
A Comparative Analysis of Numerical Methods for Solving Systems

of Nonlinear Algebraic Equations

Atle C. Christiansen, John Morud and Sigurd Skogestad

Departement of Chemical Engineering

Norwegian University of Science and Technology

N{7034 Trondheim Norway

Abstract

This paper compares two numerical methods for �nding solutions to a system of non{linear algebraic
equations (NAE's). We consider homotopy{continuationmethods and discuss inherent di�culties in using
such methods. To prevent potential unboundedness of the homotopy paths we provide some insight into
how appropriate branch{jumping techniques may be applied. We also present a novel tear and grid method

based on conventional techniques of partitioning and precedence ordering, with the addition of including
a grid of the tear variables. Both methods may be used to obtain initial solutions as well as exploring
solutions in the parameter space. A comparative analysis of the methods is presented in terms of a few
example problems. For simple models consisting of a relatively small number of equations, we �nd that
the grid method o�ers potential savings in both computer time and implementation e�ort. However, the
perhaps most appealing feature of the tear and grid method lies in the convenient visualization of the
solution space.

1 Introduction

During the last decades an extensive range of computer{aided methods for both steady state and dynamic
simulation has evolved. Driven by an increase in both computer availiability, computing power and
e�ciency, computer aided tools are now a standard feature in almost all aspects of chemical process
engineering. A recent review of availiable numerical methods for process design, optimization and control
with emphasis on non{linear analysis is given by Seider and Brengel (1991). However, in this work we
limit ourselves to the study of numerical methods for steady state analysis, i.e. procedures for �nding
one or all solutions to a system of non{linear algebraic equations (NAE's) which we denote by

f (x; �) = 0
f : Rm �Rk ! Rm; x 2 Rm; � 2 Rk (1)

where x is a m-dimensional vector of state variables and � a k-dimensional vector of parameters. In
an excellent review of numerical methods for solving NAE's that were available at the time the review
was written, Sargent (1981) claims that \there is no method which clearly stands out from all the rest

in terms of both reliability and e�ciency". Even though we today face a bewildering range of methods,
and proposals for new methods appear quite frequently in the literature, Sargent's analysis still seems
to hold in the general sense. Still, in the future it is to be expected that the engineer will require
speci�c solution methods designed to deal with the particular problem at hand. Being able to choose the
\optimal"method from a library of di�erent algorithms according to some prede�ned objective is thus a
great advantage. We argue that such objectives for choosing the appropriate numerical methods should
be formulated according to the size, complexity and di�culty of the problem at hand, rather than rigour
or ability to handle any pathological problem. A rule of thumb should be to avoid shooting sparrows
with canons.

Local versus global methods. It is common to distinguish between local and globalmethods, depend-
ing on the respective domains of attraction for convergence. Among the most common local methods
used in solving chemical engineering problem we �nd the Newton, Quasi{Newton, Secant, Broyden and
De
ation methods. However appealing in terms of simplicity and 
exibility, local methods usually dis-
play poor convergence properties unless good starting guesses are provided, due to dependancy on the
function evaluations at the particular point. Although methods exist for enlarging the domain of attrac-
tion, local methods often fail to converge. Venkataraman and Lucia (1988) argues that failure is \always
due to some physical inconsistency in the model". However, providing good starting points, which is
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di�cult if little knowledge exist about the system, still seems to be the only remedy for avoiding these
inconsistencies. Also, local methods can at best �nd one solution for each given starting guess. Since
most chemical engineering models contain non{linear equations, multiple solutions and other complex
behaviour arise quite frequently. Knowledge about what kind of behaviour to expect is invaluable in both
process design and control, hence methods that are able to detect for example steady state multiplicity
should be availiable to the engineer. This calls for reliable global methods which are capable of handling
most problems. However, these \methods of last resort" usually require high computational e�ort and
should be used only if local methods fail. We also stress that there is yet no method for guaranteeing
global convergence if a solution exist.

Outline of paper. In section 2 we give a brief review on classical approaches to formulation and
numerical solution of various homotopy{continuation schemes. Although these methods have been used
for quite some time in other disciplines, it is only during the last decade that successfull applications
to chemical engineering problems have been reported. We discuss some inherent di�culties in using
available homotopies, and in particular we adress the issue of potential unboundedness of the homotopy
paths. To restrict the path to some �nite domain we apply branch{jumping techniques based on variable
transformations and arguments of symmetry. Such techniques have the advantage that no changes in the
model equations are required. In section 3 we introduce a novel algorithm called tear and grid method

in which we utilize conventional theory for partitioning and precedence ordering. We show how explicit

solution schemes may be found by choosing a suitable set of decision (tear) variables. In conventional
algorithms these procedures usually involve some iterative scheme. However, we illustrate that costly
iterations may be avoided by making a grid in the tear variables. The solutions are �nally obtained
by visual inspection or interpolation as intersections of the residual surfaces. In section 4 we present a
comparative analysis of the two methods in terms of a few example problems.

