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Abstract. This paper considers the process of control structure design, and in par-
ticular it addresses the issue of selecting measurements and manipulations for partial
control. Partial control at a given level involves controlling a subset of the outputs
with an associated control objective. The relative gain array (RGA) and singular value
decomposition (SVD) are useful measures for selecting inputs and outputs.
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1. INTRODUCTION

One of the most important task in the design of a control
system is the speci�cation of the control structure. Steps
in the process of control structure design are:

(1) Selection of controlled outputs.
(2) Selection of manipulations and measurements.
(3) Selection of control con�guration.
(4) Selection of controller type.

One may easily recognize that the design of a control
structure is more complex than the task of synthesiz-
ing a controller for given sets of measurements and ac-
tuators. This paper mainly consider steps 1, 2 and 3
and introduces controllability measures to address the
input/output selection problem. With a large number
of candidate measurements and/or manipulations the
number of possible combinations of inputs and outputs
have a combinatorial growth, so an approach consisting
of performing a controllability analysis for each possible
combination becomes time consuming. In this paper we
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therefore suggest to use measures for non-square systems
such as the relative gain array (RGA) and singular value
decomposition (SVD) to select inputs and outputs.

Notation. We consider linear time invariant transfer
function models on the form

y(s) = G(s)u(s) +Gd(s)d(s) (1)

where u is the vector of manipulated inputs, d is the
vector of disturbances and y is the vector of outputs.
The objective is to keep the control error e = y � r
small, where r is the vector of reference signals. G(s)
and Gd(s) are transfer matrices of sizes l�m and l�nd.
Throughout the paper subscripts i, j and k denotes a
particular output yi, input uj and disturbance dk. The
notation yl6=i means all outputs except output number
i. [A]ij = aij denotes the ij'th element of the matrix A

and ~A = diagfaiig contains the diagonal elements of A.

Scaling. The variables should be scaled to be within
the interval �1 to 1, that is, their expected magnitudes
should be normalized to be less than 1. This is done by
dividing the unscaled signals by their expected maximum
allowed change uj;max, dj;max, ri;max and ei;max. The
scaled model can then be written

e = y � r = Gu+Gdd�R~r (2)



where R = diagf
ri;max

ei;max
g. At each frequency we assume

kuk1 < 1, kdk1 < 1, k~rk1 < 1 and we want kek1 < 1.

Related and previous work. The relative gain array
(RGA) was �rst introduced by Bristol (1966) at steady
state as the ratio of the \open-loop" and \closed-loop"
gains between input j and output i when all other out-
puts yl 6=i are perfectly controlled using the inputs uh6=j

�ij(s) =
@yi=@uj

@yi=@uj jyl 6=i
= gij

�
G�1

�
ji

(3)

The RGA matrix can be computed at any frequency
using the formula

�(G(s)) = G(s)� (Gy(s))T (4)

where Gy is the pseudo-inverse of G (Chang and Yu,
1990). Interpreting the RGA in terms of perfect control
at steady state is only possible when rank(G) = l.

Stanley et al. (1985) introduced the Relative Distur-
bance Gain (RDG) and Skogestad and Morari (1987)
found that it may be evaluated at any frequency using

�jk =
@uj=@dkjyi=0; 8i

@uj=@dkjyi=0; (i=j)

=
[ ~GG�1Gd]jk

[Gd]jk
(5)

Skogestad and Wol� (1992) introduced the Partial Dis-
turbance Gain (PDG) as the e�ect of disturbance dk on
the uncontrolled output yi when a set of outputs yl 6=i
are controlled by a set of inputs uh6=j . For square G
they presented

PDG =
@yi
@dk

����
uj ;yl6=i

=
[G�1Gd]jk
[G�1]ji

(6)

The Partial Disturbance Gain has been applied to a con-
tinuos bioreactor (Zhao and Skogestad, 1994) and to a
FCC process (Wol� et al., 1992).

Also the partial disturbance gain can be generalized to
a non-square and singular G by the use of the pseudo-
inverse. However, the gains at steady state can only be
interpreted in terms of perfect control when rank(G) = l
(Gy is then a right-inverse of G). Otherwise, PDG can
be interpreted in terms of least square control.

