than for the prefractionator arrangement
where some of the boilup and re
ux is supplied at less \extreme" levels.

5. For retro�t and revamping studies, where columns and heat exchangers often are avail-
able on cite, the prefractionator arrangement may have some advantages. This owes
also to the possibility for using heat integration of the intermediate utility (prefrac-
tionator column), which is not possible for the fully integrated Petlyuk column. Hence
if utility from some other process stream is available at the level required for the pre-
fractionator column, the \overall" energy consumption may in fact be smaller than
the Petlyuk column. One may also operate the two columns in the prefractionator
arrangement under di�erent pressure, so as to take advantage of di�erent utility levels
on a large scale.

6. An issue that favors the Petlyuk column is that it may be implemented in a single shell
using a dividing wall as suggested by Wright (1949). Thus one may also considerably
reduce the capital costs and the literature indicates savings in the order of 30% (Smith
1995). However, for such dividing wall columns the aspects of operation and control
may become even more crucial. Recent industrial practice however indicates that these
are issue which may be resolved.

7. Finally we give a comment on the claim by some authors (e.g. Carlberg and Wester-
berg (1989)) that the Petlyuk column is only favored when the temperature di�erence
between the heat sources and sinks are large. Although this argument based on \sec-
ond law e�ects" (levels) certainly applies, one should at the same time recognize that
the \�rst law" savings (loads) for the Petlyuk column is the largest when the relative
volatilities are small, i.e. the temperature di�erences are small. Hence it is important
to always keep in mind this important trade o�. However, for close boiling mixtures we
also acknowledge that a very large number of stages is required for the Petlyuk column,
so that the pressure drop should also be taken into account.
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10 Discussion and Conclusions

In this paper we have proposed analytic expressions to obtain the minimum energy usage
(Vmin) for prefractionator arrangements. These expressions allows one to obtain Vmin an-
alytically for any split of the intermediate component in the prefractionator. Furthermore
we have addressed the issue of using the preferred separation as the initial split for multi-
component separations. We have shown that for sharp splits of ideal mixtures, the preferred
separation yields the true overall Vmin. An equally important observation in terms of im-
plications for practical operation, is that there may exist a (large) region of splits in the
prefractionator for which Vmin stays relatively constant. Interestingly we �nd that using the
idea of the preferred separation (Stichlmair 1988) suggest operating the column at one end
in this \constant" region, whereas the idea of balancing the main column (Triantafyllou and
Smith 1992), suggest operation in the other end. In practical operation it is however usually
best to use an intermediate value, because column operation is then relative insensitive to
changes.

To verify the signi�cance of the analytical results, we also studied the importance of
using the preferred separation for columns with a �nite number of stages and for non-sharp
separations. For sharp splits we found good agreement between the analytical and numerical
results. Results from numerical simulations also indicate that using direct coupling between
column sections introduces a degree of 
exibility in the column, which proves favorable in
terms of operation. For the prefractionator arrangement we �nd that there is a region of
recoveries for which the minimum energy usage stays relatively constant, i.e. there is a \
at
region". For the Petlyuk column there is similarly a region where the minimum energy in
fact stays constant. This constant region has been showed in the literature to hold for in�nite
columns and sharp splits, and in this paper we present numerical simulations that shows that
it holds also for Petlyuk columns with a �nite number of stages and non-sharp separations.
Numerical results are also presented which indicate that the fractional savings of the Petlyuk
column in fact increases as the purity of the intermediate product is decreased.

Based on the results presented in this paper, we �nd that in order to maintain operation
in the vicinity of the optimum, it may for some cases su�ce to use only \one-point control" in
the prefractionator. This means that one may overpurify in one end of the prefractionator,
and control the composition in the other end to keep this at its optimum value. For the
Petlyuk column we may for instance �x the vapor split RV and use the liquid split RL to
control either the heavy impurity in the top of the prefractionator or the light impurity in the
bottom depending on whether the upper or lower feed controls. This �nding is supported by
simulations where we �nd that the energy surface is \
at" in certain regions, within which
optimal operation should take place.

