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Abstract. Directionality of zeros and poles in multivariable systems are examined. These
directions can be computed in terms of eigenvalue problems. Furthermore, analytical factor-
izations of RHP-zeros and poles inBlaschkeproducts, with state-space realizations dependent
on the pole and zero directions are given.

1. INTRODUCTION

We consider linear time invariant systems on state space form

_x = Ax+Bu (1)

y = Cx+Du (2)

whereA 2 Rnx�nx , B 2 Rnx�m, C 2 Rl�nx andD 2
Rl�m wherenx is the number of states,l is the number of
outputs andm is the number of inputs. These equations may
be rewritten as �

_x
y

�
=

�
A B
C D

��
x
u

�

This gives rise to the short-hand notation

G =

�
A B
C D

�
(3)

which is frequently used to describe a state-space model of
a systemG. The transfer function ofG defined by (3) can
be evaluated as a function of the complex variables 2 C ,
G(s) = C(sI � A)�1B + D. We often omit to show the
dependence on the complex variables for transfer functions.
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The second section present definitions of zeros, zero direc-
tions, poles and pole directions in multivariable systems. We
use the letteru for input directions and the lettery for out-
put directions. The subscriptsp or z is used to distinguish
the pole direction from the zero direction. If there are more
than one zero or one pole we use an additional subscript to
denote the direction of that particular zero or pole. For the
state directions the letterx is used with subscriptz or p as
above. To distinguish input state direction from the output
state direction we use an additional subscriptI or O. The re-
sults regarding the zero and pole directions are published in
(Havre and Skogestad, 1996).

The main objective with this paper is to derive and write
down analytical state-space expressions for factorizations of
RHP-zeros and poles. Section three contains these input and
output factorizations for systems with RHP-zeros and poles.
Factorizations of zeros has been known for a period (Wall
et al., 1980; Zhouet al., 1996). The main reason for writing
these factorizations down is that they are used extensively in
the work (Havre and Skogestad, 1996).

All the proofs are given in appendix A.



2. ZEROS AND POLES OF MULTIVARIABLE
SYSTEMS

The concept of normal rank is essential in the definition of
zeros below. The normal rank is defined as follows

DEFINITION 1. (NORMAL RANK ). The normal rank ofG(s),
denotednr, is the rank ofG(s) at all values ofs except at a
finite number of singularities. The systemG(s) hasfull nor-
mal rankif nr = minfm; lg, full row rank if nr = l andfull
column rankif nr = m. Wherem is the number of inputs
andl is the number of outputs.

2.1 Zeros

Zeros of a system may arise when competing effects inter-
nal to the system are such that the output is zero even when
the inputs (and the states) are not themselves identically zero.
For a SISO systemG(s) the zeros are the solutionss = zi
to G(s) = 0, and thus it could be argued that they are val-
ues ofs at whichG(s) looses rank (from rank 1 to rank 0).
This is the basis for the following definition for zeros for the
multivariable system (MacFarlane and Karcanias, 1976).

DEFINITION 2. (ZEROS). zi 2 C is a zero ofG(s) if the
rank ofG(zi) is less than the normal rank ofG(s). The zero
polynomial is defined asz(s) =

QNz

i=1(s � zi) whereNz is
the number of finite zeros ofG(s).

This definition of zeros is based on the transfer function ma-
trix, corresponding to a minimal realization of a system. These
zeros are sometimes called “transmission zeros”, but we shall
simply call them “zeros”. We may sometimes use the term
“multivariable zeros” to distinguish them from the zeros of
the elements of the transfer function matrix.