2. DEFINITION OF PARTIAL CONTROL

Partial control at a given level involves controlling only
a subset of the outputs for which there is a performance
objective. Divide the outputs and inputs into the sets:

� y1 uncontrolled outputs at the present control layer.
� y2 controlled outputs at the present control layer.
� u1 inputs not used at the present control layer.
� u2 inputs used to control y2.

To analyze the feasibility of partial control, one may con-
sider the e�ect of the disturbances and reference changes
on the uncontrolled outputs. Let 1 and 2 denote the sets
of indicies for the uncontrolled and controlled outputs.
The partial disturbance gain de�ned in (6) can be used
to quantify the e�ect of disturbances on the uncontrolled
outputs. To be more precise, the following notation is
used for the e�ect of disturbance dk on uncontrolled
output yi when y2 are controlled using u2

P y2;u2
yi;dk

=
@yi
@dk

����
y2=0 using u2; i21

(7)

Note that the partial disturbance gain depends not only
on the disturbance dk and the output yi, but also on the
choice of controlled outputs y2 and manipulated inputs
u2. This is the reason to the notation P y2;u2

yi;dk
.

Similarly, the \partial reference gain" is de�ned as the
e�ect of a reference change in the controlled output rf
on uncontrolled output yi when the outputs y2 are con-
trolled using the inputs u2

P y2;u2
yi;rf

=
@yi
@rf

����
y2=0 using u2; i21; f22

(8)

Pd and Pr are used to denote the matrices of all dis-
turbance and reference gains when it is clear from the
context what y2 and u2 are.

3. TRANSFER FUNCTIONS FOR PARTIALLY
CONTROLLED SYSTEMS

By rearranging and partitioning the inputs and outputs
as given above, the overall model y = Gu+Gdd and the
error e = y �R~r can be written

y1 = G11u1 +G12u2 +Gd1d; e1 = y1 �R1~r1 (9)

y2 = G21u1 +G22u2 +Gd2d; e2 = y2 �R2~r2 (10)

With feedback control of y2 using u2, u2 = K2(r2� y2),
the partially controlled system becomes

y1 = (G11 �G12K2(I +G22K2)
�1G21)u1 +

(Gd1 �G12K2(I +G22K2)
�1Gd2)d +

G12K2(I +G22K2)
�1r2 (11)

Perfect control of y2. At some frequencies it may be
reasonable to assume y2 perfectly controlled. We can
then set e2 = 0 and eliminate u2 in (9) and (10) to get

y1 =

Puz }| {
(G11 �G12G

�1
22 G21) u1 +

(Gd1 �G12G
�1
22 Gd2)| {z }

Pd

d+G12G
�1
22 R2| {z }

Pr

~r2 (12)

where Pd is the partial disturbance gain, Pr is the par-
tial reference gain, Pu is the gain for the unused inputs



u1 for a system under partial control and r2 = R2~r2.
The advantage with the model (12) is that the model is
independent of K2, but we stress that it only applies at
frequencies where y2 is tightly controlled.

Remark 1. (6) and (12) re
ect two di�erent ways of
computing the PDG's which yield the same results. This
follows from the de�nition. With one uncontrolled out-
put and one unused input, (6) gives an e�cient way of
computing all combinations of PDG's for disturbance
dk. With more than one uncontrolled output and one
unused input, it is easier to use (12).
Remark 2. One advantage with (6) is that it provides
direct insight into which uncontrolled output and un-
used input to select. We have: Select uj such that row j
in G�1Gd has small elements (keep the input constant
for which the desired change is small), and select yi cor-
responding to a large element in row j of G�1 (keep an
output uncontrolled which is insensitive to uj).

4. USES OF PARTIAL CONTROL

Three applications of partial control are:

(1) Inner cascade loops with extra measurements y2.
(2) Indirect control of y1 by controlling y2.
(3) Sequential design of decentralized controllers.

