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Abstract

Plant structure is utilized for the simpli�cation of system analysis and controller
synthesis. For plants where the directionality is independent of frequency, the singular
value decomposition (SVD) is used to decouple the system into nominally independent
subsystems of lower dimension. In H2- and H1-optimal control, the controller synthesis
can thereafter be performed for each of these subsystems independently, and the resulting
overall SVD controller will be optimal (the same will hold for any norm which is invariant
under unitary transformations). In H1-optimal control the resulting controller is also
super-optimal, as a controller of dimension n� n will minimize the norm in n directions.
For robust control in terms of the structured singular value, �, the SVD controller is
optimal for a practically relevant class of block diagonal structures and uncertainty and
performance weights. The results are applied to the ill-conditioned distillation case study
of Skogestad et al. (1988), where it is shown that an SVD controller is �-optimal for the
case of unstructured input uncertainty.

1 Introduction

In this paper we study SVD controllers which we de�ne to have the form

K(s) = V�K(s)U
H (1)

Here �K(s) is a diagonal matrix with real rational transfer functions on the diagonal, and
U and V are real unitary singular vector matrices which are derived from a singular value
decomposition (SVD) of the plant G(s). Here H denotes Hermitian (complex conjugate
transpose) which for real matrices is equal to the transpose, i.e., UH = UT .

SVD controllers have been studied previously by Hung and MacFarlane [19] and Lau
et al. [21]. In both these references the SVD structure is essentially used to counteract
interactions at one given frequency, as the problems considered are such that U and V
change with frequency. However, in this paper we consider a class of problems for which U

and V are constant at all frequencies and can be chosen to be real. Restricting our attention
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to these cases allows us to address the optimality of the SVD controller for H2-, H1- and
�-optimal control. To be more speci�c, we consider plants G(s) of dimension n � n which
can be decomposed into

G(s) = U�G(s)V
H ; �G(s) = diagf�Gi(s)g (2)

where the output and input rotation matrices, U and V , are constant real unitary (i.e. or-
thonormal) matrices, and �G(s) is a diagonal matrix with real rational transfer functions on
the diagonal. The requirement for �G(s) to have rational transfer function elements arises
because we use state-space based controller synthesis methods, and need the elements to be
realizable. Restricting U and V to be real means that the controller K(s) will always be
realizable provided �K(s) is realizable.

Eq. (2) is the singular value decomposition of the plant G(s) with the slight modi�cation
that the diagonal elements of �G(s), which we will refer to as singular values, have phase,
and without necessarily requiring that the singular values in �G(s) are ordered according to
their magnitudes. At a given frequency any transfer function can be decomposed into its
singular value decomposition, but we are here assuming that the rotation matrices U and V
are independent of frequency. In this case the singular value decomposition can be used to
decompose the plant into n \subplants" �Gi(s) (the diagonal elements of �G(s)). To simplify
the presentation, we consider in this paper only SISO subplants, but it is straightforward
to generalize the results to cases where unitary transformations decompose the plant into
MIMO subplants, that is, �G(s) is block-diagonal (see [17] for details).

Two contributions of this paper are to show that under certain mild conditions on the
control problem weights, the optimal controller for a plant of the form in (2) is an SVD-
controller, and that the controller design can be simpli�ed for such problems. The basis for
these results is that the H2- and H1-norms

kM(s)k2 �

s
1

2�

Z 1

�1
Trace (MH(j!)M(j!))d!;

kM(s)k1 � sup
!
�(M(j!))

are invariant to unitary scalings. To make use of this property we need that not only the
plant, but the control problem as a whole (including the weights) can be \diagonalized"
by unitary matrices. For the diagonalized problem we then �nd that a diagonal controller
is optimal, and when putting things together we obtain an SVD controller. Furthermore,
controller design is simpli�ed since the elements of the diagonal controller can be obtained
by performing controller synthesis on n independent subsystems involving �G(s). We show
that in the H1 case the resulting controller is super-optimal, as the norm is minimized in the
worst direction for each of these subsystems.

Although these results in hindsight may seem straightforward, they have not to our knowl-
edge been presented before in the control literature, at least not in this general form. This
is somewhat surprising since plants of the form in (2) are common in practical applications.
The most important subclass is probably symmetric circulant plants, where we in addition
have that the input and output rotation matrices are equal (i.e., V = U) and are also equal
to the eigenvector matrix. We treated this subclass in detail in a previous paper [17], and
this paper generalizes the results to a broader class of problems.

The most signi�cant new contribution in this paper is to show that the SVD controller
may be optimal also when we consider H1 robust performance (i.e., �-optimal control) and
have model uncertainty which allows for plants which may not be of the form in (2) (although
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the nominal plant is of this form). In particular, we �nd that with some mild conditions on
the weights the result holds for any combination of \full-block" (unstructured) uncertainty,
and for repeated diagonal complex uncertainty. In the paper we show that it may also apply
in special cases to general diagonal uncertainty. Again, we �nd signi�cant simpli�cations in
controller synthesis (of the �-optimal controller), though in this case the subsystems cannot
always be considered independently.

2 Examples of Plants Described by SVD

In this section we provide examples of plants which can be expressed in the form given in (2).
The multivariable directionality of these plants, as expressed by the two singular vector
matrices U and V , does not change with frequency, and U and V are real. The following two
classes of plants are of special interest in applications:

A. Plants with scalar dynamics multiplied by a constant matrix. Let

G(s) = k(s)A (3)

where A is a constant real matrix. One example is the simpli�ed distillation column model
studied by Skogestad et al. (1988) studied in an example towards the end of the paper. Plant
models of this form occur frequently in practice, at least in the chemical process industries,
where the control engineer often chooses to work with very crude models.

B. Circulant symmetric plants. This class of plants was treated in detail in our
previous paper [17], and short statement of the main properties are given here. Plants with
symmetric circulant transfer matrices are common in practice, and include a large number
of processes with some symmetric spatial arrangement. Examples include paper machines
where edge e�ects are neglected [22, 36], dies for plastic �lms [28], and multizone crystal
growth furnaces [1]. The general form of a circulant matrix C of dimension n� n is:

C(s) =

2
666666664

c1 c2 c3 � � � cn

cn c1 c2 � � � cn�1

cn�1 cn c1 � � � cn�2
...

...
...

. . .
...

c2 c3 c4 � � � c1

3
777777775

(4)

In general, all circulant matrices can be diagonalized by the same unitary matrix, namely
the Fourier matrix F , i.e. C(s) = FH�C(s)F . Thus it follows that plants described by
circulant transfer function matrices (4) have the same structure as in (2), except that the
Fourier matrix is complex while we require U and V in (2) to be real. However, if we consider
symmetric circulant plants for which

ck = cn�k+2; k = 2; 3; � � � ; � (5)

where � = n=2 for even n and � = (n + 1)=2 for odd n, then we can choose the eigenvector
matrix to be real, i.e.

C(s) = RT�C(s)R (6)

where R is a real matrix. This is on the form in (2) with U = V = RT . The real eigenvector
matrix R may be obtained as given in [17].
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M(s)w z

w zN(s)
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Figure 1: Expressing M(s) as a linear fractional transformation of the controller K(s).

Parallel plants. The matrix C in (4) is called parallel if

c2 = c3 = � � �= cn (7)

Parallel transfer function matrices occur frequently in the process industries, and arise
whenever there are identical units in parallel which interact with each other. Examples are
found in distribution networks, when there are parallel units (e.g. reactors, compressors,
pumps, heat exchangers) in a chemical plant [31, 32, 17], for electric power systems [26, 27],
for adhesive coating processes [5], or for communication between ships [16].

Remark: The set of plants given by (2) is more general than the two classes A and
B given above, since the �rst class only includes plants for which the diagonal elements of
�G(s) have the same dynamic behavior, and the second class only includes plants for which
the unitary rotation matrices U and V are equal.

3 SVD Control Problem

In this section we consider plants which can be decomposed into G(s) = U�G(s)V
H (as

shown in Eq. 2) and de�ne more exactly the class of control problems covered by the results
of this paper.