2 Homotopy{Continuation Methods

Due to the lack of global convergence properties for most conventional Newton or quasi{Newton methods,
homotopy{continuation methods were introduced in solving chemical engineering problems during the
late 70's and early 80's. The ideas of continuation methods are however not new, and were according to
Ortega and Rheinboldt (1970) introduced in the literature by Lahaye (1934) to solve a single non{linear
equation. A comprehensive survey of the use of homotopy continuation in computer aided design is
given by Wayburn and Seader (1987). Among more recent applications within chemical engineering we
mention a few important works. W. J. Lin (1987) computed multiple solutions of interlinked distillation
columns. Kovach and Seider (1987) applied an algorithm with particular emphasis on avoiding limit
points for the simulation of an industrial heterogeneous azeotropic distillation tower. A similar approach
was used by Chang and Seader (1988) to show how certain design parameters a�ect a continuous reactive{
distillation system. Fidkowski et al. (1991) use continuation methods to demonstrate how elementary
bifurcation theory may be used in the design of nonideal multicomponent distillation. For reviews on
methods and other applications we also refer to the works of Seider and Brengel (1991) or Allgower
and Georg (1993). The mathematical principles of the continuation algorithm is thoroughly described
in several textbooks (see e.g. Seydel (1988) or Kubi�cek and Marek (1983)). There also exist some
semi{commercial applications, e.g. AUTO (Doedel n.d.) or HOMPACK (Watson et al. 1987)).

Problem formulation The underlying idea of homotopy continuation is to embed the model equations
f(x) in a blending function H(x; t) forming the linear homotopy function

H (x; t) = tf(x) + (1 � t) g(x) = 0 (2)

where x denote the model variables, t the homotopy parameter and g(x) a function for which the solution
is known or easily obtained. Several choices exist for g(x) each yielding a di�erent homotopy with di�erent
behaviour. Alternative homotopies are :

Fixed point homotopy : H (x; t) = tf (x) + (1 � t) (x� x0) (3)

Newton homotopy : H (x; t) = tf (x) + (1 � t) (f(x)� f (x0)) (4)

A�ne homotopy : H (x; t) = tf (x) + (1� t)A (x� x0) (5)

where A denotes a proper weighting matrix to avoid scaling problems, typically chosen as f 0(x0). Yet
another alternative is to choose g(x) as a (related) problem which is easier to solve than f(x). The
di�erent homotopies form a convex linear homotopy, meaning convexity in the sense that the errors in
the components of f(x) decreases linearly from the initial values given by x0 (Kovach and Seider 1987).
The advantage with the often used �xed point homotopy is, besides its simplicity, that any additional
multiplicities introduced by adding further functions are avoided. Other homotopies may have more



appealing numerical properties, but in general there are no de�nite guidelines for choosing the optimal
one. We proceed by discussing brie
y how solutions to the homotopy function may be obtained.

Solving the Homotopy function. A common approach to solving the homotopy function (2) is to
reformulate the system of NAE's (2) to an initial value problem (IVP), as suggested by Davidenko (1953).
By di�erentiating the homotopy function with respect to t we derive

dH (x; t)

dt
=

@H

@x

dx

dt
+

@H

@t
(6)

Given an initial solution, x0, equation (6) constitutes an IVP which may be integrated by any numer-
ical integration scheme, e.g. Runge Kutta or Gear's method. Most continuation algorithms use some
predictor{corrector scheme, typically an Euler predictor and Newton corrector step. The homotopy path
is thus de�ned by the locus of all solutions found by tracking equation (2) from t = 0 with a known
or easily obtained initial solution x = x0, and ending at t = 1 for which f(x) = 0. Hence the desired
solution to f(x) = 0 is obtained i� the homotopy path is tracked up to the point where t = 1. Under
certain assumptions H(x; t) is continuous such that the path containing (x;0) also contains (x; 1) (see
Ortega and Rheinboldt (1970)). Multiple solutions may also be detected by allowing the path to extend
beyond the limits 0 � t � 1. The continuity conditions are however often violated, and obstacles arise
that may prevent successfull tracking.

