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Abstract. Directionality of zeros and poles in multivariable systems are examined. These
directions can be computed in terms of eigenvalue problems. Furthermore, analytical factor-
izations of RiP-zeros and poles iBlaschkeproducts, with state-space realizations dependent

on the pole and zero directions are given.

1. INTRODUCTION

The second section present definitions of zeros, zero direc-
tions, poles and pole directions in multivariable systems. We

We consider linear time invariant systems on state space formuse the letter: for input directions and the letter for out-

z = Az + Bu
y=Cz+ Du
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R'*™ wheren, is the number of states,is the number of
outputs andn is the number of inputs. These equations may
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be rewritten as
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This gives rise to the short-hand notation
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put directions. The subscripisor z is used to distinguish
the pole direction from the zero direction. If there are more
than one zero or one pole we use an additional subscript to
denote the direction of that particular zero or pole. For the
state directions the lettar is used with subscript or p as
above. To distinguish input state direction from the output
state direction we use an additional subscript O. The re-
sults regarding the zero and pole directions are published in
(Havre and Skogestad, 1996).

The main objective with this paper is to derive and write
down analytical state-space expressions for factorizations of
RHP-zeros and poles. Section three contains these input and
output factorizations for systems withHR-zeros and poles.
Factorizations of zeros has been known for a period (Wall

which is frequently used to describe a state-space model oft @l- 1980; Zhowet al, 1996). The main reason for writing

a system@. The transfer function off defined by (3) can
be evaluated as a function of the complex variable C,

G(s) = C(sI — A)"'B + D. We often omit to show the
dependence on the complex variabker transfer functions.
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these factorizations down is that they are used extensively in
the work (Havre and Skogestad, 1996).

All the proofs are given in appendix A.
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2. ZEROS AND POLES OF MULTIVARIABLE
SYSTEMS

The concept of normal rank is essential in the definition of
zeros below. The normal rank is defined as follows

DEFINITION 1. (NORMAL RANK). The normal rank of7(s),
denoted,., is the rank ofG(s) at all values ofs except at a
finite number of singularities. The systé#is) hasfull nor-
mal rankif n,, = min{m, 1}, full row rankif n,. = [ andfull
column rankif n,, = m. Wherem is the number of inputs
and! is the number of outputs.

2.1 Zeros

Zeros of a system may arise when competing effects inter-

plicity m there aren input and output directions associated
with the zeras = 2. The definitions of input and output zero
directions can further be extended with the state input and
output zero directions through the use of generalized eigen-
values for computation of zeros. For a syst@i(s), the zeros

z of the system, the zero input directiomsand the zero in-

put state directions. ; € C*= can all be computed from the
generalized eigenvalue problem

e ol

In this setup we normalize the lengthf, so thatu!u., =
1. This imply that the length of . 1 most likely is different
from one.
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Similarly one can compute the zeresthe output zero di-
rectiony. and the output zero state directieno € C'e

nal to the system are such that the output is zero even Whe’ihrough the generalized eigenvalue problem
the inputs (and the states) are not themselves identically zero.

For a Sso systemG(s) the zeros are the solutioss= z;

to G(s) = 0, and thus it could be argued that they are val-
ues ofs at whichG(s) looses rank (from rank 1 to rank 0).
This is the basis for the following definition for zeros for the
multivariable system (MacFarlane and Karcanias, 1976).

DEFINITION 2. (ZEROS). z; € C is a zero ofG(s) if the

rank of G(z;) is less than the normal rank é#(s). The zero
polynomial is defined as(s) = Hf;zl(s — z;) whereN, is

the number of finite zeros 6f(s).

This definition of zeros is based on the transfer function ma-

trix, corresponding to a minimal realization of a system. These
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Where the length of. is normalized, so thaty. = 1. By
taking the transpose of (6) one obtains

| 115711

From this we see that the input directions of the transposed
systemG7 is equal to the conjugate of the output directions
of G. In MATLAB the generalized eigenvalue problem (6)
can be solved via the transposed problem.
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BT DT

0
0
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zeros are sometimes called “transmission zeros”, but we shallAnother possibility is to calculate the zero directions from

simply call them “zeros”. We may sometimes use the term
“multivariable zeros” to distinguish them from the zeros of
the elements of the transfer function matrix.