A general control problem is depicted in Fig. 1 where we have z = M(s)w. Here w
represents some external input signals (e.g. disturbances, noise, references), and z represents
the external output signals (e.g. control error, input signals) which we want to keep small.
The overall transfer functionM(s) depends on the controllerK(s) and the controller synthesis
problem is then: minK kMk. Typical choices of norm include the H2- or the H1-norm (or
possibly the structured singular value for the case with model uncertainty). In this paper we
consider control problems where M(s) may be written as a linear fractional transformation
(LFT) of the controller K(s) as shown in Fig. 1. We now de�ne the general class of SVD
problems which are covered by the results of this paper.

De�nition 1 (SVD problem) Consider a n � n plant G(s) = U�G(s)V
H , where U and

V are real orthogonal matrices and �G(s) is a diagonal transfer function matrix. Consider a
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control problem where the objective is to design a feedback controller K(s) which minimizes
a unitary invariant norm of

M(s) = WO(s)M0(s)WI(s);

where

M(s) = Fl(N(s); K(s)) = N11(s) +N12(s)K(s) [I �N22(s)K(s)]�1N21(s): (8)

The interconnection matrix N(s) is a function of the plant model and the weights, but is
independent of the controller K.

The weighting matrices WO(s) and WI(s) are de�ned to be block-diagonal matrices with
each block having dimensions compatible with the dimensions of the subblocks containing G(s)
and K(s) in M0(s):

WO(s) = diagfWOi(s)g; WOi(s) = UOi�WOi
(s)V H

Oi

WI(s) = diagfWIi(s)g; WIi(s) = UIi�WIi
(s)V H

Ii ;

and VOi and UIi satisfying

� VOi = U when WOi(s) premultiplies G(s) in subblocks of M0(s);

� VOi = V when WOi(s) premultiplies K(s) in subblocks of M0(s);

� UIi = V when WIi(s) postmultiplies G(s) in subblocks of M0(s);

� UIi = U when WIi(s) postmultiplies K(s) in subblocks of M0(s).

The terms \premultiply" and \postmultiply" are used in a general sense, for instance, in
the formula WO(I + GK)�1WI , the weight WO premultiplies G and WI postmultiplies K.
There are no requirements on the other matrices in the weights, other than UOi and VIi being
unitary and �WIi

(s) and �WOi
(s) being diagonal.

Remark 1. The de�nition of an SVD control problem may seem restrictive and compli-
cated, but the conditions on the weights are satis�ed for most problems with a plant on the
form G(s) = U�G(s)V

H .
Remark 2. Essentially, the weights must be consistent with the plant G(s), such that,

after substituting G(s) = U�G(s)V
H and K(s) = V�K(s)U

H intoM0(s), the unitary matri-
ces U and V are canceled by the weights when forming M(s), in the sense that we can write
M(s) = UO ~M(s)V H

I where all the blocks of ~M(s) are diagonal. A simple example is given
below. A similar transformation may be used to obtain a block diagonal ~N(s), but since
N(s) is independent of the controller we do not need to assume an SVD-controller to achieve
this. This is important when proving that the SVD-controller is actually optimal (see next
section).

Remark 3. Scalar times identity weights, Wi(s) = wi(s)I always satisfy the conditions
of an SVD problem since wi(s)I = Uwi(s)UH = V wi(s)V H .

Mixed Sensitivity Example.

Consider the well-known mixed sensitivity problem for which

M(s) =

2
4 W1(s)T (s)

W2(s)S(s)

3
5 (9)
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where S(s) = (I + G(s)K(s))�1 is the sensitivity and T (s) = G(s)K(s)(I + G(s)K(s))�1 is
the complementary sensitivity. In terms of the notation in De�nition 1,

M0 =

2
4 T (s)

S(s)

3
5 ; WO(s) = diagfW1(s);W2(s)g; WI(s) = I = UUH

Here W1(s) and W2(s) are weighting matrices which are selected by the designer to achieve
the desired control performance. As assumed throughout this paper, the plant is G(s) =
U�G(s)V

H . To get an SVD problem, we must assume that W1(s) and W2(s) are of the form

W1(s) = U1�W1
(s)UH ; W2(s) = U2�W2

(s)UH (10)

where U1 and U2 are unitary matrices but may otherwise be chosen freely. (We note again
that we may always choose W1(s) and W2(s) as a scalar times identity weight). Consider an
SVD-controller K(s) = V�K(s)UH and introduce UO = diagfU1; U2g and VI = U . We then
�nd that writing M(s) = UO ~M(s)VI yields a block-diagonal ~M

~M(s) =

�
�W1

(s)�T (s)
�W2

(s)�S(s)

�
(11)

where �T = �G�K(I +�G�K)
�1 and �S = (I + �G�K)

�1.

4 H2- and H1-Optimal Control

In this section we consider H2- and H1-optimal control. The results also apply to any other
norm which is invariant under unitary transformations.

Theorem 1 (H2- and H1-Optimality) Consider an SVD problem (De�nition 1). Then

1. There exists an SVD controller that is H2(H1)-optimal.

2. The optimal controller can be computed by designing n independent SISO H2(H1)-
optimal controllers, one for each of the SISO subplants of the plant.

3. For H1-optimal control, this controller is super-optimal, that is, the H1-objective is
optimized in n directions.

Proof:

1. Express the matrix whose H2- or H1-norm we want to minimize as a Linear Fractional
Transformation (LFT) of the controller K(s) to obtain the interconnection matrixN(s)
(see Eq. (8) and Fig. 1).

2. For an SVD problem, N(s) will be such that there exists block-diagonal unitary matrices

UW = diagfdiagfUOig; Ug; VW = diagfdiagfVIig; V g (12)

such that
~N(s) = UH

WN(s)VW (13)

is a matrix consisting of diagonal subblocks (as illustrated in the upper part of Fig. 2).
The proper rearrangement of the inputs and outputs of ~N(s) (i.e. permutations) yields
a permuted ~N which is block diagonal matrix as illustrated in the bottom of Fig. 2.
Note that the matrices needed for these permutations are unitary.
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2
666666666666666666666666666664

a1

a2
. . .

an

b1

b2
. . .

bn

c1

c2
. . .

cn

d1

d2
. . .

dn

e1

e2
. . .

en

f1

f2
. . .

fn

3
777777777777777777777777777775

m Permutations

2
666666666666666666666664

a1 b1

c1 d1

e1 f1

a2 b2

c2 d2

e2 f2
. . .

an bn

cn dn

en fn

3
777777777777777777777775

Figure 2: Top: ~N for a case with 3 � 2 main blocks. Bottom: ~N permuted to have the n
independent synthesis subproblems along the main diagonal. From the bottom matrix it is
apparent that the controller design problem consists of n independent subproblems.

7



3. The control problem in terms of permuted ~N(s) is the same as the original one. This
follows since the H2- and H1-norms are invariant to pre- and postmultiplication with
unitary matrices. Also note that N is independent of the controller K(s) and that the
unitary matrices VW and UW used to transform N(s) into ~N(s) are independent K(s).
No assumption about the structure of the controller K(s) is therefore necessary at this
point.

4. The diagonal structure of the permuted ~N(s) means that the controller synthesis prob-
lem is decomposed into n independent subproblems: Any o�-diagonal block of the
controller ~K(s) will only a�ect the input to a subplant for whose output it has no mea-
surement. Therefore any o�-diagonal block of the optimal ~K(s) can be taken to be
zero. This is equivalent to saying that a decentralized controller is optimal for a de-
centralized plant with decentralized weight (cost) functions. Although this statement
seems intuitively obvious, we have included a detailed proof in the appendix.

5. To recover the corresponding controller K(s) for the original problem, we note from
the lower right parts of UW and VW that U and V are the unitary matrices used
to diagonalize the lower right part of N . (This is because for one degree of freedom
feedback control the lower right part of N is equal to the plant G.) Thus, if we refer
to the optimal diagonal controller for ~N as �K(s), then the optimal controller for the
original problem is K(s) = V �K(s)UH , which is an SVD controller.

