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Abstract. This paper considers selection of controlled
variables when implementing optimizing control schemes.
As a special case we treat indirect control. The selec-
tion criterion derived is to maximize the smallest singu-
lar value of the selected subsystem to be controlled us-
ing feedback control. A procedure for selecting outputs
according to this criterion is outlined. The selection cri-
terion is dependent on scaling, so we discuss appropriate
scaling.

1. INTRODUCTION

Control systems for continuous plants in the chemical
process industry are often built in a hierarchical manner,
with regulatory control at the lowest layer, a supervisory
control layer above, and an optimizing control layer on
top (e.g. Morariet al., 1980). Additional layers are possi-
ble, as illustrated in Figure 1 which shows a typical con-
trol hierarchy for a complete chemical plant. In Figure 1
the control layer is subdivided into two layers:super-
visory control(“advanced control”) andregulatory con-
trol (“base control”). We have also included a schedul-
ing layer above the optimization. In general, the infor-
mation flow in such a control hierarchy is based on the
higher layer sending commands to the layer below, and
the lower layer reporting back any problems in achiev-
ing this. These commands includes reference values (set-
points) and values to unused inputs on the control layer,
see Figure 2. The optimization tends to be performedopen-
loopwith limited use of feedback. On the other hand, the
control layer is mainly based onfeedbackinformation.
The optimization is often based on nonlinear steady-state
models, whereas we often use linear dynamic models in
the control layer. There is usually a time scale separation
with faster lower layers as indicated in Figure 1. This
means that the setpoints, as viewed from a given layer
in the hierarchy, are updated only periodically. Between
these updates, when the setpoints are constant, it is impor-
tant that the system remains reasonably close to its opti-
mum. This observation is the basis for this paper which
deals with selecting outputs on the control layer for a op-
timizing control hierarchy shown in Figure 2.

From a theoretical point of view, the optimal coordina-
tion of the inputs and thus the optimal performance is
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Figure 1. Typical control system hierarchy in a chemical plant

obtained with acentralized optimizing controller, which
combines the two layers of optimization and control. All
control actions in such an ideal control system would
be perfectly coordinated and the control system would
use on-line dynamic optimization based on a nonlinear
dynamic model of the complete plant instead of infre-
quent steady-state optimization as considered in this pa-
per. However, this solution is normally not used for a
number of reasons; including the cost of modeling, the
difficulty of controller design, maintenance and modifi-
cation, robustness problems, operator acceptance, and the
lack of computing power.

Notation. At the control layer we use linear time invari-
ant transfer function models on the form

y(s) = G(s)u(s) +Gd(s)d(s) (1)

whereu is the vector of manipulated inputs,d is the vec-
tor of disturbances andy is the vector of outputs.G(s)
andGd(s) are rational transfer function matrices of di-
mensionsl � m and l � nd. The overall objective is to
minimize some sort of performance indexJ1 stated in
terms of the outputsy and the inputsu, J1(y; u). As a



Objective

?
Optimizer

?

?

u1

r2
f

?
Controller

K2

?
u2

PlantG

?y2?y1

� y2
-

+

Figure 2. Optimizing control with feedback control layer

subobjective at the control layer we want keep the con-
trol errore = y � r small.

Outline. First, we derive some general results, applicable
to both optimizing and indirect control. We discuss ap-
propriate scaling of inputs and outputs, and we outline a
procedure for selecting outputs and inputs. Next, we con-
sider measurement selection for indirect control. Finally
we give an example and a summary.