DEFINITION 3. (INPUT AND OUTPUT ZERO DIRECTIONS).

If G(s) has a zero fos = z € C then there exist non-zero
vectors labeled the output zero directipne C' and the in-
put zero direction:, € C™, such thaty?y, = 1, uffu, =1
and

yiG(z) =0; G(2)u.=0

(4)

The input zero direction is a basis vector for a part of the
null-space of7(z) and the output direction is a basis vector
for a part of the left null-space @¥(z). The parts of the two

the singular value decompositionGf z)

G(2) =U.B.VH = wioiwf
i=1

H H H
=U101V] + U20205 + -+ Un, On, Uy,

If one assumes that the system has rapland the zero is
of multiplicity one, then the zero directions are given in the
columns of V and U corresponding to the singular value
which becomes zero due to= z. Under normal circum-
stances this is column,, giving the input zero direction
u, = vy, and output zero direction, = u,..

REMARK 1. If G(s) does not have full normal rank, or zero is of multiplic-

ity greater than one, it may be difficult to pick out the zero directions since
more than one singular value are equal to zero.

null-spaces corresponds to the singular directions at the inpuREMARK 2. The calculation of zero directions with SVD requires knowl-

and the output resulting from the singularity occurring when
evaluatingG(s) for s = z. For squares with full normal
rank andz of multiplicity one the dimensions of the null-
spaces are both one. In the general case whes®f multi-

edge of the zeros. However, the generalized eigenvalues can be used to both
compute the zeros and the directions in one operation.

REMARK 3. Sometimes it is also necessary to have the associated state di-
rection, the generalized eigenvalue method is the only way to compute the
state direction.



REMARK 4. If a zero and a pole is present at the same location but with To calculate the pole directions from SVD@(p) orG—l (p)

different directions so that they do not cancel, the SVDOGgE) may not

give the correct directions due to the numerical problems when evaluating

G(z). The numerical problems occur due to the singularity: 6f— A in
G(z) =C(2I — A)"1B+D.

2.2 Poles

DEFINITION 4. (POLES). The poleg; € C of a system with
state-space description (3) are the eigenvaligsi), i =
1,...,n, of the matrix4. The pole or characteristic polyno-
mial ¢(s) is defined as

Ng

o(s) =det(sI — A) = H(s —Di)

i=1

(8)

Thus the poles are the roots of the characteristic equation

o(s) =det(sI — A) =0 9)

The gain of the syster evaluated at = p, G(p), is infinite

has rather poor numerical properties. The following result
shows how to compute the pole directions for a general sys-
tem with state space realization (3).

LEMMA 1. (POLE DIRECTIONS). For a systent with state
space description (3) the pole directions associated with the
polep € C can be computed from

u, = Bz,

Yp = CrR; (11)

wherexp € C"= andzy € C"= are the eigenvectors cor-

responding to the two eigenvalue problersy = pzr and
HA _ .H

Ty =T Dp-

REMARK 1. The right and left eigenvectors are the singular input and out-
put directions ofpl — A. So, the eigenvectors can be computed from the
SVD of pI — A.

REMARK 2. The pole directions are independent of the mafpixn the
state space description 6f.

REMARK 3. In this setup the length of the state directians andz, are
normalized. However, the relations in (11) can be multiplied by any non-zero
constant, so thaj, andu, can be normalized instead ok andzr..

REMARK 4. We have pole directionsy, andzg for G given as(A —

in some directions at the input and the output. This is the pT)zg = 0 andz (A — pI) = 0. For the transposed syste =

basis for the following definition of input and output pole
directions.

DEFINITION 5. (INPUT AND OUTPUT POLE DIRECTIONS).

If s = p € Cis apole ofG(s) then there exist an output di-
rectiony, € C' and an input direction, € C™ with infinite
gain fors = p.