In the cases 2 and 3 there are performance objectives
associated with the outputs y2 (so ~r2 is given). The three
problems are closely related, and in all cases we want
the e�ect of the disturbances on y1 to be small when
y2 is controlled. In particular we want kPdk < kGd1k.
An additional desirable property for all three cases is
to achieve fast and acceptable control of y2. A common
controllability requirement is

� �(G22) > 1; 8! < !B2 (!B2 denotes the desired
bandwidth of the secondary loop).

One justi�cation of this requirement is to avoid input
constraints in u2.

1. Inner cascade loops. In this case, y2 are additional
\secondary" measurements with no associated perfor-
mance objectives. The control objective is to achieve sat-
isfactory performance for the \primary" outputs y1. One
way to improve the control of y1 may be to control y2.
In particular, this may reduce the e�ect of the distur-
bances d on y1, when d enters between the input of the
plant and y2. Note that with the inner loop closed, ~r2 is
a degree of freedom for controlling y1.

De�ne the frequencies !Gd1
and !Pd where kGd1k = 1

and kPdk = 1 (the upper frequencies). In the cases where
!Pd < !Gd1

, disturbance rejection in y1 is improved for
frequencies ! > !Pd . Performance in y1 can further be
improved by using u1 and ~r2 at low frequencies. A com-
mon controllability imposed on Pr and Pu is then

� �([Pr Pu ]) > 1; 8! < !Gd1
.

This is to guarantee that u1 and ~r2 stay within the
desired limits and applies irrespective of the controller
type, provided that the secondary loops y2 $ u2 are
intact.

2. Indirect control (\true" partial control). In
some cases, the outputs are correlated such that control-
ling the outputs y2 indirectly gives acceptable control of
some other outputs y1. Two examples of \true" partial
control are given in section 6 for a binary distillation
column and a FCC process.

In the following !B denotes the desired bandwidth for
the control loop. For rejection of combined disturbances
in y1, the following requirement must be satis�ed

� A set of outputs y1 may be considered kept uncon-
trolled if kPdki1 < 1; 8! < !B .

Reference changes in ~r2 may also be regarded as distur-
bances for the uncontrolled outputs y1.

� For combinations of reference changes, a set of out-
puts y1 may be considered kept uncontrolled if
kPrki1 < 1; 8! < !B .

� For combined reference changes and disturbances,
a set of outputs y1 may be considered kept uncon-
trolled if k [Pd Pr ] ki1 < 1; 8! < !B.

The induced in�nity norm k � ki1 computes the maxi-
mum row sum (sum of element magnitudes) and re
ects
the e�ect of d and ~r2 for the worst case output.

3. Sequential controller design. One common way
to implement a hierarchical control system is to �rst
implement a lower-level control system for controlling
the outputs y2. With this lower-level control system in
place, one designs a controllerK1 for control of y1. Some
criteria for selecting u2 and y2 in this case are given in
(Hovd and Skogestad, 1993).

5. PARTITIONING TOOLS

The subsets y1, y2, u1 and u2 can be expressed as:

y1 = NT
y?y; y2 = NT

y y; u1 = NT
u?u; u2 = NT

u u

where N is a selection (projection) matrix. For exam-
ple to select the two �rst outputs of a plant set Ny =
[ e1 e2 ] where ei is a vector of size l with zeros in all el-
ements except in position i which contains 1. With this
notation the uncontrolled and controlled outputs can be
written in terms of d, u1 and u2

y1 =

G11z }| {
NT
y?GNu? u1 +

G12z }| {
NT
y?GNu u2 +

Gd1z }| {
NT
y?Gd d (13)

y2 = NT
y GNu?| {z }
G21

u1 +NT
y GNu| {z }
G22

u2 +NT
y Gd| {z }
Gd2

d (14)



5.1 RGA and the selection problem

Several authors have used the relative gain array (4)
as a selection tool for control structure design and in
particular for the pairing problem for decentralized con-
trol. Results which are connected to the row sums and
column sums have also been suggested. Chang and Yu
(1990) recognized that the row sums of the RGA stayed
between zero and one for non-square plants with full col-
umn rank (more outputs than inputs). They used this to
rank candidate outputs corresponding to the row sums
of the RGA. Recently Cao (1995) presented a similar
suggestion for the input selection problem, involving the
column sums of the RGA. Cao (1995) also derived the
relation between input singular vectors and the column
sums of the RGA. In Theorem 1 we generalize the result
in (Cao, 1995) to the outputs (row sums of RGA) and
also provide a simpler proof.