DEFINITION 3. (INPUT AND OUTPUT ZERO DIRECTIONS).
If G(s) has a zero fors = z 2 C then there exist non-zero
vectors labeled the output zero directionyz 2 C l and the in-
put zero directionuz 2 Cm , such thatyHz yz = 1, uHz uz = 1
and

yHz G(z) = 0; G(z)uz = 0 (4)

The input zero direction is a basis vector for a part of the
null-space ofG(z) and the output direction is a basis vector
for a part of the left null-space ofG(z). The parts of the two
null-spaces corresponds to the singular directions at the input
and the output resulting from the singularity occurring when
evaluatingG(s) for s = z. For squareG with full normal
rank andz of multiplicity one the dimensions of the null-
spaces are both one. In the general case wherez is of multi-

plicity m there arem input and output directions associated
with the zeros = z. The definitions of input and output zero
directions can further be extended with the state input and
output zero directions through the use of generalized eigen-
values for computation of zeros. For a systemG(s), the zeros
z of the system, the zero input directionsuz and the zero in-
put state directionsxz;I 2 C nx can all be computed from the
generalized eigenvalue problem

�
A� sI B
C D

� �
xz;I
uz

�
=

�
0
0

�
(5)

In this setup we normalize the length ofuz, so thatuHz uz =
1. This imply that the length ofxz;I most likely is different
from one.

Similarly one can compute the zerosz, the output zero di-
rectionyz and the output zero state directionxz;O 2 C nx

through the generalized eigenvalue problem

[xHz;O yHz ]

�
A� sI B
C D

�
= [ 0 0 ] (6)

Where the length ofyz is normalized, so thatyHz yz = 1. By
taking the transpose of (6) one obtains

�
AT � sI CT

BT DT

��
�xz;O
�yz

�
=

�
0
0

�
(7)

From this we see that the input directions of the transposed
systemGT is equal to the conjugate of the output directions
of G. In MATLAB the generalized eigenvalue problem (6)
can be solved via the transposed problem.

Another possibility is to calculate the zero directions from
the singular value decomposition ofG(z)

G(z) =Uz�zV
H
z =

nrX
i=1

ui�iv
H
i

= u1�1v
H
1 + u2�2v

H
2 + � � �+ unr�nrv

H
nr

If one assumes that the system has ranknr and the zero is
of multiplicity one, then the zero directions are given in the
columns ofV andU corresponding to the singular value
which becomes zero due tos = z. Under normal circum-
stances this is columnnr, giving the input zero direction
uz = vnr and output zero directionyz = unr .

REMARK 1. If G(s) does not have full normal rank, or zero is of multiplic-
ity greater than one, it may be difficult to pick out the zero directions since
more than one singular value are equal to zero.
REMARK 2. The calculation of zero directions with SVD requires knowl-
edge of the zeros. However, the generalized eigenvalues can be used to both
compute the zeros and the directions in one operation.
REMARK 3. Sometimes it is also necessary to have the associated state di-
rection, the generalized eigenvalue method is the only way to compute the
state direction.



REMARK 4. If a zero and a pole is present at the same location but with
different directions so that they do not cancel, the SVD ofG(z) may not
give the correct directions due to the numerical problems when evaluating
G(z). The numerical problems occur due to the singularity ofzI � A in
G(z) = C(zI � A)�1B +D.

2.2 Poles

DEFINITION 4. (POLES). The polespi 2 C of a system with
state-space description (3) are the eigenvalues�i(A), i =
1; : : : ; nx of the matrixA. The pole or characteristic polyno-
mial �(s) is defined as

�(s) = det(sI �A) =

nxY
i=1

(s� pi) (8)

Thus the poles are the roots of the characteristic equation

�(s) = det(sI �A) = 0 (9)

The gain of the systemG evaluated ats = p,G(p), is infinite
in some directions at the input and the output. This is the
basis for the following definition of input and output pole
directions.

DEFINITION 5. (INPUT AND OUTPUT POLE DIRECTIONS).
If s = p 2 C is a pole ofG(s) then there exist an output di-
rectionyp 2 C l and an input directionup 2 Cm with infinite
gain fors = p.