Unboundedness and non{uniqueness of homotopy paths. A detailed analysis of situations under
which homotopy{continuation methods may fail is given in the work of Wayburn and Seader (1987). In
this work we discuss only the most common causes of failure, of which one is that

i) The Jacobian H 0(x) becomes singular at turning points

To avoid problems in tracking the solution curve across turning points, most algorithms proposed in
the literature introduce the arc{length to de�ne the search directions along the path. We use a slightly
modi�ed approach in which orthogonal search directions are found from linear algebra as described in a
work by Morud (1995). In addition to di�culties in crossing turning points, problems also arise when

ii) The homotopy path becomes unbounded

Since the homotopy path needs to be �nite in order to be trackable, some kind of branch jumping
technique or variable transformation must be introduced if the homotopy branches connect in in�nity.
Seader et al. (1990) suggested to use mapped continuation methods, called toroidal and boomerang

mapping, in which variables that extend to �1 are kept bounded through a proper transformation.
The authors conjecture that all solutions may be traced from any starting point using a �xed point
homotopy and allowing all variables to take complex values. Su�cient proof of such global convergence
properties is not provided, and whether or not all solutions may be found from one starting point is
still an open question. An objection to the latter approach is that introducing complex arithmetics
considerably increases the computational e�orts. Paloschi (1995) suggested instead to use new bounded

homotopies that on one hand avoids tracking complex paths, and at the same time guarantees solution
paths to remain inside a prescribed region. However, as recognized by the authors, more work needs to
be done on theoretical aspects of these proposed homotopies. A third potential problem is that

iii) Multiple solutions may exist for g(x) = 0

If the added function g(x) has multiple solutions, the homotopy path may return to a second solution of
this simpler problem without passing through the desired solutions to f(x) = 0. Wayburn and Seader
(1987) use the concept of topological degree to indicate when multiple solutions of g(x) may cause failure.
This problem is easily avoided by using �xed point of A�ne homotopies since the residuals x � x0 is
simply a vector of scalars. Another problem frequently occurring is that

iv) Variables may exceed the domain on which they are de�ned

Since thermodynamic functions often involve logarithms or square roots, they become unde�ned when
substituting for example negative values of mole fractions. This situation arise quite frequently since the
solutions obtained along the homotopy path are not intrinsically feasible in a physical sense. Wayburn and
Seader (1987) suggests to use the absolute value functions to resolve such problems. Finally, convergence
may also be prevented by

v) Occurence of isolated solutions along the homotopy path

There are at present date no method which deals with overcoming problems of isolas, as noted also by
Seader et al. (1990), thus we pose this problem as a great challenge for future work.

As an alternative to the approaches suggested by Seader and Paloschi, we will in the next section
focus on some simple branch{jumping techniques in order to overcome the problems of unbounded paths.
By using the simple inverse mapping function, we show how arguments of symmetry may be used to



predict where solution branches connect across asymptotes. In cases of single and linear asymptotes we
found that the inverse mapping works satisfactorily. However, in situations where for example several
asymptotes lie arbitrarily close in the variable space (as for the CSTR example to be discussed later),
or in cases of non{linear asymptotes, the situation is not that simple and the algorithm displayed poor
convergence characteristics. Further work needs to be done on both theoretical and numerical aspects of
this issue. Before going into detail on the mathematical issues of continuation and branch jumping, we
illustrate the usefullness of applying branch jumping techinques by considering a simple scalar example
function previously studied by W. J. Lin (1987) and Seader et al. (1990).

Introductory Example : Scalar Function. Consider the function given by

f(x) = x
2 � 3x+ 2 (7)

for which the analytical solutions x = f1; 2g are easily obtained. We applied the �xed point homotopy

H(x; t) = t
�
x2 � 3x+ 2

�
+(1� t) (x� x0) and �gure 1 shows the homotopy paths and the two solutions

to f(x) = 0 denoted I and II at t = 1. The path consists of three branches and is traversed in the

direction indicated by arrows. Starting at the arbitrary initial point x0 = 1:5 on branch 1, we �nd both

solutions by allowing the homotopy path to extend beyond the interval 0 � t � 1. We see that the path

goes to in�nity at the connection points (t; x) = f(0;�1) ; (�1; 1:2929) ; (�1; 2:7071)g. In spite of

its unboundedness the homotopy curve is successfully tracked numerically by applying a simple inverse

mapping function which imposes a jump of �nite length in the mapped variable space. In the next
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Figure 1: Homotopy paths for H(x) = x2 � 3x+ 2 + (1� t)(x� x0).

section we outline the principles of our continuation algorithm.

2.1 Continuation Algorithm

Given an initial solution to the homotopy function (2), say (x0; 0), the purpose of continuation
is to calculate successive solutions

(x1; t1); (x2; t2); : : : ; (xn; tn) (8)

until one or more solutions are found for which t = 1. The calculation sequence commonly
consists of a predictor and corrector step. Our algorithm distinguishes itself somewhat from
most other methods found in the literature, in that we introduce the augmented vector of state
variables, i.e. x̂ = [ x j t ]T . This allows us to treat any parameter as the continuation parameter,
hence we do not distinguish between parameters or variables in the solution procedure. Using the
augmented x̂ also allows us to �nd orthogonal search directions for the predictor and corrector
step in a simple and straightforward manner. For reasons of simplicity we will in the rest of the
presentation denote x as the augmented vector (slight abuse of notation).