In the following, consider the model y = Gu and write
the singular value decomposition of G as

G = U�V H = Ur�rV
H
r (15)

where �r consists only of the r = rank(G) nonzero sin-
gular values, Ur consists of the r �rst columns of U , and
Vr consists of the r �rst columns of V .

Let ej and ei be de�ned as above (uj = eTj u, yi = eTi y).

Then eTj Vr yields the projection of a unit input uj onto

the non-zero input space of G and eTi Ur yields the pro-
jection of a unit output yi onto the non-zero output
space of G. We follow (Cao, 1995) and de�ne

E�ectiveness for input j: �I;j = keTj Vrk2 (16)

E�ectiveness for output i: �O;i = keTi Urk2 (17)

The following theorem links the SVD to the RGA.

Theorem 1 RGA and SVD.
mX
j=1

�ij = keTi Urk
2
2;

lX
i=1

�ij = keTj Vrk
2
2 (18)

Proof. See Appendix A.

Note that keTi Urk2 is simply the 2-norm of row i in
Ur. Essentially, for the case of extra measurements (out-
puts) one may consider eliminating measurements cor-
responding to rows in the RGA where the sum of the
elements is much smaller than 1. Similarly, for the case
of extra manipulations (inputs) one may consider elim-
inating manipulations corresponding to columns in the
RGA where the sum of the elements is much smaller
than 1. The RGA used in this way can be a useful tool
for screening because it may be computed only once by
including all the alternative measurements and/or ma-
nipulations and thus avoids the combinatorial problem.

When G is square and non-singular the input and out-
put e�ectivenesses are equal to one (column and rows
of RGA for a square non-singular G sums to one), and
the RGA provides no ranking of inputs and outputs. We
may then obtain more information by directly consider-
ing the SVD. We have

Result 1 SVD for input/output selection. A rank-
ing of potential inputs and outputs used in a control
structure of dimension ky � ku (ky < r and ku < r,
where r = rank(G)) can be obtained by considering the
2-norm of the rows in the matrices Uky and Vku where
Uky consists of the �rst ky columns of Ur and Vku con-
sists of the �rst ku columns Vr.

This can be justi�ed from the fact that the �rst ky
columns of Ur and the �rst ku columns of Vr correspond
to the most signi�cant directions and the 2-norms of the
rows correspond to the input and output e�ectivenesses
of the subsystem of dim ky � ku. The singular value
�k+1 is a measure of the information disregarded in the
partial control structure, i.e. kG �NyG22N

T
u k � �k+1,

where k = maxfky; kug. See also example 2.

Remark 1. The criteria for selecting inputs and outputs
through the use of RGA, considering all non-singular di-
rections or only the k �rst non-singular directions, can
be viewed in terms of maximizing the information con-
tained in those directions on the selected inputs/outputs.
Remark 2. It is not clear what this selection procedure
implies in terms of measures like �(G22), ��(G22), 
(G22)
and kG � NyG22N

T
u k. However, since there is a �nite

number of combinations, it is possible to �nd the pro-
jection matrices Ny and Nu which maximize �(G22) or
minimize kG�NyG22N

T
u k for a given dimension ky�ku

of G22 simply by testing all possibilities.

5.2 Least square and \true" partial control

By considering the least square solution to the full (opti-
mal) and the partial control problems, one can quantify
the imposed performance loss by partial control for a
particular choice of Ny and Nu. Due to space limitations
we simply state the results in terms of control errors (�)
for reference changes in ~r2 and disturbance rejection for
the full (�f ) and the partial (�p) control problems

�f = [ (GGy � I)NyR2 �(GGy � I)Gd ]

�
~r2
d

�
(19)

�p=

�
G12G

y
22R2 Gd1 �G12G

y
22Gd2

(G22G
y
22 � I)R2 �(G22G

y
22 � I)Gd2

� �
~r2
d

�
(20)

For the performance loss to be small we want k�pk to
be close to k�fk.