Previous work. The paper by Morariet al. (1980) is the
first in a series of papers studying the synthesis of con-
trol structures for chemical processes. They classify the
control objectives into regulatory and optimizing control,
partition the process for practical implementation of the
control structures and show how to analyze optimizing
control structures. Maarleveld and Rijnsdorp (1970) ar-
gue that optimum operation of a process is often not at
“the top of the hill”, but at the intersection of constraints.
During operation the active constraints may change, so
a control system making use of the constraint principle
should be capable of switching between constraint inter-
sections. The idea is worked out for a distillation column
where the column pressure and feed preheating are the
degrees of freedom. Tyreus (1987) discusses the possibil-
ity of simplifying the traditional structure with optimizer
in conjunction with multivariable regulatory control by
considering alternate control structures and by intergrat-
ing the steady-state optimization into the regulatory con-
trol. According to Tyreus the resulting systems are easy
to implement and perform nearly optimally. Kimet al.
(1991) presents an on-line dynamic optimizing control
procedure for operation of a binary distillation column;
the performance was examined experimentally.

The present paper extends and provides an example for
the results given in Skogestad and Postlethwaite (1996).
Related work can also be found in Morud (1995, Chap-
ter 8).

2. SELECTION OF CONTROLLED OUTPUTS

We rearrange and partition the outputsy =
h
y1
y2

i
, into

uncontrolled outputsy1 and controlled outputsy2, and
the inputsu =

h
u1
u2

i
, into unused inputsu1 and inputsu2

used for control ofy2. The model (1) becomes�
y1
y2

�
=

�
G11 G12

G21 G22

� �
u1
u2

�
+

�
Gd1

Gd2

�
d (2)

y1 includes outputs which can not directly be controlled
but has an impact on the performance objectiveJ1.

Two distinct questions arise:

(1) What variablesy2 should be selected as the con-
trolled variables?

(2) What is the optimal reference value (y2;opt) for these
variables?

The second problem is one of dynamic optimization and
is extensively studied. Here we want to gain some insight
into the first problem. We make the assumptions:

(a) The overall goal can be quantified in terms of the
scalar cost functionJ1 which we want to minimize.

(b) For a given disturbanced, there exists an optimal
valueuopt(d) and corresponding valueyopt(d)which
minimizes the costJ1.

(c) The reference valuesr2 for the controlled outputs
y2 should be constant, i.e.r2 should be independent
of the disturbancesd. Typically, some average value
is selected, e.g.r = y2;opt( �d).

By inserting the model (1) in the cost functionJ1 it can
be expressed in terms ofu andd, J1(u; d). However, seen
from the optimizer the degrees of freedom arer2 andu1,
see Figure 2. When the feedback controllerK2 relating
u2 to r2 andy2, i.e. u2 = K2(r2; y2), is invertible one
may look atu2 as equivalent tor2, and can therefore re-
placer2 as a degree of freedom for the optimizer. We
want to look at the variation of the costJ1 as function
of variations in the uncontrolled outputsy1 and varia-
tions in the inputsu2 used for control ofy2 for a given
disturbanced. We therefore write the cost functionJ1 as
J(y1; u2; d). For a givend the optimal value of the cost
function is

Jopt(d) , J(y1;opt; u2;opt; d) = minuJ(u; d) (3)

Ideally, we wantu = uopt(d). However, this will not be
achieved in practice, and we select controlled outputsy2
such that:

� The inputu2 (generated by feedback to achievey2 �
r2) should be close to the optimal inputu2;opt(d).

Note that we have assumed thatr2 is independent ofd.
The above statement is obvious, but it is nevertheless very
useful. The following development aims at quantifying
the statement.

One approach for selecting controlled variablesy2, is to
select a set of variablesy2 (with set pointsr2) in order to
minimize the worst case deviation from the optimal value
of the loss function,

Worst case loss :



� , max
d2D

jJ(y1; u2; d)� Jopt(d)j (4)

whereD is the set of all possible disturbances. As “distur-
bances” we should here also include changes in operating
point and model uncertainty.

To obtain some insight into the problem of minimizing
the loss�, let us consider the termJ(y1; u2; d)�Jopt(d)
in (4) for a fixed (generally non-zero) disturbanced. We
make the following additional assumptions:

(d) The cost functionJ is twice differentiable.
(e) The optimization problem is unconstrained. If it is

optimal to keep some variable at a constraint, then
we assume that this is implemented and consider the
remaining unconstrained problem.

(f) We only consider low frequency dynamics where
feedback control is effective.