From the singular value decomposition ofG(p) we have

G(p) =Up�pV
H
p =

nrX
i=1

ui�iv
H
i

= u1�1v
H
1 + u2�2v

H
2 + � � �+ unr�nrv

H
nr

The directions with largest gain are associated with�1, the
input directionup is v1 and the output directionyp is u1.
SinceG(p)up = 1 andyHp G(p) = 1 we can not evaluate
G(p). Instead we can considerG(p+ �) when�! 0.

For a square system,G, with state space realization (3) the
inverse is given by (Zhouet al., 1996, p. 67)

G�1 =

�
A�BD�1C �BD�1

D�1C D�1

�
(10)

provided thatD�1 exists. The pole output direction is then
given byG�1(p)yp = 0, similarly the pole input direction is
given byuHp G

�1(p) = 0. The pole directions can therefore
be found as the the zero directions ofG�1(p), G�1(p) =
U�V H , yp as the zero direction inV andup as the zero
direction inU .

To calculate the pole directions from SVD ofG(p) orG�1(p)
has rather poor numerical properties. The following result
shows how to compute the pole directions for a general sys-
tem with state space realization (3).

LEMMA 1. (POLE DIRECTIONS). For a systemG with state
space description (3) the pole directions associated with the
polep 2 C can be computed from

yp = CxR; up = BHxL (11)

wherexR 2 C nx andxL 2 C nx are the eigenvectors cor-
responding to the two eigenvalue problemsAxR = pxR and
xHLA = xHL p.

REMARK 1. The right and left eigenvectors are the singular input and out-
put directions ofpI � A. So, the eigenvectors can be computed from the
SVD of pI � A.
REMARK 2. The pole directions are independent of the matrixD in the
state space description ofG.
REMARK 3. In this setup the length of the state directionsxR andxL are
normalized. However, the relations in (11) can be multiplied by any non-zero
constant, so thatyp andup can be normalized instead ofxR andxL.
REMARK 4. We have pole directionsxL andxR for G given as(A �
pI)xR = 0 andxH

L
(A � pI) = 0. For the transposed systemGT =h

A
T

C
T

B
T
D
T

i
, we have(AT � pI)x0

R
= 0 andx0H

L
(AT � pI) = 0 which

impliesx0T
R
(A � pI) = 0 and(A � pI)�x0

L
= 0. Relations between pole

directions forG andGT are: �x0
R

= xL, �x0
L

= xR, y0p = BT x0
R

=

BT �xL = �up andu0p = Cx0
L

= C�xR = �yp. Note that the input and
output pole directions forG, G(p)up = 1, yHp G(p) = 1, and forGT ,
GT (p)u0p = 1 andy0Hp GT (p) = 1, also gives the relationsu0p = �yp

andy0p = �up. This follows fromu0Tp G(p) =1 andG(p)�y0p = 1.
REMARK 5. To find a relationship between output pole directionsyp and
xp = xR and the input zero directionsuz andxz for G�1 assume thatG
is a square system with a non-singularD matrix. The input zero directions
of G�1 are defined through the use of (10).h

A�BD�1C � pI �BD�1

D�1C D�1

i h
xz
uz

i
=

h
0
0

i
(12)

From (12) we have

(A� pI)xz � BD�1(Cxz + uz) = 0 (13)

D�1(Cxz + uz) = 0 (14)

Clearly,xz = �xp anduz = yp is a solution.

3. FACTORIZATIONS OF RHP-ZEROS AND POLES

Right half plane zeros and poles (zeros/poles in the open right
half plane,C+ ), G(s) can be factorized in either of the two
Blaschkeproducts labeled “input factorization” and “output
factorization” as follows

G(s) = GI(s)BI(s); G(s) = BO(s)GO(s) (15)

whereBI(s) andBO are transfer matrices containing the
RHP-zeros/poles. When factorizing RHP-zeros/poles, the fil-
tersBI(s) andBO(s) consist ofNz=Np series connected first



order filtersBi(s) of sizek � k, each factorizing one RHP-
zero/pole,zi=pi. If an output factorization is considered then
k = l and if an input factorization is considered thenk =
m. The general filterB(s) describing bothBI(s) andBO(s)
for RHP-zeros and some of it’s properties are summarized
in Lemma 2. The filtersBI(s) andBO(s) for factorizations
RHP-poles are the inverse ofB(s) with Nz replaced byNp

andzi replaced bypi in Lemma 2.