6. For ~N(s) the control problem consists of n independent synthesis problems of lower
dimension, and the controller ~K is obtained by minimizing the appropriate norm for
each separate subproblem. In particular, for the H1-case the H1-norm is minimized
in n directions, which is referred to by many researchers [20, 15, 35] as super-optimality.
2

Remark 1. In general, the solution to the H1 controller synthesis problem is non-unique
[12], since many controllers many achieve the optimumH1 norm in the worst direction, while
doing equally well or better in the other directions. Super-optimality [20, 15, 35] is achieved
when the H1-norm is optimized not only in the worst direction, but in n directions.

Remark 2. The interconnection matrix ~N(s) in Fig. 2 has the same number of states
as N(s) in Fig. 2, and the number of states of ~N(s) equal the sum of the number of states
of each diagonal block of ~N(s). Thus the number of states of the controller resulting from
collecting the SISO controllers in ~K(s) will equal the number of states in ~N(s), which is equal
to the number of states of a controller based on regular H1 synthesis. That is, for this class
of problems super-optimality does not require a controller with a higher number of states.

Remark 3. In general we solve n independent synthesis subproblems of low dimension.
In some cases the problem is even further reduced in size since some of these subproblems
are identical. For example, for the case of symmetric circulant systems we need only solve
(n+ 1)=2 SISO problems for odd n and n=2 + 1 problem for even n. For the case of parallel
processes we need only solve two independent subproblems (since n � 1 subproblems are
identical). For details see [17].

Remark 4. The theorem may be generalized to cases where the subplants �Gi(s) are
matrices. For example, see [17] who considered the special case of symmetric circulant plants.
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Mixed Sensitivity Example (continued).

For this example the interconnection matrix becomes

N(s) =

2
664

0 W1(s)G(s)

W2(s) �W2(s)G(s)

I �G(s)

3
775 (14)

Since the H1- and H2-norms are unitary invariant, we can from Eq.(12) use UW =
diagfUo; Ug = diagfU1; U2; Ug and VW = diagfVI ; V g = diagfU; V g to scale the output and
input of N(s), respectively, to give an equivalent optimal control problem with

~N(s) = UH
WN(s)VW =

2
664

0 �W1
(s)�G(s)

�W2
(s) ��W2

(s)�G(s)

I ��G(s)

3
775 ; ~K(s) = UK(s)V H : (15)

The transformed interconnection matrix ~N(s) in (15) consists of diagonal subblocks (similar
to the upper matrix in Fig. 2, with aj = 0, ej = 1 and fj = ��Gj), and we may permute
the order of the inputs and outputs such that we get a block-diagonal matrix (similar to the
lower matrix in Fig. 2) for which the optimal controller ~K(s) is diagonal. To �nd the optimal
~K = �K(s) we need only solve n subproblems of smaller dimension. The H1-norm of the
overall system M(s) is equal to the maximum H1-norm of the n subproblems (we now use
the fact that the optimal controller is an SVD controller)

kM(s)k1 = max
j2f1;:::;ng





 �W1j(s)�Gj(s)�Kj(s)=(1 + �Gj(s)�Kj(s))
�W2j(s)=(1+ �Gj(s)�Kj(s))






1

(16)

whereas the H2 norm of M(s) is equal to the sum of the H2 norm of the subproblems

kM(s)k2 =
nX
j=1








�W1j(s)�Gj(s)�Kj(s)=(1 + �Gj(s)�Kj(s))

�W2j(s)=(1 + �Gj(s)�Kj(s))








2

(17)

5 �-Optimal Control

In this section we shall generalize the H1-problem studied above to the design of robust
optimal controllers. This control problem results when we introduce model uncertainty and
want to minimize the H1-norm for robust performance, or alternatively want to optimize
robust stability.

5.1 The Structured Singular Value

The structured singular value, �, is used as a means of taking uncertainty in a feedback
system explicitly into account. Readers not familiar with the structured singular value are
referred to [10]; only a very brief introduction will be given here. The uncertainties in the
system are modeled with H1 norm-bounded perturbation blocks with weights to normalize
the maximum singular value of each perturbation block to unity. The block diagram for
the feedback system is then rearranged to give an interconnection matrix M(s) and a block-
diagonal matrix � with the perturbation blocks along the diagonal (see Fig. 3). If � is a
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K
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-

~K

~�
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Figure 3: Equivalent representations of system M with perturbation �.

WA ∆a

G

W0 ∆0

G

G

WI ∆I

WiA ∆ia

G

Wi0 ∆i0

G

G

WiI ∆iI

(a)

(b)

(c) (f)

(d)

(e)

Figure 4: Various sources of uncertainties: (a) additive, (b) multiplicative input, (c) multi-
plicative output, (d) inverse additive, (e) inverse multiplicative input, (f) inverse multiplica-
tive output.
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full matrix (i.e., � has no structure), the controller synthesis problem is a H1 problem, and
is covered by the results of the previous section. Otherwise, the structured singular value is
needed to account for the uncertainty in a non conservative manner.

It is important to note that � often has two levels of structure. First, � is often composed
of subblocks �i of the same size as G

� = diagf�ig (18)

These subblocks may represent di�erent sources of uncertainty in the system as illustrated in
Fig. 4. For example, actuator uncertainty is located at the input of the plant and is commonly
modeled as multiplicative input uncertainty, i.e., �i = �I . Second, each subblock �i may
have structure to reduce conservatism. For example, actuators may not in
uence each other,
so uncertainty associated with these actuators would be described by a diagonal �i. The
most common (and useful) structures for the subblocks �i are:

� Full block uncertainty: �i is a full matrix of the same dimension as the plant G(s).

� Independent diagonal uncertainty: �i = diagf�ijg; j = 1; : : : ; n is a diagonal matrix
with the same dimension n as the plant G(s).

� Repeated diagonal uncertainty: �i = �iI , i.e., a scalar uncertainty �i multiplied with
an identity matrix of the same dimension as the plant G(s).

The structured singular value with respect to the uncertainty structure � is de�ned as

�(M) �

8><
>:

0 if there does not exist � such that det(I +M�) = 0�
min
�
f��(�) jdet(I +M�) = 0g

��1
otherwise

(19)

Thus, ��1 is the smallest value for ��(�) for which there exists a � that makes the feedback
system consisting of M and � (in Fig. 3) unstable. If ��1 is larger than the magnitude of
the uncertainties in the system for all frequencies then the uncertainties cannot destabilize
the system, and the system is said to have robust stability. Usually, weights are used to
normalize the perturbations1 and the system is robustly stable if ��1 > 1, or equivalently,
� < 1. Similarly, a system is said to have robust performance if it ful�lls the speci�ed
performance criteria for any allowable uncertainty. Testing robust performance involves a �
test of increased dimension compared to the robust stability test.

Currently no simple computational method exists for exactly calculating � in general,
and recent work suggests that an e�cient exact method may not be possible [6]. However,
when the perturbations are complex then reasonably tight upper and lower bounds can be
derived from the following potentially loose bounds:

�(M) � �(M) � ��(M) (20)

To get tighter bounds scalings are included in the bounds and optimized over. For example,
the tight upper bound is

�(M) � inf
D

��(DMD�1) (21)

1In general, there may be weights on both the inputs and the outputs of the perturbation blocks. Usually,
one of these weights can be chosen to be an identity matrix
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where D is an invertible matrix with a structure such that D�1�D = �. For example,
D = dI if � is a full matrix, and D is a full matrix if � is repeated diagonal (� = �I).
For complex uncertainties the upper bound (21) is equal to � for three or fewer full blocks
[10], and usually within 1-2% when all there are no repeated blocks [2]. Even in the case
where there are repeated blocks, which can give a larger di�erence between � and its upper
bound, the fact that � is NP-hard motivates designing the controller based on the readily
computable upper bound. A controller which minimizes the upper bound for � in Eq. (21)
will be said to be DMD�1-optimal.