For a fixed disturbanced we expressJ(y1; u2; d) in terms
of a Taylor series expansion of (y1; u2) around the opti-
mal point and inserting the model�y1 = G12�u2 (only
in the first order term) gives

J(y1; u2; d)� Jopt(d) =

�
@J

@y1
G12 +

@J

@u2

�
| {z }

=0

�u2+

1
2
[ �yT1 �uT2 ]

h
Jy1y1 Jy1u2
Ju2y1 Ju2u2

i h
�y1
�u2

i
+O3 (5)

where�y1 and�u2 represents deviations from the opti-
mal values, i.e.�y1 = y1�y1;opt and�u2 = u2�u2;opt.
We have neglected terms of third order and higher (which
assumes that we are reasonably close to the optimum).
The first term on the right hand side in (5) is zero at the
optimal point for an unconstrained problem. It is desir-
able that:

� The deviation of the cost from the optimal value
J(y1; u2; d) � Jopt(d) should be as small as pos-
sible.

In order to minimizeJ(y1; u2; d)�Jopt(d) the deviations
�y1 and�u2 should be as small as possible, i.e. dis-
turbancesd should have small effect on the uncontrolled
outputsy1, and inputs used for controlu2 should have
sufficient power so that they can counteract the distur-
bances and still stay in the neighborhood of the optimal
point.

Next we take into account some variations in the distur-
bances, which seems reasonable since the optimizer only
runs periodically. By using (2) at the optimal point with
u1 constant we get

�y1 = G12�u2 +Gd1d (6)

�y2 = G22�u2 +Gd2d (7)

AssumeG22 is invertible (if not we can use the pseudo-
inverseGy

22) and we solve for�u2 in (7) to get

�u2 = G�1
22 (�y2 �Gd2d) (8)

Inserting (8) into (6) gives

�y1 = G12G
�1
22| {z }

Pr

�y2 +Gd1 �G12G
�1
22 Gd2| {z }

Pd

d (9)

REMARK. The expressions forPd, andPr are similar to the expressions
for partial disturbance gain and partial reference gain derived for partial
control (Havre and Skogestad, 1996).

Consider�y2 which we want to be small. However, this
is not possible in practice. To see this, write

�y2 = y2 � y2;opt

= y2 � r2 + r2 � y2;opt = e2 + e2;opt (10)

First, we have an optimization errore2;opt , r2 � y2;opt,
because the algorithm pre-computes a desiredr2 which is
different fromy2;opt. In addition, we have a control error
e2 = y2 � r2 because the control layer is not perfect, for
example due to poor control performance or an incorrect
measurement or estimate ofy2. If the control itself is per-
fect thene2 = n2 (the measurement noise). In most cases
the errorse2 ande2;opt can be assumed independent.

Since�y1 is related to�u2 through (6) we can either
summarize our results in terms of keeping�u2 or �y1
small. In order to keep�u2 = u2 � u2;opt small we
should select the controlled outputsy2 such that:

(1) G�1
22 is small (i.e.G22 is large); the choice ofy2

should be such that the inputsu2 have large effect
ony2.

(2) e2;opt = r2 � y2;opt(d) is small; the choice ofy2
should be such that its optimal valuey2;opt(d) de-
pends weakly on the disturbances and other changes.

(3) e2 = y2 � r2 is small; the choice ofy2 should be
such that it is easy to keep the control errore2 small.

In order to keep�y1 = y1 � y1;opt we should select the
controlled outputsy2 such that:

(1) kPdk is small; the effect ofd ony1 is small.
(2) kPrk is small; the choice ofy2 should be such that

the effect ofr2 ony1 is small.

Remember that��(G�1
22 ) = 1=�(G22), and so we want the

smallest singular value ofG22 to be large (but recall that
singular values depend on scaling as is discussed below).
The desire to have�(G22) large is consistent with our
intuition that we should ensure that the controlled outputs
are independent of each other. Also note that the desire to
have�(G22) large (and preferably as large as possible) is
herenot related to the issue of input constraints.