Euler Predictor. In the predictor step we start at a known point on the solution curve, xk, and
make a �nite step in a direction tangential to the curve. By linearizing the augmented homotopy



function H(x) around a point xk we get

�H(xk) = J�x = 0 (9)

We recognize the matrix of partial derivatives J = @H=@x as the augmented Jacobian matrix,
where the (n + 1)st column is the derivative of H with respect to the homotopy parameter t.
We see from equation (9) that any step �x along the homotopy path will be in the null space of
the augmented Jacobian, N (J). The Jacobian is computed numerically using central di�erences.
The Euler step thus becomes

xk+1 = xk + h�x (10)

where h is the steplength in the direction of the nullspace{vector �x.

Newton Corrector. In the corrector step we apply a Newton Raphson scheme in order to
iterate towards a converged solution. By choice we require that the corrector steps should be
taken in a direction orthogonal to the predictor step. We thus iterate in the row space of the
Jacobian R(JT ), and the search direction is obtained from the pseudo{inverse J+ evaluated at
the previous solution point xk. Mathematically stated the corrector steps thus becomes

xn+1k+1 = xnk+1 � J+H
�
xnk+1

�
(11)

The corrector step is repeated until the error norm is reduced beyond a given tolerance �, say
until kH(xn+1

k+1
)k � �. If convergence problems are encountered one may improve the accuracy

by updating the Jacobian matrix in the iteration steps. We may for example use a rank one

update (Broyden) applied at each new iteration step (see e.g. Westerberg et al. (1979)). We
apply a simple step{length algorithm where the step{length is updated according to the number
of iterations in the corrector step. If a prescribed upper limit on the number of iterations is
exceeded, the step{length is halved successively until convergence.

2.2 Branch{jumping Techinques

In order to enable branch{jumping one needs to de�ne a direction for the jump in the solution
space. We demonstrate how such directions may be found based on theory from linear algebra
and simple arguments of symmetry. We outline the general principles of the methods, but the
detailed mathematical issues are described in Appendix A.

Method 1: Aligned Asymptotes. This �rst method applies when the asymptotes are aligned
with the coordinate axis of the original variable space, i.e. when asymptotes occur either for a
given t or a given xi. The underlying idea of the method is to impose a �nite step in a transformed
variable y which is mapped according to the inverse mapping function

y =
1

xi
(12)

where xi denotes the variable for which asymptotes arise. The reader should note that we do
not distinguish between variables x or the homotopy parameter t, since both variables may go
to in�nity along the path. In �nding a point on the connecting solution branch we also use a
predictor{corrector scheme. A step in the direction of the null-space of the original variable xi
and the corresponding step in the mapped variable y is illustrated in �gure 2.
Using arguments of symmetry we seek a step in the mapped variable space so that

1

xnew
=

1

xold
+�

�
1

x

�
(13)

If we take the asymptote for the original variable xi to constitute the ordinate in the mapped
variable space y, we �nd if we allow xi to become su�ciently large that the linearized homotopy
path is actually symmetric in the vicinity of the origin in the mapped space. Di�culties in using
this method arise when several variables become large simultaneously, or the asymptotes are not
aligned with the orthogonal coordinate axes of the variable space Rm. In such cases we wish to
de�ne a subspace in which only one of the variables are large. Finding such a subspace requires
some way of rotating the coordinate axes, an issue that is dealt with in method 2.
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Figure 2: Schematic demonstrating the branch{jumping across asymptotes for Method 1

Method 2 : Skew Asymptotes. One way of �nding the desired subspace in case of skew
asymptotes is to align one of the coordinate axes in the rotated space with the direction of the
asymptote of one variable. In order to use arguments of symmetry as described in the last section
we aim to �nd a subset of coordinate axes which are orthogonal to the direction of the asymptote.
A basis for such a rotated variable space is formed by a matrix, say T , whose column space is
spanned by the bases for the left null-space, N (xT ), and the column space, R(x) of x. From
linear algebra we know that for a n{dimensional vector x 2 Rm, this matrix T spans the whole
of Rm. If we denote the new variables by the veactor �, we have that

x = T� (14)

thus x is in the column space of T . To �nd the direction of the jump in the rotated variable
space, ��, we simply �nd the direction of the null{space, N (�). Hence we have

J�x = JT�� = 0 (15)

where the matrix product JT de�nes the Jacobian of the rotated function space, f(�(�); �). We
wish to make a small step in 1=� in the direction of the null space and thus follow the same
steps as demonstrated for Method 1 to eventually obtain �x = T��. For the simplest case of
linear asymptotes we may again use symmetric arguments to predict the value of the mapped
variables. However when the asymptotes are non{linear, symmetrical considerations are not at
all that obvious. We have applied this method to some simple example problems, and found
that problems arise both when asymptotes are non{linear and in cases where several asymptotes
appear close in the variable space. Finding robust solution methods that deal with such situations
represents a challenge that should be dealt with in future works. In the next section we introduce
the features of the alternative tear and grid approach.