The upper bound for � is of interest in its own right for several reasons. One reason
is that the goal of the more popular procedure for designing robust controllers, called DK-
iteration, is to minimize the upper bound. Another reason is that, when all the uncertainties
are full and complex, the upper bound is a necessary and su�cient condition for robustness
to arbitrarily-slow time-varying linear uncertainty (see [29] for details). It can be argued that
this uncertainty description may be more useful for practical control problems.

The standard DK-iteration procedure [11] attempts to �nd the DMD�1-optimal con-
troller. DK-iteration involves alternating between the following two steps until the upper
bound is no longer minimized.

D Step: Find D(s) to minimize frequency-by-frequency the upper bound on � in (21).

K Step: Scale the controller design problem with D(s), and design anH1-optimal controller
for the scaled design problem DMD�1.

Although convergence to the global optimum is not guaranteed, DK-iteration appears to work
well [11].

5.2 �-Optimality of SVD controllers

In Section 4 we showed that an SVD controller was optimal for SVD problems involving the
H2- or H1-norm. The proof involved showing that for SVD problems the interconnection
matrix could be pre- and postmultiplied by block-diagonal unitary matrices to arrive at an
equivalent interconnection matrix ~N which consists of diagonal subblocks (as in Fig. 2), and
that the control problem in terms of ~N is equivalent to the original problem since the H2-
and H1-norms are unitary invariant.

This simple approach does not directly apply when we want to minimize � or its upper
bound (�(DMD�1)). For �, we must make sure that pre- and postmultiplying of the in-
terconnection matrix by unitary matrices does not alter the structure of the uncertainty �.
Similarly, for the DMD�1-problem we must make sure that pre- and postmultiplying with
unitary matrices does not alter the structure of the scaling matrices D. Therefore, additional
conditions on the uncertainty weights have to be imposed to ensure that the structures of �
and D remain unchanged.

We shall �rst consider the important case where all the uncertainty blocks are full matrices
(unstructured uncertainty), and then generalize the results to a larger class of uncertainty.

5.2.1 Full block uncertainties

Theorem 2 (DMD�1-Optimality for full block uncertainty) Consider a SVD control
problem with M(s) = WO(s)M0(s)WI(s) as in De�nition 1, and multiple sources of uncer-
tainty � = diagf�ig (as illustrated in Fig. 3) where each uncertainty �i is a full block of the

12



same size as the plant G. Consider the problem of �nding a controller K(s) that minimizes
sup
!

min
D

k DMD�1 k1 where D�1�D = �. Then

1. There exists an SVD controller which is optimal.

2. If DK-iteration is used to obtain the optimal controller, the K step (with �xed D)
consists of n independent SISO H1-optimal control problems, one for each of the SISO
subplants �Gi of G(s).

Proof: Let N denote the interconnection matrix corresponding to M . N has a block
structure corresponding to the uncertainties �i. With �xed D-scales we may absorb D and
D�1 into N to get

ND = D̂ND̂�1; D̂ = diagfD; Ig

We are then left with an H1-problem in terms ofND. Since all uncertainty blocks �i are full,
the D-scales are of the form D = diagfDig; Di = diIi. Then the only di�erence between N

and ND will be that the o�diagonal blocks are multiplied by scalars. Thus, the \structure"
of each block in ND will be the same as in N , and we can use the same transformation
~ND(s) = UH

WN(s)VW as in the proof of Theorem 1, to obtain a ~ND with diagonal blocks (as in
the upper part of Figure 2). As in Theorem 1 subsequent permutations yield a block-diagonal
~ND (as in the lower part of Figure 2). It then follows that for a �xed D an SVD-controller is
optimal and can be obtained by solving n independent SISO H1-problems. Since an SVD-
controller is optimal for any �xed D this structure must also be optimal for the optimal D.
2

Note that for full-block uncertainty no additional requirements on the weights are re-
quired, besides those given already for SVD-problems. For example, we may use scalar times
identity weights, Wi(s) = wi(s)I to represent the magnitude of each uncertainty. This is the
weight most commonly used in applications.

Also note that an SVD controller is optimal in this case, in spite of the fact that full
block (unstructured) uncertainty will allow for plants which cannot be written on the form
G(s) = U�G(s)vH (though the nominal plant is on this form).

5.2.2 Generalization: Robust SVD Problem

Here we want to generalize the result in Theorem 2 to a larger class of uncertainty. To this
e�ect we de�ne a subset of SVD problems which have additional conditions on the weights.

De�nition 2 Robust SVD Problems. Consider an SVD problem withM(s) = WO(s)M0(s)WI(s)
as in De�nition 1, and multiple sources of uncertainty � = diagf�ig, as illustrated in Fig. 3.
In addition to the requirements of De�nition 1, the weights WOi = UOi�WOi

(s)V H
Oi(s) and

WIi = UIi�WIi
(s)V H

Ii (s) related to each �i should ful�ll the following:

1. UOi = VIi for all repeated diagonal uncertainty, �i = �iI

2. UOi = VIi = I for all independent diagonal uncertainty, �i = diagf�ikg; k = 1; : : : ; n

For a full �i no additional assumptions on the weights are necessary.

Now we show that for this class of problems the interconnection matrix N can be pre- and
postmultiplied by block-diagonal unitary matrices to arrive at an equivalent interconnection
matrix ~N which consists of diagonal subblocks (as in Fig. 2).

13



Lemma 1 Let ~N be de�ned as in Eqs. (12) and (13). For �-optimality and DMD�1-
optimality of Robust SVD problems (De�nition 2), the \diagonalized" control problem is
equivalent to the original problem, in the sense that

min
K

� (Fl(N;K)) = min
~K

�
�
Fl( ~N; ~K)

�
(22)

min
K

inf
D

�
DFl(N;K)D�1

�
= min

~K

inf
D

�
DFl( ~N; ~K)D�1

�
(23)

where both � problems are with respect to the uncertainty in the original control problem, and
the structure of the D matrices in both DMD�1-problems is compatible with this uncertainty.

Proof: In the block diagram for the system, replace G with U�G(s)V
H , and substitute in

the weights WIi(s) and WOi(s). Rearranging the block diagram (see Fig. 3) gives ~N with
diagonal subblocks (similar to the top matrix in Fig. 2) with the subblocks of ~� given by
~�i = V H

Ii �iUOi. Note that under the assumptions on UOi and VIi in De�nition 2

1. ~�i is full if and only if �i is full;

2. ~�i is repeated diagonal if and only if �i repeated diagonal;

3. ~�i is independent diagonal if and only if �i independent diagonal.

Thus in Fig. 3 the middle block diagram is equivalent to the rightmost block diagram.
A similar argument holds with regard to the upper bound of �. Under the assumptions on

UIi and VOi, for each diagonal or full block �i the corresponding Di and its inverse commute
with UIi and VOi. For repeated diagonal blocks the UIi and VOi can be absorbed into the Di.
2

Remark 1. Requirement 1 in De�nition 2 for repeated diagonal blocks holds regardless
of the uncertainty's location when the plant is described by a normal transfer function matrix
(e.g., symmetric circulant plants) and the weights are repeated diagonal.

Remark 2. Requirement 1 also always holds for multiplicative or inverse multiplicative
(see Fig. 4) repeated diagonal uncertainty with repeated diagonal weights. Intuitively, it is
not surprising that this uncertainty does not prevent the system from being \diagonalized",
as this uncertainty can not change the structure of G. For example, for the multiplicative
case

G(s)(I + w(s)�I) = (I + w(s)�I)G(s) = (1 + w(s)�)U�G(s)V
H = U [(1 + w(s)�)�G(s)]V

H

(24)
Thus, if the nominal plant G is within one of the two classes of plants described in Section
2, then the plant with the repeated diagonal uncertainties (and weights) will be within the
same class and have the same singular vector matrices U and V .