LEMMA 2. Let the filterB(s) be defined as

B(s) = BNz
(s)BNz�1 � � �B1(s) =

Nz�1Y
i=0

Bi(s) (16)

Bi(s) = I �
2Re(zi)

s+ �zi
viv

H
i (17)

wherezi 2 C , vi 2 C k . Consider the factorBi(s) in B(s),
Bi(s) hask�1 singular values and eigenvalues equal to one.
The last eigenvalue and the last singular value are given by

�k(Bi(s)) =
s� zi
s+ �zi

�k(Bi(s)) = j�k(Bi(s))j =
js� zij

js+ �zij

Whens andzi are both inC+ or both inC� then

�k(Bi(s)) = j�k(Bi(s))j = �(Bi(s)) =
js� zij

js+ �zij
< 1

otherwise

�k(Bi(s)) = j�k(Bi(s))j = ��(Bi(s)) =
js� zij

js+ �zij
� 1

For s = j!, all eigenvalues and all singular values are equal
to one.

The inverse ofB(s) is given by

B�1(s) = B�1
1 (s)B�1

2 (s) � � �B�1

Nz
(s) =

NzY
i=1

B�1
i (s) (18)

B�1
i (s) = I +

2Re(zi)

s� zi
viv

H
i (19)

B�1
i (s) hask � 1 singular values and eigenvalues equal to

one. The last eigenvalue and the last singular value are given
by

�k(B
�1
i (s)) =

s� zi
s+ �zi

�k(B
�1
i (s)) = j�k(B

�1
i (s))j =

js+ �zij

js� zij

Whens andzi are both inC+ or both inC� then

�k(B
�1
i (s)) = j�k(Bi(s))j = �(Bi(s)) =

js+ �zij

js� zij
� 1

otherwise

�k(B
�1
i (s)) = j�k(Bi(s))j��(Bi(s)) =

js+ �zij

js� zij
� 1

For s = j!, all eigenvalues and all singular values are equal
to one.

REMARK 1. The eigenvectors ofBi(s) equals the singular input vectors
which again equals the singular output vectors. Also note that these vectors
are independent of frequency. Since the input and output singular directions
of Bi(s) are equal it follows that there is no rotation from input ofBi(s) to
the output ofBi(s).
REMARK 2. Bi(s) has a zero fors = zi, the zero input direction equals
the zero output directionvi. Furthermore,Bi(s) has a pole fors = ��zi
with input and output directionvi.

3.1 Right half plane zeros

The input factorization of RHP-zeros intoBI is given in the
following theorem.

THEOREM 1. (INPUT FACTORIZATION OF RHP-ZEROS). A
systemG(s) containingNz RHP-zeroszi, with input direc-
tionsûzi andx̂zi defined by�

A� ziI Bi�1

C D

� �
x̂zi
ûzi

�
=

�
0
0

�
(20)

can be factorized in a minimum phase systemGI(s) and an
all pass filterBI(s), G(s) = GI(s)BI(s) where

GI(s) =

�
A B0

C D

�
(21)

The modified input matrixB0 can be calculated by applying
the following formula repeatedly fori = 1; : : : ; Nz

Bi = Bi�1 � 2Re(zi)x̂ziû
H
zi (22)

withB0 = B andB0 = BNz
. The (all pass) filterBI(s) has

all singular values�i(s) and absolute value of all eigenval-
ues�i(s) equal to one fors = j!. The all pass filterBI(s)
is given by

BI(s) =BNz
(s)BNz�1(s) � � �B1(s)

=

Nz�1Y
i=0

BNz�i(s) (23)

where

Bi(s) = I �
2Re(zi)

s+ �zi
ûziû

H
zi (24)

REMARK 1. When one RHP-zeroz1 has been factorized the directions of
the remaining zeros are modified, this is so because the input matrixBi�1
in (20) has been modified. It then follows that the input directionsûzi and
x̂zi are not the same as the zero input directionsuzi andxz;I for zerozi
(except for the first zero factorized).