3 Methods Exploiting Algebraic Structure

A key issue which is often neglected when solving systems of NAE's is the task of decomposing
the system into smaller subsets, called partitions, until irreducible partitions are obtained. These
partitions are then solved in turn, which reduces the computational e�ort compared to simulta-
neous solution of the whole system. For large sparse problems Sargent (1981) claims that it is
always worth partitioning, but as shown in this work the payback may be considerable also for
small problems. The irreducible partitions may however be decomposed even further by guessing
some of the variables occurring in the subset, a method known as tearing. If possible one should
choose the number of tear variables so that the system of NAE's can be reduced to a sequence
of single{variable equations. Since the tear variables are guessed arbitrarily prior to solving the
remaining system of non{teared functions, a residual corresponds to each teared function, i.e. the
functional value is di�erent from zero. Conventional tearing methods thus involve some iterative
scheme since the residuals must be adjusted until every teared function attain a value of zero.
To avoid costly iterative schemes, we suggest instead to make a grid of the tear variables and



calculate the residuals for each point in the grid. Depending on the required accuracy solutions
may then be obtained either by visual inspection of the solution surfaces or by numerical inter-
polation between adjacent points in the grid. In addition to �nding initial solutions, the method
is also well suited for exploring solutions in the parameter space. Bifurcation diagrams are easily
obtained by using the bifurcation parameters as the grid variables. In this work the tear (grid)
variables are found by inspection, but in the general case an algorithm is required to obtain the
optimal set of tear variables. Leigh (1973) propose an implicit scheme to �nd the minimum tear
set for complete decomposition.

3.1 Conventional Design of Decomposition Methods

Decomposition methods aim at �nding smaller subsets, or partitions, of the system of NAE's that
are easy to solve. Partitioning in this sense involves the assignment of which output variables
to be solved by each of the equations. This choice is not arbitrary since a partition of a system
is unique (see e.g. Sargent (1981)). Precedence ordering on the other hand involves �nding the
order in which the equations are to be solved. We illustrate these ideas by the following simple
example. To expose the underlying algebraic structure Himmelblau (1973) suggested to display
the occurence (incidence) matrix, where each row corresponds to an equation fi and each column
to a variable xi. Entries denoted by 1's in row i and column j thus indicate that variable xj
appears explicitly in equation fi.

x1 x2 x3 x4 x5
f1 1 1 1 1
f2 1 1 1 1
f3 1 1 1
f4 1 1 1
f5 1 1 1

(16)

As suggested by Westerberg et al. the best way to obtain the partitioning and precedence ordering
is probably to use a directed graph where an arrow points from node fi to fj i� the assigned output
variable for fi appears in fj . By assigning each variable xi to the corresponding equation fi,
we obtain the directed graph shown in �gure 3 (a). By making an appropriate choice of tear
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Figure 3: Directed (a) and reduced graph (b) for example (16)

variables we may then �nd a completely decomposed partition. By inspection of the directed
graph in �gure 3 (a) one �nds that if x1 and x2 are assigned as tear{variables, leaving f1 and f2
for calculation of the residuals, x3, x4 and x5 may be calculated explicitly from equations f3{f5.
Figure 3 (b) shows the directed graph that results after choosing the tear variables, i.e. deleting
object 1 and 2 and the corresponding arrows in �gure 3 (b). In order to avoid computationally
expensive iteration on the teared functions, we propose in the next section a method based on
making a grid of the tear variables.



3.2 Tear and Grid Method

In the following one should note that �nding all solutions requires that the non{teared functions
yield unique solutions. A su�cient condition for uniqueness is that the system can be reduced to
single variable equations by algebraic manipulations, i.e. one variable is explicitly calculated from
one particular equation. One should note that these variables may appear as nonlinear terms,
but in the extreme case a linear subset is obtained from which only matrix invertion is required
to obtain the solution. The principles of the method are conveniently described by considering
the system (16) discussed in the last section, since solutions may be visualized in 3 dimensional
plots.