From the singular value decomposition®fp) we have

G(p) =U, 5V, = wiowf
i=1

H H H
=u1010] + U202V + -+ Uy, 0p, U

Ny

The directions with largest gain are associated withthe
input directionu,, is v; and the output direction, is u;.
SinceG (p)u, = oo andy G(p) = co we can not evaluate
G(p). Instead we can considéf(p + ¢) whene — 0.

For a square systend;, with state space realization (3) the
inverse is given by (Zhoat al., 1996, p. 67)

o1 _[A=-BD'C|-BD!
“ | Dp'C | DT

(10)

provided thatD~! exists. The pole output direction is then
given byG~(p)y, = 0, similarly the pole input direction is
given byu!G~1(p) = 0. The pole directions can therefore
be found as the the zero directions@f' (p), G~'(p) =
UV, y, as the zero direction iV andu, as the zero
direction inU.

AT CT
[E"'%T] \we have( AT — pT)z’, = 0 andz/} (AT — pI) = 0 which

impliesz'T' (A — pI) = 0 and(A — pI)z/, = 0. Relations between pole
directions forG and G are:z’, = zr,Z} = zr,y, = BTzl =
BTz = up andu), = Cz}, = CzZr = ¥p. Note that the input and
output pole directions fo&, G(p)up, = o0, ¥ G(p) = oo, and forG”,
GT(p)u}, = oo andy,7 GT (p) = oo, also gives the relations], = 7,
andy;, = a,. This follows fromu/T G(p) = oo andG(p)g,, = co.
REMARK 5. To find a relationship between output pole directigpsand
zp = zr and the input zero directions, andz, for G—! assume tha@
is a square system with a non-singularmatrix. The input zero directions
of G~ are defined through the use of (10).

A—BD-'C —pI

—BD™! T, 0
D-1l¢ D! ] [uk] - [0} (12
From (12) we have
(A—pDz, — BD™YCx, +uz) =0 (13)
D YCz, +u.)=0 (14)

Clearly,z, = —xp andu, = y,, is a solution.

3. FACTORIZATIONS OF RHP-ZEROS AND POLES

Right half plane zeros and poles (zeros/polesin the open right
half plane,Ct), G(s) can be factorized in either of the two
Blaschkeproducts labeled “input factorization” and “output
factorization” as follows

G(s) = Gi(s)Bi(s); G(s) = Bo(s)Go(s) (15)
where B (s) and Bp are transfer matrices containing the
RHpP-zeros/poles. When factorizingHR-zeros/poles, the fil-

tersBi(s) andBo (s) consist ofV, /N, series connected first



order filtersB;(s) of sizek x k, each factorizing one -
zero/poleg; /p;. If an output factorization is considered then
k = [ and if an input factorization is considered then=
m. The general filteB(s) describing bottB;(s) andBo(s)

for RHP-zeros and some of it’s properties are summarized to

in Lemma 2. The filterdB;(s) and Bo (s) for factorizations
RHP-poles are the inverse @(s) with N, replaced byN,
andz; replaced by; in Lemma 2.

LEMMA 2. Let the filterB(s) be defined as

N.-1

B(s) = Bn.(s)Bn.—1---Bi(s) = ] Bi(s) (16)
i=0

Bi(s)=1- 2?_?_(?)%”1‘]{ 17)

wherez; € C, v; € C*. Consider the factoB;(s) in B(s),
Bi;(s) hask—1 singular values and eigenvalues equal to one.
The last eigenvalue and the last singular value are given by

M(Bi(s) = T
o, (Bi(s)) = | M\ (Bi(s))| = :Z _T_ Z:

Whens andz; are both inC*t or both inC~ then

|s — zi]

ok (Bi(s)) = [Ak(Bi(s))| = a(Bi(s)) = FEET 1
otherwise
o (Bis) = Wa(Bi(s)] = a(Bi(s) = 221 > 1

For s = jw, all eigenvalues and all singular values are equal
to one.