In order to project our results onto possible directions for future research, we believe
that the results presented in this paper may be quite easily extended to multicomponent
mixtures of more than three components. In particular we believe that the concepts of the
preferred separation and balancing sidestream columns should prove to be very useful in the
analysis of other complex distillation arrangements. We expect that using the concept of
the preferred separation, which gives the optimal distribution of intermediate components
for a pseudo-binary split (for the Petlyuk column it gives one of the optimal solutions), may
be used to decompose a multicomponent separation to that of a sequence of pseudo-binary
splits.

Nomenclature

A;B;C - Component indices

D - Notation for direct split

d - Distillate 
ow rate [kmol/min]
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f - Parameter in minimum re
ux expression, i.e. f = 1 + zB=100

F - Feed 
ow rate [kmol/min]

I - Notation for indirect split

L - Re
ux 
ow rate [kmol/min]

N - Number of theoretical stages

q - Feed enthalpy

RL - Vapor split fraction in Petlyuk column

RV - Liquid split fraction in Petlyuk column

S - Separation factor

t - Time [min]

V - Boilup from reboiler [kmol/min]

xi - Liquid mole fraction of component i

xPi - Product composition of component i

yi - Vapor mole fraction of component i

zi - Mole fraction of component i in feed

Greek letters

�ij Relative volatility between components i and j

� - Deviation variable

� - Upper bound on impurity mole fractions

� - Lagrangian multiplier

@ - Derivatives

�di - Fractional recovery of component i in distillate

�pref - Fractional recovery of component B for the preferred separation

�bal - Fractional recovery of component B for balanced main column

�i - ith root of Underwood equation

Sub{ and superscripts

bal - Balanced column

main - Main sidestream column in prefractionator arrangements

F - Feed stage

min - Minimum 
ow conditions for in�nite number of stages

pref - Preferred separation

P - Product
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A Fractional Recoveries for the \Preferred" Separation

The underlying assumption in the expressions for minimum re
ux presented by King (1971)
and Stichlmair (1988), is the occurrence of a pinch at the feed point for all components in
a multicomponent mixture. In the main body of the paper we showed how one may �nd
expressions for cases where the feed is saturated liquid. We here show how to derive similar
expressions for saturated vapor feeds.
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A.1 Preferred separation for saturated liquid and vapor feeds

Assuming that all components pinch at the feed point under limiting 
ow conditions (i.e.
minimumre
ux), we �nd using the component balances around each stage that the minimum
re
ux ratio is given by

�
L

D

�
min

=
xDi � yFi
yFi � zi

(48)

This can easily be illustrated from McCabe{Thiele diagrams for each component. For a
saturated vapor feed we have from (King 1971)

�
V

F

�
min

=
�LH�

d
L � �dH

�LH � 1
(49)

If we then equate expression (49) twice for the sharp split between components A and C
(�dA = 1 and �dC = 0), and the corresponding split between A and B, we obtain

�AC
�AC � 1

=
�AB � �dB
�AB � 1

(50)

which gives

�prefvapor =
�AC � �AB
�AC � 1

(51)

If we assume that all components pinch at the feed point also for non-sharp separations,
we may use the formulas given above also for this case. For saturated liquid feeds and
non-sharp separations we thus have (King 1971)

�
L

F

�
min

=
�dA � �AB�

d
B

�AB � 1
=

�dA � �AC�
d
C

�AC � 1
(52)

Given the recoveries of A and C, we may thus obtain the fractional recovery of B exact for
the preferred separation also when the purities are not high, i.e.

�prefliquid =
�dA (�BC � 1) + �BC�

d
C (�AB � 1)

�AC � 1
(53)

For vapor feeds use equation (49) and obtain

�prefvapor =
�dA (�AC � �AB) + �dC (�AB � 1)

�AC � 1
(54)

These equations then reduce to (9) and (51) in the special case of sharp splits.
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