Finding initial solutions. After assigning the tear variables we �nd the appropriate parti-
tioning and precedence ordering which yield a completely decomposed subset. We then make
a grid of the chosen tear variables, in this case x1 and x2 which yields two residuals Res1 and
Res2. By algebraic manipulation we may then calculate x3{x5 explicitly from f3{f5, provided
each function allows for isolation of one of the variables. The residuals are then obtained for the
two teared functions f1 and f2 for each point in the grid. This scheme leads to solution surfaces

for Res1 and Res2 in the 3 dimensional space when displayed as functions of the tear variables
x1 and x2. Since we require that both residuals must be zero, solutions to the system of NAE's
(16) are found in the plane de�ned by Resi = 0 denoted the zero contour. The intersections
betweeen the residual surfaces and the zero contour yield lines in 3 dimensional plane. Finally
we obtain all solutions within the prescribed grid at the intersections of these two lines, i.e. as
points in the zero contour. Since visulisation of surfaces is an important feature of the tear and
grid method, the method is particularly suitable when the solution procedure requires only two
tear variables, although this is by no means restrictive for the numerical solutions. We illustrate
by some example problems given in the next section that solution surfaces are quite conveniently
visualized.

Exploring solutions in parameter space. If the set of NAE's is non square, one needs in
conventional steady state simulation to specify either a parameter or a variable for each degree
of freedom (DOF). Instead of �xing the values of these variables, one may instead use the tear
and grid approach to make a grid in the parameters or a convenient subset of the variables
corresponding to the number of DOF. Hence one may solve an underdetermined set of equations
to obtain solutions in the parameter space. By making a proper choice of grid variables and
appropriate algebraic manipulations of the model equations, explicit solution schemes may be
found also in the task of exploring solutions in the parameter space. However, we stress that
�nding all solutions requires that the variables are unique functions of the equations from which
they are solved.

Coarseness of grid. Depending on the required accuracy for the solutions, the coarseness of
the grid (number of points) may be chosen for convenience. One may for instance apply the grid
method to obtain an initial screening of the solution surface in order to �nd in which regions
solutions may be found. By reducing the domain of the grid variables step by step and thereby
narrowing in on the solutions, one may decrease the computation time considerably compared
to making a �ne grid of the whole solution space. Such screening may be very usefull when little
information exist about the process and thus in which regions solutions are likely, which often is
the case in the design of new processes.

Interpolation methods. As illustrated in the previous outline, solutions are in the �nal step
detected as intersections of lines in the socalled zero contour, which are projections of residual
surfaces. Displaying these lines by virtue involves interpolation between the projected grid points.
Most available algorithms for interpolation use some polynomial approximation, i.e. Lagrange
polynomial or inverse interpolation. The interpolation polynomial aims at connecting the com-
puted data points by selecting a polynome of appropriate order, which is related to the number of
grid points. If the chosen grid is too coarse one may either fail to �nd some of the true solutions,
or introduce additional solutions due to failure in the interpolation routine. The method applied
in this work uses an inverse distance method (The MAthWorks 1992). The solutions obtained
by visual inspection are usually approximate, hence if higher accurracy is required one should
either resort to interpolation between neighbouring points, or use the approximate solutions as
initial guesses for some Newton{based method.



4 Numerical Results

We present in this section numerical results obtained with the proposed methods for two simple
examples of physical processes, i.e. an example of two CTSR's in series and a coupled cell reaction.
The example problems are primarily chosen so that problems related to complex behaviour of
the homotopy path are easily demonstrated. For the CSTR example we show that convergence
problems arise if several variables become unbounded simultaneously, since it is di�cult to obtain
an appropriate direction for the branch jump. Attempting to align the coordinate axis with the
asymptotes by rotation (method 2) also failed in this case. For the coupled cell example we
illustrate that isolas may occur along the homotopy path, thus preventing successfull tracking.
For both examples we show that multiple solutions are easily obtained without di�culties by
applying the tear and grid method.

Example 1 : Two CSTR's in series

We here consider a model of two CSTR's in series (see e.g. Kubi�cek and Marek (1983) or Seydel
(1988) for details regarding the model). The steady state model is comprised by a system of four
coupled non{linear equations

(1� �)x2 +Da1 (1� x1) exp

�
�1

1 + �1=


�
= 0 (17)

(1� �) �2 � �1 +Da1B (1� x1) exp

�
�1

1 + �1=


�
� �1 (�1 � �c1) = 0 (18)

x1 � x2 +Da2 (1� x2) exp

�
�2

1 + �2=


�
= 0 (19)

�1 � �2 +Da2B (1� x2) exp

�
�2

1 + �2=


�
� �2 (�2 � �c2) = 0 (20)