The inverse oB(s) is given by

N.
B '(s) = B (s)By ' (s)--- Byl (s) = [[ B (s) (18)
i=1
B '(s)=1+ 2Re(zi)vile (19)
S —Z;

B;!(s) hask — 1 singular values and eigenvalues equal to

(3

one. The last eigenvalue and the last singular value are given

by
B0 = T
Uk(Bz_l(S)) = |>\k(Bz_1(S))| = IZ 1_ i:

Whens and z; are both inCt or both inC~ then

or(B7'(s)) = M\ (Bi(s))] = a(Bi(s)) = s+l

Cls—al T

otherwise
ok (B ' (s)) = [\e(Bi(s))|o(Bi(s)) =

For s = jw, all eigenvalues and all singular values are equal
one.

|s + Z;] <1
|s — zi]

REMARK 1. The eigenvectors oB;(s) equals the singular input vectors
which again equals the singular output vectors. Also note that these vectors
are independent of frequency. Since the input and output singular directions
of B;(s) are equal it follows that there is no rotation from input®f(s) to

the output ofB; (s).

REMARK 2. B;(s) has a zero fos = z;, the zero input direction equals
the zero output directiom;. Furthermore,B; (s) has a pole fos = —z;

with input and output direction; .

3.1 Right half plane zeros

The input factorization of Rp-zeros intoB; is given in the
following theorem.

THEOREM 1. (INPUT FACTORIZATION OF RHP-ZEROS). A
systen(s) containing N. RHP-zerosz;, with input direc-
tionsu,; andz; defined by

Ty |0

x| |0

A— Zzl Bi—l
C D

can be factorized in a minimum phase systénfs) and an

all pass filterBi(s), G(s) = Gi(s)Bi(s) where

A|B'
C|D
The modified input matri8’ can be calculated by applying

the following formula repeatedly far=1,..., N,

B; = B;_1 — 2Re(z;) 0"

(20)

Gi(s) = (21)

(22)

with By = B and B’ = By.. The (all pass) filted3;(s) has
all singular valuess;(s) and absolute value of all eigenval-
ues;(s) equal to one fos = jw. The all pass filteB;(s)

is given by

Bi(s) = Bn.(s)Bn.-1(5) - -- Bi(s)

N.—1
= I Bwr. i) (23)
=0
where
2Re(z;) . g
Bi(s) = s+ 2 Uzl (24)

REMARK 1. When one RP-zeroz; has been factorized the directions of
the remaining zeros are modified, this is so because the input niztrix

in (20) has been modified. It then follows that the input directiGns and
Z.; are not the same as the zero input directiops andx, 1 for zero z;
(except for the first zero factorized).



REMARK 2. The expressions above are valid foe C. However, for the
case withim(z) # 0 the factorization yield complex realizations @f and

By.

REMARK 3. WhenG(s) contains more than oneHR-zero, different se-
quences of factorizations yield the same ovef@jls) and Gi(s) how-

ever, the individual filtersB;(s) are different. Take as an example a sys-

tem G(s) with two RHP-zerosz; andz. Factorizing firstz; and thenzs
yields Bi(s) = Bi(s)Bz(s) andGi(s). Factorizing in the opposite se-
quence{zz, z1} gives B(s) = B2(s)B1(s) andGi(s) it then turns out

thatGi(s) = Gi(s) andBi(s) = Bi(s). HoweverBi (s) # Bi(s) and
By (s) # Ba(s).

The output factorization of a systef(s) with N, RHP-
zeros, can be expressed in a similar theorem.