6. CASE STUDIES

Example 1 Partial control of distillation column.
This example discusses partial control of a 2 � 2 dis-
tillation column. We use the reduced 5-state model of
the distillation column given in (Hovd and Skogestad,
1992). The full 82-state model consists of 40 theoreti-
cal trays plus a total condenser and includes both liquid

ow dynamics and composition dynamics. Disturbances
in feed 
ow rate F (d1) and feed composition zF (d2)
are included. The LV con�guration is used, that is, the
manipulated inputs are re
ux L (u1) and boilup V (u2).
Outputs are product compositions yD (y1) and xB (y2).
The disturbances and outputs have been scaled such
that a magnitude of 1 corresponds to a change in F
of 20%, a change in zF of 20% and a change in xB and
yD of 0:01 mole fraction units. One and two point con-
trol of binary distillation columns has also been studied
by (Waller et al., 1988).

At steady-state the model and the RGA are

G=
h

88:2 �86:8
108:8 �110:1

i
Gd=

h
7:9 8:9
11:7 11:3

i
�=

h
36:1 �35:1
�35:1 36:1

i
The RGA-elements are much larger than 1 which indi-
cates that the plant is fundamentally di�cult to control.
It also indicates that the two outputs are closely related.
Consider the SVD at steady state, G(0) = USV H

U=
h
0:62 �0:78
0:78 0:62

i
S=

h
198:2 0:0
0:0 1:36

i
V =

h
0:71 �0:71
�0:71 �0:71

i
From U we see that the gain to the bottom composition
is slightly larger than the top composition. This may
indicate that it is best to control bottom composition
and leave top composition uncontrolled.

The partial disturbance gain for the two disturbances
for the four alternative partial control schemes are

P 2;2
1;d = [�1:32 0:013 ] P 2;1

1;d = [�1:59 �0:24 ]

P 1;2
2;d = [ 1:68 �0:016 ] P 1;1

2;d = [ 1:95 0:297 ]

In all four cases we see that control of one output sig-
ni�cantly reduces the e�ect of the disturbances on the
uncontrolled output. In particular, this is the case for
disturbance 2, for which the gain is reduced from about
10 to 0:30 and less. The best partial scheme is seen to
be scheme 1 where the e�ect of disturbance 1 is �1:32,
which is only slightly above one in magnitude. This
scheme corresponds to controlling output y2 (the bot-
tom composition) with u2 (the boilup V ) while letting
y1 (the top composition) being uncontrolled, which also
from a physical point of view, is a reasonable control
scheme. Frequency-dependent plots for scheme 1 show
that the same conclusion applies also at higher frequen-
cies. This is seen in Fig. 1 where we show for disturbance
1 both the open-loop disturbance gain (Gd11, Curve 1)
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1. Open loop, Gd11
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3. Add static FF

Fig. 1. E�ect of d1 on y1 for distillation column example.

and the partial disturbance gain ( P 2;2
1;d1, Curve 2) as

function of frequency.

Let us next consider how we may reduce the e�ect of dis-
turbance 1 (the feed 
ow rate F ) on y1 (which is Pd(0) =
�1:32 at steady-state) to be less than 1 by using a feed-
forward controller based on measuring d1 (the feed 
ow
rate F ) and adjusting u1 (the re
ux L). In practice, this
is easily implemented as a ratio controller which keeps
L=F constant. This eliminates the steady-state e�ect
of d1 on y1 (provided the other control loop is closed).
With Pu(0) = g11 � g12g

�1
22 g21 = �2:45 we get u1 =

�Pu(0)
�1Pd(0)d1 = �1:32=2:45d1 = �0:54d1. The re-

sulting disturbance e�ect is shown in Fig. 1 as curve 3.
However, due to measurement error we cannot achieve
perfect feed-forward control, so let us assume the error is
20% and use u1 = �1:2 � 0:54d1. The steady-state e�ect
of the disturbance is then Pd(0)(1� 1:2) = 0:265, which
is still acceptable. However, as seen from the frequency-
dependent plot (curve 4), the e�ect is above 0.5 at higher
frequencies, which may not be desirable. The reason for
the peak is that the feed-forward controller, which is
purely static, reacts too fast and in fact makes the re-
sponse worse at higher frequencies (as seen when com-
paring curves 3 and 4 with curve 2). To avoid this we
�lter the feed-forward action with a time constant of 3
min resulting in the following feed-forward controller:
u1 = � 0:54

3s+1d1. To be realistic we again assume 20% er-
ror, and the resulting e�ect of the disturbance on the
uncontrolled output is shown by curve 5, and we see
that the e�ect is now less than 0.265 at all frequencies.