Homotopy{continuation. We applied both �xed point and Newton homotopies in order to
�nd a solution with the parameter values �xed as given in �gure 4 (a) and (b). As demonstrated
in �gure 4 the homotopy function displays rather complex behaviour, and convergence problems
ocurred due to di�culties in �nding a proper direction of the branch jump. Numerical instability,
in terms of unstable oscillations in the correction step, was encountered due to the Jacobian
matrix becoming extremely illconditioned in the vicinity of the asymptotes. This example illus-
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Figure 4: Fixed point homotopy paths for example of two CSTR's in series

trates one of the problems often encountered when using branch{jumping techniques based on
arguments of symmetry, namely that an upper limit on the size (norm) of x needs to be chosen
apriori for when the jump is to be taken. If the upper bound is chosen such that the direction of
the null{space vector for the mapped variable, evaluated at 1=x, does not pass through or rather
closely to �1=xi, convergence problems in the corrector step are to be expected. Convergence



properties thus relies heavily on the inverse being su�ciently close to zero. If not, it becomes
di�cult to predict at which point the branches connect beyond the asymptote. Another problem
related to the choice of an upper bound is that the path may extend to large values of x and return
without displaying asymptotic behaviour. For the example considered here it may be preferable
to apply either bounded homotopies as suggested by Paloschi (1995) or allowing continuation in
the complex domain (Seader et al. 1990). However, there are no proofs that guarantee conver-
gence for neither of these methods. In this case the homotopy path was eventually tracked by
applying continuation up to a point in the vicinity of the second (vertical) asymptote. The re-
maining solution branches was then found by discretizing the homotopy function in t and solving
the system of equations by a Newton{method.

Tear and grid approach. Although the homotopy{continuation algorithm exhibited poor
convergence properties, initial solutions were quite easily obtained by the grid method. By
inspection of the model equations we �nd that assigning �1 and �2 as grid variables, allows for
explicit calculation of x1 and x2 from (18) and (20) respectively. Since x1 and x2 occur linearly
we also note that the solutions are unique. In �gure 5 a) and b) we illustrate the shapes of the
residual{surfaces calculated from (17) and (19). The parameter values corresponds to the case
given in �gure 4 (a). The intersection of the residual surfaces and the 0{contour yields lines in
three dimensional space as shown in �gure (c), and the initial solution for �1 and �2 is eventually
obtained by the intersection of these lines as shown in (d). As a veri�cation of the method we see
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Figure 5: Visualisation of solutions to f(x) = 0 for CSTR example

that the solution corresponds to the one found using the homotopy{continuation method, but in
this case solutions were obtained with considerably less e�ort. In the next example we illustrate
that the homotopy functions may display isolas along the homotopy path, thus introducing
additional di�culties with respect to branch jumping.



Example 2 : Coupled Cell Reaction

Consider the following system describing a model of a trimolecular reaction (see Seydel (1988)
for details concerning the model)

2� 7x1 + x21x2 + �(x3 � x1) = 0

6x1 � x21x2 + 10�(x4 � x2) = 0

2� 7x3 + x23x4 + �(x1 + x5 � 2x3) = 0 (21)

6x3 � x23x4 + 10�(x2 + x6 � 2x4) = 0

2� 7x5 + x25x6 + �(x3 � x5) = 0

6x5 � x25x6 + 10�(x4 � x6) = 0

where the coupling coe�cient � is chosen as the branching parameter.

Homotopy{continuation. We applied a �xed point homotopy function to the model and
found (incidentally) that isolated solution branches appear along the homotopy path. Isolas
ocurred for a wide selection of starting guesses, and prevented in each case successfull tracking
of the homotopy path. This is hardly surprising since the mapping functions described as
methods 1 and 2 are in general not suited for branch{jumping from isolas. There are at present
date no rigorous way of predicting where the branches connect beyond the isolas. For some
homotopies it is however possible to guarantee that isolated solutions will not arise
(Paloschi 1995), but this is not an issue dealt with in this work.
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Figure 6: Occurence of isolas along the homotopy path for coupled cell reaction example

Tear and grid approach. From the occurence matrix displayed in (22) we �nd that an
explicit solution scheme is obtained by choosing for example x1 and x2 as tear variables. We
note that other sets of tear variables also yield explicit schemes. Deleting the rows for x1 and
x2 yields the assignment of output variables as indicated by encircled occurrences in (23), which
leaves f5 and f6 for calculation of the residuals.

x1 x2 x3 x4 x5 x6
f1 1 1 1
f2 1 1 1
f3 1 1 4 1
f4 1 1 1 1
f5 1 1 1
f6 1 1 1

(22)

x3 x4 x5 x6
f1 j1
f2 j1
f3 1 j1 1
f4 1 1 j1
f5 1 1 1
f6 1 1 1

(23)

Unique solutions are guaranteed since the assigned variables appear as linear terms in the
unteared functions. The residual surfaces and solutions are displayed in �gure 7, and as shown
in d) there are in fact 6 solutions denoted (I){(V I) for x1 and x2 within the prescribed grid for