REMARK 2. The expressions above are valid forz 2 C . However, for the
case withIm(z) 6= 0 the factorization yield complex realizations ofGI and
BI.
REMARK 3. WhenG(s) contains more than one RHP-zero, different se-
quences of factorizations yield the same overallBI(s) andGI(s) how-
ever, the individual filtersBi(s) are different. Take as an example a sys-
temG(s) with two RHP-zerosz1 andz2. Factorizing firstz1 and thenz2
yieldsBI(s) = B1(s)B2(s) andGI(s). Factorizing in the opposite se-
quencefz2; z1g gives ~BI(s) = ~B2(s) ~B1(s) and ~GI(s) it then turns out
thatGI(s) = ~GI(s) andBI(s) = ~BI(s). HoweverB1(s) 6= ~B1(s) and
B2(s) 6= ~B2(s).

The output factorization of a systemG(s) with Nz RHP-
zeros, can be expressed in a similar theorem.

THEOREM 2. (OUTPUT FACTORIZATION OF RHP-ZEROS).
A systemG(s) containingNz RHP-zeroszi, with output di-
rectionsŷzi andx̂zi defined by

[ x̂Hzi ŷHzi ]

�
A� ziI B
Ci�1 D

�
= [ 0 0 ] (25)

can be factorized in a minimum phase systemGO(s) and an
all pass filterBO(s), G(s) = BO(s)GO(s) where

GO(s) =

�
A B
C 0 D

�
(26)

The modified output matrixC 0 can be calculated by applying
the following formula repeatedly fori = 1; : : : ; Nz

Ci = Ci�1 � 2Re(zi)ŷzix̂
H
zi (27)

withC0 = C andC 0 = CNz
. The (all pass) filterBO(s) has

all singular values�i(s) and absolute value of all eigenval-
ues�i(s) equal to one fors = j!. The all pass filterBO(s)
is given by

BO(s) = B1(s)B2(s) � � �BNz
(s) =

NzY
i=1

Bi(s) (28)

where

Bi(s) = I �
2Re(zi)

s+ �zi
ŷziŷ

H
zi (29)

REMARK 1. The output directionŝyzi andx̂zi are not the same as the out-
put directionsyzi andxzi for zerozi (except for the first zero factorized)
since the output matrixCi�1 in (25) is modified for each zero factorized.
REMARK 2. The expressions above are valid forz 2 C . However, for the
case withIm(z) 6= 0 the factorization yield complex realizations ofGO

andBO.

3.2 Right half plane poles

Right half plane poles can also be factorized in “input” and
“output” factorizations in similar ways as RHP-zeros.

THEOREM 3. (OUTPUT FACTORIZATION OF RHP-POLES).
A systemG(s) containingNp RHP-polespi, with output di-
rectionsŷpi andx̂pi defined by

(Ai�1 � piI)x̂pi = 0; ŷpi = Cx̂pi (30)

can be factorized in a stabel systemGO and an all pass fil-
ter BO containing theRHP-polespi, G(s) = BO(s)GO(s)
where

GO(s) =

�
A0 B0

C D

�
(31)

The modified state-space matricesA0 andB0 can be calcu-
lated by applying the following formula repeatedly fori =
1; : : : ; Np

Ai =Ai�1 � 2Re(pi)x̂piŷ
H
piC (32)

Bi =Bi�1 � 2Re(pi)x̂piŷ
H
piD (33)

withA0 = A, B0 = B, A0 = ANp
andB0 = BNp

. The (all
pass) filterBO(s) has all singular values�i(s) and absolute
value of all eigenvalues�i(s) equal to one fors = j!. The
all pass filterBO is given by

BO = B1(s)B2(s) � � �BNp
(s) =

NpY
i=1

Bi(s) (34)

where

Bi(s) = I +
2Re(pi)

s� pi
ŷpiŷ

H
pi (35)

The input pole factorization follows.