Remark 3. Requirement 2 in De�nition 2 on the weights for independent diagonal
uncertainty is very restrictive. For example, it allows for scalar times identity weights only
for cases when U or V are equal to the identity matrix (that is, the inputs or outputs to the
plant are naturally aligned in the direction of the singular values). One example of a plant
with V = I is the DV con�guration for composition control of distillation columns studied
by Skogestad et al. [34]. This means that in most cases with diagonal uncertainty we cannot
assume that an SVD-controller is optimal.
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Theorem 3 (�-Optimality) Consider a Robust SVD problem where the objective is to min-
imize sup! �(M). Assume that all uncertainty blocks �i are diagonal (repeated diagonal
uncertainty or independent diagonal uncertainty) except possibly one full block. Then

1. There exists an SVD controller which is optimal.

2. The �-optimal control problem decouples into n independent SISO �-optimal control
problems, one for each of the SISO subplants of the plant.

3. For the case where one of the uncertainties is a full block, the full block can be replaced by
a diagonal (repeated or independent) block without a�ecting the value of the � objective.

Proof: If all uncertainty blocks �i are diagonal (including repeated diagonal uncertainty),
then the system consists of independent subsystems. If one uncertainty block is full, then
the diagonal uncertainty blocks can be absorbed into the interconnection matrix to get a
\reduced" ~N which still consist of diagonal subblocks after absorbing the diagonal uncertainty
blocks. Whatever the values of the diagonal blocks, we know from Thm. 1 that an SVD
controller is optimal for this \reduced" control problem. Thus an SVD controller is optimal
for the original � problem.

When all of the uncertainties are diagonal, the �-optimal control problem decouples into
n independent SISO �-optimal control problems. When one uncertainty block is full, then
consider the \reduced" ~N described above. As theM -matrix for the \reduced" control prob-
lem is diagonal, its spectral radius is equal to its maximum singular value. Hence the full
block uncertainty for the \reduced" control problem can be replaced by a repeated scalar or
independent scalar diagonal uncertainty block without changing the value of the \reduced" �
objective function. Since the worst-case full block uncertainty can be taken to be diagonal for
all values of the other diagonal uncertainty blocks, this must also be true for the worst-case
diagonal uncertainty blocks. Hence the full block can be replaced by a repeated or indepen-
dent scalar diagonal block for the transformed ( ~N) control problem, without a�ecting the
value of the worst-case � objective. Hence the original �-optimal control problem decouples
into n independent SISO �-optimal control problems, one for each of the SISO subplants of
the plant.

2

Remark to Theorem 3. In Theorem 3, the weights corresponding to the full block uncertainty
do not need to satisfy the restrictive assumptions for a repeated or independent scalar uncertainty
block in a robust SVD problem (in De�nition 2). This is because the full block uncertainty is not
replaced by a diagonal uncertainty until the \transformed" N-tilde matrix has been constructed. The
proof shows that replacing the one full block with a diagonal block does not change the value of the
worst-case � objective for the \transformed" � problem. Lemma 1 which is applied to the original �

problem with one full block and multiple diagonal uncertainty blocks implies that this worst-case �
objective is equal to the objective of the original � problem. In other words, the steps to handling the
full block are:

original � problem with one full block and multiple diagonal blocks (where the robust SVD problem
has been de�ned for these uncertainty blocks)

m
\transformed" � problem with multiple diagonal blocks and one full block

m
\transformed" � problem with multiple diagonal blocks and the one full block replaced by a diagonal

block
m

independent �-synthesis problems
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The weights for the original � problem need only satisfy the assumptions required by a robust

SVD problem with the original uncertainty description. It is these assumptions on the weights that

resulted in the \transformed" � problem. Because the full block is replaced by a diagonal block only

after the \transformed" � problem has been formed, stricter assumptions on the weights need not be

assumed for the full block uncertainty.

Theorems 2 and 3 complement each other in that Theorem 3 handles one form of uncer-
tainty (diagonal) and Theorem 2 handles another (full). By assuming � is equal to its upper
bound we can handle both types of uncertainty.

Theorem 4 (�- and DMD�1-Optimality) Consider a Robust SVD control problem (Def-
inition 2), and assume that � is equal to its upper bound (21). Then

1. There exists an SVD controller which is �-optimal.

2. For the DK-iteration procedure the K step consists of n independent SISO H1-optimal
control problems, one for each of the SISO subplants of the plant.

3. For repeated diagonal uncertainty: Di can be taken to be diagonal rather than full in
the D step.

Proof:

1. All diagonal blocks (repeated or independent) can be absorbed into the interconnection
matrix ~N without changing its structure. By Thm. 2 an SVD controller is optimal
for this \reduced" control problem for all values of the diagonal blocks. Thus an SVD
controller is optimal for the original � problem.

2. For independent diagonal and full block �i,Di is diagonal and cannot induce interaction
between individual subproblems. This also holds for Di corresponding to repeated
diagonal �i = �iI . To see this, again consider the \reduced" control problem. If
the Di corresponding to the repeated diagonal blocks introduced interaction between
subproblems, they would e�ectively allow for a larger class of uncertainty than the
original uncertainty description.

3. Scalings Di which do not cause interactions between subproblems are parametrized by
unitary times diagonal matrices. The unitary matrices do not a�ect the value of the
H1-norm, so can be ignored. 2

Remark. The assumption that � is equal to its upper bound is not restrictive. This
equality always holds when all uncertainty subblocks �i are full and three or less, or when
one block is full and one is repeated diagonal, and has been found to approximately hold
(within 1-2%) for all problems of practical interest [2].

5.3 DK-Iteration: Reduction of Computational E�ort

The above results can be used to reduce the computational e�ort involved in the K step of the
DK-iteration procedure in two ways. First, instead of solving one largeH1-synthesis problem,
one may solve n smaller H1-synthesis subproblems. Second, some of these n subproblems
may be repeated (identical), for example, this occurs for the important case when both the
plant and weights are symmetric circulant (or parallel). In general, the computational e�ort
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is not reduced in the D step where the upper bound to � is computed, since for the case of
full block uncertainty we have D = dI so d should be the same for all subproblems. This
restriction is di�cult to incorporate unless a simultaneous approach is used. However, all
repeated subproblems need only be considered once in �nding theDi (see item 3 in Theorem 4).
Thus repeated subproblems can be deleted before starting the DK-iteration design procedure,
and for a large number of subsystems the size of the DK-iteration and �-analysis problems
can be reduced dramatically.

When all uncertainty blocks are diagonal except possibly one full block, and the weights
for the diagonal blocks satisfy De�nition 2, the subproblems can be considered independently
for the D step, since the Di corresponding to the full block can be normalized to be the
identity matrix.

Below we summarize the general DK-iteration procedure for designing SVD controllers
for SVD problems.

Algorithm for �-optimal SVD Controllers using DK-iteration

1. Test whether the problem is a Robust SVD-problem as given by De�nitions 1 and 2. If
the structure of an uncertainty �i and its corresponding weights Wi(s) do not satisfy
De�nition 2, then an SVD controller may not be optimal. To use the design procedure,
treat the uncertainty as a full block, realizing that this is potentially conservative.

2. Form ~N(s) as given by Eq.13 and rearrange it such that it is block-diagonal.

3. Delete all identical subproblems in ~N .

4. K step: Design an H1-optimal controller for each independent unique subproblem,
and collect the optimal ~Ki(s) (without repetitions) into a diagonal matrix.

5. D step: Calculate the tight upper bound on � in (21) and obtain D(s). Return to step
4 until DK-iteration converges.

6. Collect the optimal ~Ki(s) (including repetitions for identical subproblems) into a diag-
onal matrix �K(s). Form K(s) = V�K(s)U

H .

7. If the DK-iteration procedure converged to the global minimum, then this would be the
�-optimal controller under the assumptions of Theorem 4, for the uncertainty assumed
in Step 1 of this algorithm.

Performing DK-iteration on the transformed systemwill converge faster and is numerically
better conditioned than on the original system. This is both because the H1 subproblems
are smaller than the original problem, and because the algorithm will be initialized with
a controller which has the correct (optimal) directionality. This will be illustrated in the
examples in Section 7.