THEOREM 2. (OUTPUT FACTORIZATION OF RHP-ZEROY).
A systenti(s) containing N, RHP-zerosz;, with output di-
rectionsy.; andz,; defined by

=[0 0]

o AH][A—,ZZ'I B (25)

[xzi Yzi Cifl D

can be factorized in a minimum phase syst&g1(s) and an
all pass filterBo (s), G(s) = Bo(s)Go(s) where

A|B
C'\D

The modified output matri¥’ can be calculated by applying
the following formula repeatedly far=1, ..., NV,

Go(s) = (26)

C; = Ci_1 — 2Re(2)9.:45 (27)
with Cy = C andC’ = Cy.. The (all pass) filteBo (s) has
all singular valuess;(s) and absolute value of all eigenval-
ues;(s) equal to one fos = jw. The all pass filteBo (s)

is given by

N.
Bo(s) = Bi(s)Ba(s)--- Bn.(s) = [[ Bi(s) (28)
i=1
where
BZ(S) =1- QRG(?) Azigg (29)

REMARK 1. The output directiong,; andz,; are not the same as the out-
put directionsy,; andx; for zero z; (except for the first zero factorized)
since the output matrix’; _; in (25) is modified for each zero factorized.
REMARK 2. The expressions above are valid foe C. However, for the
case withIm(z) # 0 the factorization yield complex realizations 6%
andBg.

3.2 Right half plane poles

Right half plane poles can also be factorized in “input” and

“output” factorizations in similar ways asH®-zeros.

THEOREM 3. (OUTPUT FACTORIZATION OF RHP-POLES).
A systenG(s) containingN,, RHP-polesp;, with output di-
rectionsy,; andz,; defined by

(Aicr = pil)Zpi = 05 Gpi = Cpi (30)
can be factorized in a stabel syst&yg and an all pass fil-
ter Bo containing theRHP-polesp;, G(s) = Bo(s)Go(s)

where

The modified state-space matricésand B’ can be calcu-
lated by applying the following formula repeatedly foe=
1...,N,

(31)

Ai = Ai 1 — 2Re(p;) it C (32)

B; = Bi_1 — 2Re(p;)&pifjp; D (33)
with 4g = A, By = B, A' = Ay, andB' = By, . The (all
pass) filterBo (s) has all singular values;(s) and absolute

value of all eigenvalues;(s) equal to one fos = jw. The
all pass filterBo is given by

NP
Bo = Bi(s)Ba(s) -~ B, (s) = [[ Bi(s)  (34)
i=1
where
Bi(s) =1+ Zﬁi(zz)?jmgg (35)

The input pole factorization follows.

THEOREMA4. (INPUT FACTORIZATION OF RHP-POLES). A
system(s) containingN,, RHP-polesp;, with input direc-
tionsa,; andz,; defined by

Ai1 —pil) = 0;

&r( Gpi = BT &y (36)
can be factorized in a stabel syst&f and an all pass filter
By containing theRHP-polesp;, G(s) = G1(s)Bi(s) where

A'|B
C'\D
The modified state-space matricésand C' can be calcu-

lated by applying the following formula repeatedly foe=
1...,N,

Gi(s) = (37)

A;=A; 1 — 2Re(p;)Biyiah (38)
Ci = Ci—1 — 2Re(p;) Diyi& )} (39)

with Ag = A, Cp = C, A" = An, andC’ = Cl,. The (all
pass) filterB(s) has all singular values;(s) and absolute



value of all eigenvalues;(s) equal to one fos = jw. The
all pass filterBy is given by

Np—1
Bi = Bn,(5)Bn,-1(s) - Bi(s) = J[ Bn,-i(s)(40)
=0
where
Bi(s) =1 2:‘5(;;:” all (41)
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Appendix A. PROOFS OF THE RESULTS

Proof of Lemma 1We have thatG(s) = C(sI — A)~"!B + D and for

s = p, G(p) = C(pI — A)~'B + D. Sincep is an eigenvalue oft and

x g is the eigenvector corresponding to the ppledzr = pxgr implies

(pI — A)xr = 0. This means that the eigenvectey, is the zero input
direction of(pT — A). Form the singular value decomposition we have that
the output direction with infinite gain fofpl — A)~! is zr. The output
direction becomeg;,, = Czg as long ag|D|| is finite. Assume tha& is
square and is non-singular. Ther—! is given by (10). Ifp is a pole of

G thenp is a zero ofG~! and the input pole directions, andu, are the
output zero directions af’—! then we have