THEOREM 4. (INPUT FACTORIZATION OF RHP-POLES). A
systemG(s) containingNp RHP-polespi, with input direc-
tionsûpi andx̂pi defined by

x̂Hpi(Ai�1 � piI) = 0; ûpi = BT x̂pi (36)

can be factorized in a stabel systemGI and an all pass filter
BI containing theRHP-polespi, G(s) = GI(s)BI(s) where

GI(s) =

�
A0 B
C 0 D

�
(37)

The modified state-space matricesA0 andC 0 can be calcu-
lated by applying the following formula repeatedly fori =
1; : : : ; Np

Ai =Ai�1 � 2Re(pi)Bûpix̂
H
pi (38)

Ci =Ci�1 � 2Re(pi)Dûpix̂
H
pi (39)

with A0 = A, C0 = C, A0 = ANp
andC 0 = CNp

. The (all
pass) filterBI(s) has all singular values�i(s) and absolute



value of all eigenvalues�i(s) equal to one fors = j!. The
all pass filterBI is given by

BI = BNp
(s)BNp�1(s) � � �B1(s) =

Np�1Y
i=0

BNp�i(s)(40)

where

Bi(s) = I +
2Re(pi)

s� pi
ûpiû

H
pi (41)
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Appendix A. PROOFS OF THE RESULTS

Proof of Lemma 1. We have thatG(s) = C(sI � A)�1B + D and for
s = p, G(p) = C(pI � A)�1B +D. Sincep is an eigenvalue ofA and
xR is the eigenvector corresponding to the polep, AxR = pxR implies
(pI � A)xR = 0. This means that the eigenvectorxR is the zero input
direction of(pI �A). Form the singular value decomposition we have that
the output direction with infinite gain for(pI � A)�1 is xR. The output
direction becomesyp = CxR as long askDk is finite. Assume thatG is
square andD is non-singular. ThenG�1 is given by (10). Ifp is a pole of
G thenp is a zero ofG�1 and the input pole directionsxp andup are the
output zero directions ofG�1 then we have

[ xHp uHp ]

h
A�BD�1C � pI �BD�1

D�1C D�1

i
= [ 0 0 ] (A.1)

which gives

xHp (A� pI)� (xHp B � uHp )D�1C = 0 (A.2)

(�xHp B + uHp )D�1 = 0 (A.3)

Clearly,xp = xL andup = BHxL are the output zero directions corre-
sponding to the zeros = p for G�1. Then it follows thatuHp G

�1(p) = 0,
which is desirable. Note that these relations are not restricted to squareG

with non-singularD matrix since the relations are not dependent on theD

matrix. For a singular squareD one can modifyD to become~D in (A.1)
without affecting the relationship between the directions. For non-squareG

with less inputs than outputs one need to add fictitious inputs with zero effect
from u to x. This corresponds to to add columns of zeros in theB matrix.
For non-squareG with less outputs than inputs one need to add fictitious
outputs with zero effect fromx to y. This corresponds to add rows of zeros
in theB matrix. 2

REMARK.

Note that for a system with real realization (A 2 R
nx�nx , B 2 R

nx�m ’
C 2 R

l�nx andD 2 R
l�m) up = BHxL = BT xL sinceBH = BT .

An alternative proof of the input directionup is then to calculate it as the
conjugate of the output direction for the transposed system.

Proof of Lemma 2. Bi(s) can be written

Bi(s) = V ~�V H =

[u1 � � � uk�1 vi ]

2
64
1 � � � 0 0
...