6 One Source of Uncertainty

In the previous two sections we have shown that an SVD controller is optimal for classes of
problems of engineering interest. Here we consider a class of problems for which an SVD
controller may not be optimal, but in choosing the controller to on SVD form we get a
substantial simpli�cation in system analysis and controller synthesis.
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In particular, we consider control problems with one source of uncertainty. When this one
source of uncertainty is full, then at each frequency � equals its upper bound and �(M) =
�(M), which corresponds to minimizing the H1-norm and was studied in Section 4. When
this one source of uncertainty is not full, then an SVD controller may not be optimal for SVD
problems (the optimality depends on the structure of the uncertainty and weights). Still, an
SVD controller may be used, and we next state an interesting result for cases when M(s) is
a normal matrix.

Theorem 5 (Structure of the Uncertainty Block) Consider an SVD problem where the
objective is to minimize sup! ��(M). Make the additional assumption that the weights are of
the form Wi(s) = U�Wi

(s)UH, UH�Wi
(s)U , V�Wi

(s)V H, or V H�Wi
(s)V . Assume that the

system has only one multiplicative or inverse multiplicative uncertainty block (e.g., � = �I),
and an SVD controller is used. Then the robust stability for the system is independent of the
structure of the uncertainty block.

Proof: Trivial algebra shows that M is a normal matrix for multiplicative or inverse mul-
tiplicative uncertainty blocks. For example, consider multiplicative input uncertainty for
which M = W1KG(I +KG)�1W2. Substituting in G = U�G(s)V

H ; K = V�K(s)U
H ;W1 =

V�W1
(s)V H ;W2 = V�W2

(s)V H gives M(s) = V �M(s)V H , where �M(s) is a diagonal ma-
trix and we see thatM(s) is a normal matrix. The result then follows directly from (20) and
the fact that �(M) = �(M) for normal matrices. 2

Remark 1. The weights can always be written on the form required by Thm. 5 when
the uncertainty weight is scalar times identity Wi = wiI . This is a reasonable assumption in
many cases.

Remark 2. The matrix M(s) may not be normal for additive uncertainty and general
plants. However, if the plant is also a normal transfer function matrix, that is, G(s) =
U�G(s)U

H , then M(s) will be a normal matrix for any robust stability problem with a
single source of uncertainty (including additive or inverse additive uncertainty). Symmetric
circulant plants are normal, for example. Thus, in this case the robust stability of the system
will be independent of the structure of the uncertainty block whenever there is only one
source of uncertainty in the system.

The signi�cance of Thm. 5 is that, under the conditions of the theorem, the robust stability
problem can be replaced by an H1 problem, thus substantially simplifying system analysis
and controller synthesis. This simpli�cation holds regardless of whether the uncertainty is
described as linear time invariant [10], arbitrarily-slow linear time-varying [29], arbitrary
linear time-varying [30], or arbitrary nonlinear operators [30] (see references for descriptions
of these other uncertainty types).

7 Examples

The following examples illustrate the computational usefulness of the results of this paper.

7.1 Example 1: Distillation Column

Consider the robust controller design problem for the simpli�ed distillation column example
studied by Skogestad et al. [34], which under certain assumptions regarding the structure of
the uncertainty can be shown to be a Robust SVD problem according to De�nition 2. The
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nominal plant for this problem is of the form G(s) = k(s)A given in Eq. (3):

G(s) =
1

75s+ 1

2
4 0:878 �0:864

1:082 �1:096

3
5 (25)

The plant G(s) can be decomposed into G(s) = U�G(s)V
H with

�G(s) =

2
4 1:9721

75s+1
0

0 0:0139
75s+1

3
5 ; U =

2
4 0:6246 �0:7809

0:7809 0:6246

3
5 ; V =

2
4 0:7066 �0:7077

�0:7077 �0:7066

3
5 (26)

The plant has a condition number of 141.7 and an RGA-value of 35.5 at all frequencies [34].
Although not a good model of a real distillation column, this model is an excellent example
for demonstrating the problems with ill-conditioned plants and has been studied by many
other researchers. For example, in a somewhat altered form this robust controller design
problem has been considered by Yaniv and Barlev [37], and was used as a benchmark for the
1991 CDC [7].

For this problem, the relative magnitude of the uncertainty in each of the manipulated
variables is given by w1(s) = 0:2(5s+ 1)=(0:5s+ 1). The robust performance speci�cation is
that kw2Spk1 < 1 where w2(s) = 0:5(10s+ 1)=10s and Sp is the worst sensitivity function
possible with the given bounds on the uncertainty in the manipulated variables. This robust
controller design problem is easily captured in the framework of the structured singular value,
�. The resulting � condition for Robust Performance (RP) becomes:

RP () �(M) < 1 8! (27)

M =

2
4 �W1KSG W1KS

W2SG �W2S

3
5 ; � = diagf�1;�2g (28)

where �1 is a diagonal 2� 2 perturbation block, �2 is a full 2� 2 perturbation block, and

W1 = w1I2 and W2 = w2I2

Note that in this case with only three perturbation blocks the upper bound in terms of the
scaled singular value is equal to the structured singular value.

As stated this is not a Robust SVD Problem according to De�nition 2. However, if
we allow unstructured (full block) input uncertainty, i.w. �I is a full rather than diagonal
matrix, then this is a Robust SVD Problem, and we know from Theorem 4 that an SVD
controller K(s) = V �K(s)UH will be �-optimal.

Controller Design

Skogestad et al. [34] used DK-iteration with some early H1-software to design a controller
with 6 states giving a value of � = 1:067. Lundstr�om et al. [25] assumed full block input
uncertainty (for numerical convenience) and used the latest state-space H1 software [2]
to design a �-optimal controller with 22 states and with � = 0:978. As just noted we
know that the �-optimal controller for this case with full block input uncertainty should
be an SVD controller. Indeed, Engstad [13] found for Lundstr�om's [25] controller that the
diagonal elements in ~K(s) = V HK(s)U were more than 107 times larger than the o�-diagonal
elements, and removing these o�-diagonal elements did not a�ect the value of �, which
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suggests that Lundstr�om's controller is nearly �-optimal. We have made attempts to improve
on the design which gave � = 0:978 by considering diagonal rather than full block input
uncertainty. Somewhat surprisingly, this has not proved successful. Actually, the value of
� with Lundstr�om's [25] controller is not reduced by restricting the input uncertainty to be
diagonal. Thus, it seems that in this special case the worst-case uncertainty �i occurs when
�i is diagonal. Though we have no proof of this, it does seem reasonable since the input
singular vector matrix V in Eq. (26) has large o�-diagonal terms, which allows independent
input uncertainty to cause strong interactions between the nominal subplants �Gi(s). A
similar conjecture has been made earlier by Chen and Freudenberg [8].

Design of SVD controller. The optimal SVD controller may be obtained by design-
ing two SISO-controllers, �K1(s) and �K2(s), using DK-iteration which involves solving two
independent 2 � 2 H1-problems in the K-step and considering the full 4 � 4 �-problem in
the D-step to obtain the scaling D(s) = diagfd(s)I2; I2g . The order of this controller will
depend on the order selected for d(s) when �tting the D-scales.

Alternatively, one may design directly a low-order SVD-controller using \�-K iteration",
that is, by optimizing the parameters in a given controller to minimize �. This approach only
requires software to compute the structured singular value, as the DK-iteration involving
H1-norm minimization is not used. Freudenberg [14] used this approach. He assumed the
controller to be on the SVD form and obtained two SISO controller with 2+3=5 states giving
� = 1:054, and he also used this problem as an example in [9]. Lin [24] used the same
approach and obtained two SISO controllers with 7+4=11 states giving � = 1:038 (observed
from plot).