A—-BD 'Cc —pI —-BD™!
[z u] -1c P p-1 ]:[0 0] (A1)
which gives
zg(Apr)f(zHBfug)D’IC:O (A.2)
(—z)/B+ufYD™! = (A.3)

Clearly,zp = xr andu, = BH g are the output zero directions corre-
sponding to the zers = p for G=". Then it follows thatu)' G=' (p) = 0,
which is desirable. Note that these relations are not restricted to sGuare
with non-singularD matrix since the relations are not dependent onlthe
matrix. For a singular squar® one can modifyD to becomeD in (A.1)
without affecting the relationship between the directions. For non-sdiiare

with less inputs than outputs one need to add fictitious inputs with zero effect

from u to x. This corresponds to to add columns of zeros in Ehenatrix.
For non-squares with less outputs than inputs one need to add fictitious
outputs with zero effect frome to y. This corresponds to add rows of zeros
in the B matrix. m|

REMARK.

Note that for a system with real realizatioA € R"=*"= B ¢ R%=Xm’

C € RIX"= andD € R*™)uy, = Bz, = BTz, sinceBY = BT.
An alternative proof of the input direction,, is then to calculate it as the
conjugate of the output direction for the transposed system.

Proof of Lemma 2B;(s) can be written

Bi(s) =vEvH =
1 0 0 Uy
U1 Up_1 V5 : (A.4)
[ v 0 --- 1 0 uH
s—2z; k—1
0 -0 stz vl

where we select the set of vectdrg:, us, - - - w1} such that they form

an orthonormal basis faE* together withw; . It follows thato; (B;(s)) =
li€[l...k—1] Vs € Candoy(B;(s)) = ‘IZ?I‘ Vs € C. Equation
(A.4) gives B;(s)V = V%, consequentlyB;(s) hask — 1 eigenvalues
equal tol and one eigenvalue i . To prove|\;(B;(s))| =
a(Bi(s)) = '2;—1' < 1 whens andz are in the same half plane assume
that|s+2z;| < |s—z;|, sets = xs+jys andz; = x.+jy.. Then|s+z;| <

s — 2| implies (x5 + )% + (ys — y2)? < (2s — 22) + (ys — y2)?
which givesdz.zs < 0. It follows that whens andz are in the same half

<1 other\lee‘lS zll‘ > 1. When eithers or z is on the

s”

[s—2i]

plane thenﬁ

imaginary axis ther>— "I =1

The inverse ofB; (s) is given by

—1/0y -1y H
B l(s)=VSlv
1 0 0 Uy
=[u1 Up_1 U . :
[ 1 vi] 01 0 ufi
0 --- 0 z+z "
g . 2Re(zi) g 2Re(zi) g
=VVT + ———w; =14+ ——viy; (A.5)
s — 2 s — 2
ItfoIIowsthataz(B Ys) =Xi(B(s) =1i€[l...k—1] Vs €C,
M(By () = S, andoy (B (s)) = (B ()] = L2t
follows thatwhens,zi € Ctors,z; € C theng(B;'(s)) = I‘er:lI >

1 and otherwiser(B;™ ' (s)) = ‘IS+~1\ <. 5

2]

Proof of Theorem 1The proof is only given forV, = 1 (note that in this
caseu, = 4, andz, = %.). The proof forN, > 1 is to apply the proof

of N, = 1 repeatedly. To see that the minimum phase representation can be
written as (21) with the matri®8’ given by (22) one has to use the general-
ized eigenvalue problem (5). F6#(s), s = z is a zero so (5) becomes

e pl L= ]

For the minimum phase syster@;(s), the zeros = —z = —Re(z) +
Im(z)j has the same input direction and the same state directiGi &
for s = z. The generalized eigenvalue problem becomes

(A.6)