Example 2 Input/output selection for FCC pro-
cess. For the linear model of the FCC process consid-
ered by (Hovd and Skogestad, 1993; Wol� et al., 1992)
we have at steady state

G =

�
10:16 5:59 1:43
15:52 �8:37 �0:71
18:05 0:42 1:80

�
Gd =

�
1:66 0:36 �13:61
0:47 0:23 �3:89
1:86 0:56 �15:30

�
From a SVD of G(j!) we �nd �(G(j!)) < 1 8!. Hence,
it is likely to encounter input constraints for certain
combinations of disturbances and reference changes. We
therefore consider 2�2 control of the FCC process. With
the two strongest input and output directions i.e. U1 =



[u1 u2 ], V1 = [ v1 v2 ], the 2-norms of the rows be-
comes

�I = [ 0:997 0:982 0:201 ]
T

�O = [ 0:774 0:927 0:736 ]
T

We clearly see that the input u3 has little e�ect on G
and that this input may be considered unused. For the
outputs the situation is not so obvious, y1 and y3 seems
to be of equal importance. However, for higher frequen-
cies (not shown) �O;1 and �O;2 approaches 1, whereas
�O;3 approaches 0, so we select y1 and y2 together with
u1 and u2 in a partial control structure of size 2 � 2.
It is worth noting that this control structure (denoted
Hicks) was considered by (Hovd and Skogestad, 1993) as
the best one. They argued from a controllability point
of view taking into account RHP-zeros, constraints and
di�erent operating modes.

The following example shows that although the RGA is
an e�cient screening tool, it must be used with some
caution.

Example 3 Consider a plant with 2 inputs and 4 can-
didate outputs of which we want to select 2. We have

G =

"
10 10
10 9
2 1
2 1

#
; � =

"
�2:57 3:27
1:96 �1:43
0:80 �0:42
0:80 �0:42

#

The four row sums of RGA are 0:70, 0:53, 0:38 and
0:38. To maximize the output e�ectiveness we would
select outputs 1 and 2. However, this yields a plant

G1 =
h
10 10
10 9

i
which is ill-conditioned with large RGA-

elements, and most likely di�cult to control. Selecting

output 1 and 3 yields G2 =
h
10 10
2 1

i
which is well-cond-

itioned. For comparison, the minimum singular values
are �(G) = 1:05, �(G1) = 0:51, �(G2) = 0:70. The mini-
mized condition numbers (
�(A)=minD1;D2


(D2AD1),
where D1 and D1 are diagonal matrices) are 
�(G) =
11:69, 
�(G1) = 37:97, 
�(G2) = 5:83.

7. CONCLUSION

We have stated relationships between the RGA and SVD
which generalizes the results of (Cao, 1995). These tools
can be used to obtain a ranking of the possible inputs
and outputs. However, they should be used with care
since there may be many other factors which determine
controllability.
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Appendix A. PROOF OF (18)

The proof of the identities in (18) are given for the gen-
eral case. Write the SVD of G asG = Ur�rV

H
r where �r

is invertible. We have that gij = eTi Ur�rV
H
r ej , [G

y ]ji =

eTj Vr�
�1
r UH

r ei, U
H
r Ur = Ir and V

H
r Vr = Ir where Ir de-

notes identity matrix of dim r�r. The row sum becomes

mX
j=1

�ij =
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e
T
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H
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r U
H
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Im
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r ei=keTi Urk

2
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The proof of the column sum is similar when changing
the order of the two scalar terms gij and [Gy ]ji and
summing over i.