Engstad [13] also used the same approach, but he restricted the input uncertainty to be
diagonal rather than full, and used PID controllers of the form

�Kj = Kj

1 + �Ijs

�Ijs

1 + �Djs

1 + 0:1�Djs
(29)

Each controller has two states and three adjustable parameters. By numerical optimization2

he obtained a value of � = 1:036 which is only slightly higher than the optimal value of 0.978,
in spite of the fact that the overall controller only has 4 states. The optimal PID parameters
for the SVD controller were:

K1 = 38:3; �I1 = 3:21; �D1 = 0:50 (30)

K2 = 5:65; �I2 = 1:24; �D2 = 79:2 (31)

Note that the second controller is not really a PID controller since the derivative time is
larger than the integral time.

7.2 Example 2: Parallel Reactors With Combined Precooling

A simpli�ed model G(s) of four parallel reactors with combined precooling [33] is

G(s) =
1

100s+ 1

2
666664

1 0:7 0:7 0:7

0:7 1 0:7 0:7

0:7 0:7 1 0:7

0:7 0:7 0:7 1

3
777775 (32)

2Standard optimization software in Matlab was used. Numerical problems with local minima were reduced
by switching the optimization objective between minimizing the peak of � (i.e., k�(j!)k1) and minimizing
the integral square deviation of � from 1 (i.e., k�(j!)� 1k2).
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Figure 5: Block diagram for plant with uncertainties in Example 2.

The Fourier matrix diagonalizes the plant, i.e. G(s) = FH�G(s)F where the plant singular
values are

�G1(s) =
3:1

100s+ 1
; �G2(s) = �G3(s) = �G4(s) =

0:3

100s+ 1

Consider the process with input and output uncertainty as shown in Fig. 5. The input
uncertainty �1 and output uncertainty �2 are both assumed to be independent diagonal,
with uncertainty weights W1(s) = diagf0:2 5s+1

0:5s+1
g and W2(s) = diagf0:2 2:5s+1

0:25s+1
g. To reject

disturbances at the plant output, we include the performance speci�cation ��(W3Sp) < 1; 8!,
with W3(s) = diagf0:510s+1

10s
g. The overall problem (before SVD reduction) has two diagonal

4 � 4 uncertainty blocks and one full 4 � 4 performance block, and we get a 12 � 12 �

interconnection matrix:

M =

2
664
�W1KG(I +KG)�1 �W1K(I + GK)�1 W1K(I + GK)�1

W2G(I +KG)�1 �W2GK(I + GK)�1 W2GK(I + GK)�1

�W3G(I +KG)�1 �W3(I + GK)�1 W3(I + GK)�1

3
775 (33)

In order to make this a Robust SVD problem (see De�nition 2) we need to assume that all
the uncertainty blocks are full. We then have three full blocks and � is equal to its upper
bound such that Theorem 4 applies. Thus, for this potentially-conservative case we know
that an SVD controller is �-optimal. In addition, when we follow the Algorithm for �-optimal
SVD Controllers, we �nd that three of the four subproblems in ~N are identical. This means
that with DK-iteration we may solve two 3 � 3 independent H1 problems in the K Step,
and obtain the scalings d1(s) and d2(s) from a 6 � 6 � matrix M in the D Step. Using
this procedure we were able �nd a controller resulting in a �-value of 0.93. The state space
representation of the eigenvalues of this controller are given in Tables 1 and 2.

Thereafter we attempted to use DK-iteration to improve the controller design by using
the true diagonal structure for the uncertainties �1 and �2, the original 12� 12 M -matrix
(33), and the above controller as a starting point. However, we found that this increased the
complexity of the controller synthesis problem so much that we were unable to improve the
design using DK-iteration. The best controller the software was able to obtain had a �-value
of 0.96, which is larger than the �-value for the controller the algorithm was initialized with.
This result shows that there are numerical inaccuracies with the o�-the-shelf software. It also
demonstrates the important advantage of reduced problem size which results from applying
our method.

8 Discussion

Here we discuss additional uses of the SVD control structure.
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8.1 Generalizations of the Results

The results of this paper are easily generalized to cases with multivariable, possibly non-
square subplants. Synthesis problems similar to class B in Section 2 arise naturally whenever
identical multivariable plants are arranged in parallel or in a symmetric manner, respectively.

8.2 General Use of the SVD Controller Structure

The structure of an SVD controller may be useful also for problems that do not �t into the
problem de�nition in this paper. The reason is that we convert a multivariable design problem
into designing n single-loop controllers. The results of this paper (see above) imply that at
a �xed frequency the SVD structure is optimal (with some restrictions on the structures of
the perturbation blocks given in De�nition 2). This provides a theoretical justi�cation for
a design method based on obtaining an SVD of the plant at some important frequency, for
example, the closed loop bandwidth, and use this as a basis for design a realizable controller.
Indeed this has been suggested by several authors [21, 19]. One problem is that we need to
obtain real approximations of the singular vector matrices U and V . The ALIGN algorithm
of MacFarlane [19] deals with this particular issue. This design procedure should perform
well for process control problems which do not have U and V varying rapidly as a function
frequency, but may perform poorly for processes such as 
exible structures.

8.3 Design of Low Order Controllers

DK-iteration is known for resulting in controllers with many states. We have shown that the
SVD controller is the optimal structure for a certain class of problems, and this may be used
for designing controllers with a low number of states. Using V as a pre-compensator and UH

as a post-compensator, we are left with n SISO controllers to design for a plant of dimension
n�n. This design problem is similar to the conventional decentralized control problem (e.g.,
[18]), and may be solved by sequential design, independent design, or simultaneous design
(parameter optimization). The last approach was used to obtain the SVD-PID controllers
for the distillation example. However, unlike the regular decentralized control problem, there
is also the possibility to make use of the DK-iteration, such that each SISO controller is
obtained by minimizing the H1-norm (i.e., peak value) of one scalar transfer function. This
simpli�es signi�cantly the parameter optimization, but requires several iterations between
designing K and obtaining D.

8.4 Use as a Controllability Measure

The SVD controller structure can be used for obtaining a simple lower bound on the achievable
value for the upper bound to �. The frequency response of the � interconnection matrix can
be decomposed frequency-by-frequency. At each frequency the plant can be decomposed
into its singular value decomposition G = U�GV

H where in this cases all matrices may
be complex. The Algorithm for robust optimal SVD controllers can then be used at each
frequency. When the perturbation blocks are full and/or multiplicative/inverse multiplicative
repeated diagonal, DK-iteration will result in a controller of the SVD form. Because each
design subproblem at a �xed frequency only involves �nding one complex scalar, the synthesis
part is very simple (the state-space algorithm need not be used). This frequency-by-frequency
approach will not yield a realizable controller, since issues such as causality and phase-gain
relationships are ignored. Instead, the resulting value for the upper bound for � will be a lower
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bound on the upper bound for � obtainable by any realizable controller, and may therefore
(since � is usually close in magnitude to its upper bound) can be used as a controllability
measure

Lee et al. [23] also suggest to use the upper bound on � on a frequency-by-frequency basis
as a controllability measure. Use of the SVD structure in the calculation of the upper bound
will simplify the calculations involved.

9 Conclusions

For plants where the directionality is independent of frequency, the singular value decom-
position (SVD) is used to decouple the system into nominally independent subsystems of
lower dimension. In H2- and H1-optimal control, the controller synthesis can thereafter be
performed for each of these subsystems independently, and the resulting overall SVD con-
troller will be optimal (the same will hold for any norm which is invariant under unitary
transformations). In H1-optimal control the resulting controller is also super-optimal, as a
controller of dimension n� n will minimize the norm in n directions.

For robust control in terms of the structured singular value, �, the SVD controller is
optimal for most systems with full block complex uncertainty and repeated diagonal complex
uncertainty. In this case computational savings can be achieved in the controller synthesis
step of the DK-iteration scheme.