A+zI B'1[z.] [O
e Bl @
By subtracting (A.7) from (A.6) one obtains
A—A—2I—-2I B—B' z:] [0
[ =6 e



from the first equation one gets AT —2Re(p)zy™ BT, C'T = CT —2Re(p)zy™ DT, z andy are defined
from (AT — pI)z = 0 andy = BT z. However,s = Tp, y = Gp, G1 =

r _ [A']|B _ T H
G§ = [ﬂf] , A" = A — 2Re(p)Byz" = A — 2Re(p)Bupz,),
C' = C — 2Re(p)DyzT = C — 2Re(p) Dupxl and By = BY =

B' = B — 2Re(2)z,ul! I+ me(p) gyl =1+ 2’:9%’)%% o

—z2lz, —ZIz, + Buy — B'uy, =0

By extractingu on the right and solving foBB’ one obtains

which proves (21) and (22). The all pass filter witiHiRzero fors = z
with input and output zero directions,, and LHP-pole fors = —z with
input and output pole directions, is given by Lemma 2, (16) and (17) with
N. = 1,v; = u, andz; = z. From the construction af’;(s) we know
there is a zero fos = —Z with input directionu, . We may therefore cancel
the pole fors = —z in Bi(s) with the zero in same location i&1(s) and
it follows thatG1Bi(s) = G(s). o

Proof of Theorem 2The proof is given forN, = 1 the proof forv, >
1 is to apply the proof ofN, = 1 repeatedly. Since is a R4P-zero

T T
for G(s) it follows that z is a Rip-zero for GT = [%]' From

Theorem 1 we hav&” = GiB;, G1 = [gT C,T] andB; = T —
Ziti(f)yy whereC'T = CT — 2Re(z)xzy™, x andy are defined from
[ATB}Z[ g;] [Z] = 0. However,z = Z,,0 andy = .. Go =
GT = [%] ,C' = €~ 2Re(2)ja” = C — 2Re(2)y:2 . Bo =
BT I_ 2§i(z>_ T _g_ zr:i:) zyf. o

Proof of Theorem 3The proof is only given fotV, = 1, the proof for
N, > 1is to apply the proof fotV,, = 1 repeatedly (note that fav, = 1,

Upi = yp andi,; = xp). Assume without loss of generality thét is

square and that the state space maliis non-singular. ThetD ! exists
andG 1! is given by (10). Furthermorg, is a RiP-zero of G~ ! which can
be factorized in an “input” factorizatio—! = G1B; (Theorem 1). It then
follows thatBo = By ' andGo = Gy ' where

1 1 gt
a-1_ |A-BD C|-BD ' + 2Re(pi)zpy}:
r p~Ic | DT

sincer,=p = —xp andu.=p = yp, Which gives

G = A— 2Re(pi)xpy{,{C|B — 2Re(pi):vpny
© c | D

The all pass filterBo is given by (18) and (19) withiv. = N, = 1,
zi =pandv; = yp, Bo =T + 2P‘e“")y yIT. The output pole directions
are independent of the matrii in the state space description. Also the
relation between output pole directions @fand the input zero directions
of G~ is independent oD, this means that we can add non-zero elements
to D without affecting the the pole directions. So,[if is singular we add
non-zero elements along the diagonal»&o that it becomes non-singular.
Consider next the case wheafehas more outputs than inputs then fictitious
inputs with zero effect oy can be included by adding columns with zeros
in B and andD so thatD becomes square. The next step is then to add
non-zero elements t® so thatD becomes non-singular. Similarly @&

has more inputs than outputs one can add rows with zeros t6' twed D
matrices. Adding columns with zeros to tiematrix and rows with zeros

to the C' matrix does not change the direction of the pole, it only expands
the dimension. m|

Proof of Theorem 4The proof is given forV,, = 1 the proof forN, > 1
is to apply the proof ofV, = 1 repeatedly (note that faV, = 1, ip; =
up andz,; = xp). Sincep is a R4P-pole for G(s) it follows thatp is

T T
a Rup-pole for GT = [%A%T]. From Theorem 3 we have’™
T 1T
BoGo, Go = [%ﬁ%r] andBo =1 + QRe(p) yyH whereA’'T =