� = 1:3. Our results are in excellent agreement with results given by Seydel (1988), who applied
continuation to explore solutions for a range of �{values.
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Figure 7: Visualisation of solutions to f(x) = 0 for coupled cell reaction example

5 Discussion and Conclusions

We have discussed two alternative numerical methods for solving systems of nonlinear algebraic
equations (NAE's). We �rst considered a homotopy continuation scheme, which requires
substantial e�ort both in terms of implementation (code) and computing time. With the
exception of a case where isolated solution branches occurred along the homotopy path, all
solutions were successfully obtained by using a globally convergent �xed point or Newton
homotopy. However, the method may also fail due to potential unboundedness of the homotopy
path. To resolve problems arising when variables extend to in�nity, we applied two simple
branch jumping tecniques. By using a simple inverse mapping functions we show how search
directions for a predictor{corrector scheme may be found by utilizing theory from linear algebra
and arguments of symmetry. However, in all cases, also when the homotopy continuation
method failed, we showed that a novel tear and grid method found all solutions. The tear and

grid method posesses some appealing properties compared to other methods proposed in the
literature. Among these features we recognize straightforward implementation and low
computational cost due to non{iterative solution schemes. However, the perhaps most
appealing feature is the convenient visualization of solution surfaces, which applies to �nding
initial solutions as well as exploring solution in the parameter space. Among the drawbacks we
recognize that the method may require considerable algebraic manipulations of the equations in
order to decompose the system of NAE's into single variable equations. We also stress that the



tear and grid method is not suited to deal with large problems since the number of
computations becomes excessive. Hence this method is in general appropriate only for relatively
small problems, which may still include many problems of great interest. In process analysis
one is frequently set to analyse small{sized subsystems of the more complex chemical
engineering plant in order to obtain important information regarding process behaviour. Proof
of multiple steady states in ideal binary distillation (Jacobsen and Skogestad 1991), explanation
of holes in some operating regions for integrated distillation columns (Morud 1995) or
exhaustive analysis of dynamic behaviour displayed by CSTR's (e.g. van Heerden (1953) and
Uppal et al. (1974)) are all examples of progressive discoveries obtained by resorting to analysis
of simpli�ed problems. For problems of somewhat greater size and complexity one may consider
using partial tearing. Even though iterations are required in this case within some partitions,
considerable savings should be possible since simultaneous solution of the whole problem is
avoided. Also, there already exist algorithms for choosing a convenient set of tear variables.
Finally we stress that depending on the size, complexity and di�culty of the problem at hand,
one should in any case consider the grid approach as a worthy candidate for solving systems of
NAE's frequently occurring within chemical engineering, along with the spectre of solution
methods that already exist.
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A Search directions for inverse mapping function

We here show how one may �nd the step of a desired length in the null{space of the mapped variable space

which we may denote
x0 = (x1; : : : ; y; : : : ; xn) ; 2 Rm (24)

where y denotes the simple inverse mapping y = 1=x of the variable(s) for which the homotopy path becomes
unbounded. The elements in the Jacobian matrix for the mapped variable space may be written

J 0 =
@f

@x0
= (fx1 j : : : jfyj : : : jfxn) (25)

By partial di�erentiation of the inverse mapping function we obtain

fy =
@f

@x
�
@x

@y
= �x2i fxi (26)

To avoid introducing the mapped variables explicitly in the system of equations, we simply multiply the column
of the original Jacobian by minus the square of xi, evaluated at the point from which the jump is to be taken.
The direction of the jump in the mapped variable space is then

n = (n1; : : : ; ny ; : : : ; nn) ; 2 N (J 0) (27)

In cases of vertical or linear asymptotes, we may use arguments of symmetry in order to predict new values of
the variables beyond the asymptote. For the inverse mapping function we wish to make a �nite jump from
1=xold to 1=xnew. Due to symmetry around origo in the mapped variable space we assume that
1=xnew = �1=xold. The desired step �(1=x) must satisfy the condition

1

xnew
=

1

xold
+�

�
1

x

�
(28)

Substituting (1=xnew) by �(1=xold) in (28) yields the desired step

�

�
1

x

�
= �

2

xold
(29)

In order to obtain a jump of desired length we normalize the vector spanning the null{space by the scaling

n0 = �
2

xi � ny
n (30)

Finally we substitute the ny element in the null{space vector (27) by �2xi, thus mapping the variable space
back to the original x 2 Rm . Since the curve for the inverse only rarely is absolutely symmetrical around origo
for the point from which the jump is taken, we need to apply a Newton corrector in order to �nd a converged
solution. Total symmetry is only found for jumps in the vicinity of origo (see �gure 2, thus we have to make sure
that x is su�ciently large before imposing the step. This method therefore works satisfactorilly only in cases
where the homotopy path is symmetric around the asymptote.