Nomenclature

D - Block diagonal scaling matrix
F - Fourier matrix
Fl - Lower linear fractional transformation (see Eq. (8))
G(s) = U�G(s)V

H - Transfer function matrix for the plant
K(s) - Transfer function matrix for the controller
M(s) - Matrix whose norm is to be minimized in the controller synthesis
M0(s) - The matrix M(s) with the weights removed
n - Plant dimension (n� n)
N(s) - Interconnection matrix for the synthesis problem
R - \Real Fourier matrix"; real, unitary eigenvector matrix for symmetric circulant matrices
s - Laplace variable
U - Output singular vector matrix of the plant G(s)
UOi - Output singular vector matrix for output weight i
V - Input singular vector matrix of the plant G(s)
VIi - Input singular vector matrix for input weight i
WI(s) = diagfWIi(s)g - Block diagonal matrix of weights for the inputs to M(s)
WO(s) = diagfW2i(s)g - Block diagonal matrix of weights for the outputs from M(s)
� - Block diagonal matrix of perturbations
�i - i'th block on the diagonal of � (of the same size as G(s))
� - Structure singular value
� - Magnitude of largest eigenvalue
� - Singular value
�� - Largest singular value
�(s) - Matrix of singular values
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! - Frequency

Subscripts
I - Input to synthesis problem
O - Output from synthesis problem
i - Block i on the diagonal of a block diagonal matrix j - Singular value j

Superscripts
H - Hermitian (complex conjugate transpose)
~ - Denotes that the matrix has been transformed by pre- and postmultiplication with unitary
matrices.
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Appendix

The following is a more detailed proof of item 4 in the proof of Theorem 1. Essentially, it shows that
a decentralized controller is optimal for a decentralized plant with decentralized weights (costs).

The optimal controller solve

inf
~K2Ks




Fl( ~N; ~K)



 (34)

where Ks represents the set of all stabilizing controllers.
The key to a rigorous proof that a diagonal controller ~K can be chosen to be optimal is to

reparametrize the above optimization over ~K as an optimization over the Youla matrix Q, and then
use matrix dilation theory to show that Q is diagonal. The set of all stabilizing ~K is given by

Ks =
�
K : K = (Y � TQ)(X � SQ)�1; Q 2 RH1

	
(35)

=
n
K : K = ( ~X � Q ~S)�1( ~Y �Q ~T ); Q 2 RH1

o
(36)

where (S; T ) and ( ~S; ~T ) are right and left coprime factors of ~N22 respectively (i.e., ~N22 = ST�1 =
~T�1 ~S), and (X;Y; ~X; ~Y ) is a solution to the following Bezout identity:"

~X �~Y

� ~S ~T

#"
T Y

S X

#
= I (37)

Note that, since ~N22 is diagonal we may choose T; S; ~X; ~Y ;X; Y; ~T; ~S to all be diagonal (to do this,
�rst construct the right and left coprime factors of each subsystem and stack these on the diagonal to
construct right and left coprime factors of the overall system).
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Using the parametrization (35)-(36), (34) becomes

inf
Q2RH1

kN11 +N12QN21k (38)

where

N11 = ~N11 + ~N12T ~Y ~N21 (39)

N12 = ~N12T (40)

N21 = ~T ~N21 (41)

The only restriction on Q is that it should be analytic in the closed RHP.
N11 consists of diagonal blocks because ~N11, ~N12, and ~N21 consist of diagonal blocks and T

and ~Y are diagonal. Similarly, N12 and N21 also consist of diagonal blocks. Thus, each entry of
N11+N12QN21 will have only one Qij in it, and the rows and columns of this matrix can be permuted
so that the permuted matrix can be partitioned with only one Qij in each partition (permuting the
rows and columns of a matrix does not change the value of its Unitary-invariant norm). Call this
permuted matrix P (Q) and let Pij(Qij) be the partition containing Qij. Then

inf
Q2RH1

kN11 + N12QN21k = inf
Q2RH1

kP (Q)k (42)

Now we will specialize to the H2- and H1-norms. For the H1 norm, recall from basic linear algebra
that the maximum singular value of a matrix (in this case, P (Q)) is greater than the maximum
singular values of each partition Pij of P (Q), that is,

inf
Q2RH1

kP (Q)k
1

= inf
Q2RH1 and Q full

sup
!

��
�
P (Q)js=j!

�
(43)

� inf
Qij2RH1

max
i;j

�
sup
!

��
�
Pij(Qij)js=j!

��
(44)

� inf
Qii2RH1

max
i

�
sup
!

��
�
Pii(Qii)js=j!

��
(45)

= inf
Q2RH1 and Q diagonal

sup
!

��
�
P (Q)js=j!

�
(46)

= inf
Q2RH1 and Q diagonal

sup
!

��
�
N11 +N12QN21js=j!

�
: (47)

Thus minimizing over diagonal Q gives an H1-norm less than or equal to the value obtained by
minimizing over full Q. Since Q being diagonal is more restrictive than allowing Q to be full, the
above inequalities are equalities and the optimal Q can be taken to be diagonal. That diagonal Q
corresponds to diagonal K can be seen from (35)-(36), that is

inf
Q2RH1 and Q diagonal

sup
!

��
�
N11 + N12QN21js=j!

�
(48)

= inf
~K2Ks and ~K diagonal




Fl( ~N; ~K)




1

: (49)

QED (H1-norm case).
For the H2-norm, recall from basic linear algebra that the square of the Frobenius norm of a

partitioned matrix (in this case, P (Q)) is equal to the sum of the squares of the Frobenius norms of
its partitions (in this case, Pij). Thus,

inf
Q2RH1 and Q full

kP (Q)k2 (50)

= inf
Q2RH1 and Q full

s
1

2�

Z 1

�1

Trace (P �(Q)P (Q)) d! (51)
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= inf
Q2RH1 and Q full

s
1

2�

Z 1

�1

kP (Q)k2F d! (52)

= inf
Qij2RH1

vuut 1

2�

Z 1

�1

X
i;j

kPij(Qij)k2F d! (53)

� inf
Qii2RH1

s
1

2�

Z 1

�1

X
i

kPii(Qii)k2F d! (54)

= inf
Q2RH1 and Q diagonal

s
1

2�

Z 1

�1

kP (Q)k2F d! (55)

= inf
Q2RH1 and Q diagonal

s
1

2�

Z 1

�1

Trace (P �(Q)P (Q)) d! (56)

= inf
Q2RH1 and Q diagonal

kN11 +N12QN21k2: (57)

Thus minimizing over diagonal Q gives an H2 norm less than or equal to the H2 norm obtained by
minimizing over a full Q. Because forcing Q to be diagonal is more restrictive than allowing Q to be
full, the inequality is an equality and the optimal Q can be taken to be diagonal. That diagonal Q
corresponds to diagonal K can be seen from (35)-(36), that is

inf
Q2RH1 and Q diagonal

kN11 +N12QN21k2 (58)

= inf
~K2Ks and ~K diagonal

kFl( ~N; ~K)k2: (59)

QED (H2-norm case).
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A

Sub-diagonal Main diagonal Super-diagonal

-9.692E�08 0

0 -1.509E�01 0

0 -1.021E+00 0

0 -9.600E+00 9.525E+00

-9.526E+00 -9.600E+00 0

0 -1.338E+02 0

0 -1.110E+04

B CT D

-1.944E�01 -5.222E�01 0

-7.293E�02 9.074E�00

2.644E�01 1.218E+01

-2.228E+00 -4.392E+01

-1.747E+00 -2.743E+01

2.460E+01 -2.472E+03

-1.633E+01 -3.098E+05

Table 1: State space description of �K1 for the controller found in Example 2.
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A

Sub-diagonal Main diagonal Super-diagonal

-9.975E�08 0

0 -1.535E�02 0

0 -3.325E�01 0

0 -4.099E�01 0

0 -2.192E�00 9.257E�01

-9.257E�01 -2.192E+01 0

0 -1.645E+01 0

0 -1.250E+02 0

0 -1.987E+02

B CT D

4.426E�01 6.897E�01 0

-8.813E�02 1.931E�01

2.441E�01 -1.079E�00

6.614E�01 1.413E+01

5.825E�02 -5.937E+00

5.437E�01 -5.180E+00

-3.673E�01 -6.958E+01

-1.435E+02 9.608E+02

-1.437E+02 -1.541E+03

Table 2: State space description of �K2 = �K3 = �K4 for the controller found in Example 2.
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