.. .
...

...
0 � � � 1 0
0 � � � 0 s�zi

s+�zi

3
75
2
664

uH1
...

uH
k�1

vH
i

3
775 (A.4)

where we select the set of vectorsfu1; u2; � � �uk�1g such that they form
an orthonormal basis forCk together withvi. It follows that�i(Bi(s)) =

1 i 2 [1 : : : k � 1] 8s 2 C and�k(Bi(s)) =
js�zij
js+�zij

8s 2 C . Equation

(A.4) givesBi(s)V = V ~�, consequentlyBi(s) hask � 1 eigenvalues
equal to1 and one eigenvalue is�k = s�zi

s+�zi
. To provej�l(Bi(s))j =

�(Bi(s)) =
js�zij
js+�zij

� 1 whens andz are in the same half plane assume

thatjs+�zij < js�zij, sets = xs+jys andzi = xz+jyz. Thenjs+�zij <
js� zij implies (xs + xz)2 + (ys � yz)2 < (xs � xz)2 + (ys � yz)2

which gives4xzxs < 0. It follows that whens andz are in the same half

plane thenjs�zij
js+�zij

� 1 otherwisejs�zij
js+�zij

� 1. When eithers or z is on the

imaginary axis thenjs�zij
js+�zij

= 1.

The inverse ofBi(s) is given by

B�1
i

(s) = V ~��1V H

= [u1 : : : uk�1 vi ]

2
64
1 � � � 0 0
...

.. .
...

...
0 � � � 1 0
0 � � � 0 s+�zi

s�zi

3
75
2
664

uH1
...

uH
k�1

vH
i

3
775

= V VH +
2Re(zi)

s� zi
viv

H
i = I +

2Re(zi)

s� zi
viv

H
i (A.5)

It follows that�i(B
�1
i

(s)) = �i(B
�1
i

(s)) = 1 i 2 [1 : : : k � 1] 8s 2 C ,

�k(B
�1
i

(s)) = s+�zi
s�zi

, and�l(B
�1
i

(s)) = j�1(B
�1
i

(s))j =
js+�zij
js�zij

. It

follows that whens; zi 2 C+ or s; zi 2 C� then��(B�1
i

(s)) =
js+�zij
js�zij

�

1 and otherwise�(B�1
i

(s)) =
js+�zij
js�zij

� 1. 2

Proof of Theorem 1. The proof is only given forNz = 1 (note that in this
caseuz = ûz andxz = x̂z). The proof forNz > 1 is to apply the proof
of Nz = 1 repeatedly. To see that the minimum phase representation can be
written as (21) with the matrixB0 given by (22) one has to use the general-
ized eigenvalue problem (5). ForG(s), s = z is a zero so (5) becomesh

A� zI B

C D

i h
xz
uz

i
=

h
0
0

i
(A.6)

For the minimum phase system,GI(s), the zeros = ��z = �Re(z) +
Im(z)j has the same input direction and the same state direction asG(s)
for s = z. The generalized eigenvalue problem becomesh

A+ �zI B0

C D

i h
xz
uz

i
=

h
0
0

i
(A.7)

By subtracting (A.7) from (A.6) one obtainsh
A�A� zI � �zI B � B0

0 0

i h
xz
uz

i
=

h
0
0

i
(A.8)



from the first equation one gets

�zIxz � �zIxz +Buz � B0uz = 0

By extractinguz on the right and solving forB0 one obtains

B0 = B � 2Re(z)xzu
H
z

which proves (21) and (22). The all pass filter with RHP-zero fors = z

with input and output zero directionsuz , and LHP-pole fors = ��z with
input and output pole directionsuz is given by Lemma 2, (16) and (17) with
Nz = 1, vi = uz andzi = z. From the construction ofGI(s) we know
there is a zero fors = ��z with input directionuz . We may therefore cancel
the pole fors = ��z in BI(s) with the zero in same location inGI(s) and
it follows thatGIBI(s) = G(s). 2

Proof of Theorem 2. The proof is given forNz = 1 the proof forNz >

1 is to apply the proof ofNz = 1 repeatedly. Sincez is a RHP-zero

for G(s) it follows that z is a RHP-zero forGT =

h
A
T

C
T

B
T
D
T

i
. From

Theorem 1 we haveGT = GIBI, GI =

h
A
T

C
0T

B
T

D
T

i
andBI = I �

2Re(z)
s+�z

yyH whereC0T = CT � 2Re(z)xyH , x andy are defined fromh
AT

� zI CT

BT DT

ih
x
y

i
= 0. However,x = �xz;O andy = �yz . GO =

GT
I =

h
A B

C
0

D

i
,C0 = C � 2Re(z)�yxT = C � 2Re(z)yzxHz;O.BO =

BT
I = I �

2Re(z)
s+�z

�yyT = I �
2Re(z)
s+�z

yzy
H
z . 2

Proof of Theorem 3. The proof is only given forNp = 1, the proof for
Np > 1 is to apply the proof forNp = 1 repeatedly (note that forNp = 1,
ŷpi = yp and x̂pi = xp). Assume without loss of generality thatG is
square and that the state space matrixD is non-singular. ThenD�1 exists
andG�1 is given by (10). Furthermore,p is a RHP-zero ofG�1 which can
be factorized in an “input” factorizationG�1 = GIBI (Theorem 1). It then
follows thatBO = B�1

I andGO = G�1
I where

G�1
I =

�
A�BD�1C �BD�1 + 2Re(pi)xpy

H
p

D�1C D�1

��1

sincexz=p = �xp anduz=p = yp, which gives

GO =

�
A� 2Re(pi)xpy

H
p C B � 2Re(pi)xpy

H
p D

C D

�

The all pass filterBO is given by (18) and (19) withNz = Np = 1,

zi = p andvi = yp, BO = I +
2Re(p)
s�pi

ypy
H
p . The output pole directions

are independent of the matrixD in the state space description. Also the
relation between output pole directions ofG and the input zero directions
of G�1 is independent ofD, this means that we can add non-zero elements
to D without affecting the the pole directions. So, ifD is singular we add
non-zero elements along the diagonal ofD so that it becomes non-singular.
Consider next the case whereG has more outputs than inputs then fictitious
inputs with zero effect ony can be included by adding columns with zeros
in B and andD so thatD becomes square. The next step is then to add
non-zero elements toD so thatD becomes non-singular. Similarly ifG
has more inputs than outputs one can add rows with zeros to theC andD
matrices. Adding columns with zeros to theB matrix and rows with zeros
to theC matrix does not change the direction of the pole, it only expands
the dimension. 2

Proof of Theorem 4. The proof is given forNp = 1 the proof forNp > 1
is to apply the proof ofNp = 1 repeatedly (note that forNp = 1, ûpi =
up and x̂pi = xp). Sincep is a RHP-pole forG(s) it follows that p is

a RHP-pole forGT =

h
A
T

C
T

B
T
D
T

i
. From Theorem 3 we haveGT =

BOGO, GO =

h
A

0T
C

0T

B
T

D
T

i
andBO = I +

2Re(p)
s�p

yyH whereA0T =

AT�2Re(p)xyHBT ,C0T = CT�2Re(p)xyHDT ,x andy are defined
from (AT � pI)x = 0 andy = BT x. However,x = �xp, y = �up, GI =

GT
O =

h
A

0

B

C
0

D

i
, A0 = A � 2Re(p)B�yxT = A � 2Re(p)BupxHp ,

C0 = C � 2Re(p)D�yxT = C � 2Re(p)DupxHp andBI = BT
O =

I +
2Re(p)
s�p

�yyT = I +
2Re(p)
s�p

upu
H
p . 2