We will discuss the use ofPd andPr to select controlled
outputsy2 in section 2.1.

Scaling.To use�(G22) to select controlled outputs, we
should scale the outputs such that the expected magnitude
of yi� yi;opt is similar in magnitude for each output, and
scale the inputs such that the effect of a given deviation
uj�uj;opt on the cost functionJ is similar for each input,
i.e. such that

�
@2J=@u2

�
opt

is close to a constant times a
unitary matrix.

We must also assume that the variations inyi� yi;opt are
uncorrelated, or more precisely:



(g) The “worst-case” combination of output deviations
yi�yi;opt, corresponding to the direction of�(G22),
may occur in practice.

Procedure for selecting controlled outputs.The use of
the minimum singular value to select controlled outputs
can be summarized in the procedure:

(1) From a (nonlinear) model compute the optimal pa-
rameters (inputs and outputs) for various conditions
(disturbances, operating points). This yields a “look-
up” table of optimal parameter values as a function
of the operating conditions.

(2) From this data obtain for each candidate outputy2,
the maximum variation in its optimal value

vi = (yiopt;max
� yiopt;min

)=2

(3) Scale the candidate outputsy2, such that for each
output the sum of the magnitudes ofvi and the con-
trol error (e.g. measurement noise) is similar (e.g.
about 1).

(4) Scale the inputs such that a unit deviation in each
input from its optimal value has the same effect on
the cost functionJ .

(5) Select as candidates those sets of controlled outputs
which correspond to a large value of�(G22).

REMARK 1. In the above procedure for selecting controlled outputs,
based on maximizing�(G22), the variation iny2;opt(d) with d (which
should be small) enters into the scaling of the outputs.
REMARK 2. A more exact procedure, which may be used if the optimal
outputs are correlated such that assumption (g) does not hold, is:
(a) Evaluate directly the cost functionJ for various disturbancesd

and control errorse2 by solving the nonlinear equations and as-
sumingy2 = r2 + e2 wherer2 is kept constant at the optimal
value for the nominal disturbance.

(b) The set of controlled outputs with smallest average or worst-case
value ofJ is then preferred.

2.1 Measurement selection for indirect control

The above ideas also apply for the case where the overall
goal is to keep some variabley1 at a given value (setpoint)
r1, e.g.J = ky1 � r1k. However, we cannot measurey1,
and instead we attempt to achieve our goal by controlling
y2 at some fixed valuer2, e.g.r2 = y2;opt( �d) where �d =
0 if we use deviation variables. In this case we havey1 as
“primary outputs”,y2 as controlled outputs, the setu1 is
empty andu2 = u. The model (2) becomes

y1 = G12u2 +Gd1d (11)

y2 = G22u2 +Gd2d (12)

By using (9) with�y1 = y1 � r1 and�y2 = e2, we get
the effect ofd and the control errore2 ony1

y1 � r1 = (Gd1 �G12G
�1
22 Gd2)| {z }

Pd

d+G12G
�1
22| {z }

Pr

e2 (13)

To minimize ky1 � r1k we again have the result:the
choice ofy2 should be such thatkPdk andkPrk are small.
Note thatPd only depends on the scaling of disturbances
d and “primary” outputsy1. Based on (13) a procedure
for selecting controlled outputs may be suggested:

Procedure for selecting controlled outputs for indirect
control. Scale the disturbancesd to be of magnitude 1,
and scale the outputsy2 so that the expected control er-
ror e2 (measurement noise) is of magnitude 1 for each
output (this is different from the output scaling used in
step 3 in our minimum singular value procedure). Then
to minimizeJ we should select sets of controlled outputs
which:

Minimize k [Pd Pr ] k (14)

REMARK 1. The choice of norm in (14) depends on the scaling, but
the choice is usually of secondary importance. The maximum singular
value arises ifkdk2 � 1 andkek2 � 1, and we want to minimize
ky1 � r1k2.
REMARK 2. The above procedure does not require assumption (g) on
uncorrelated variations in the optimal values ofyi � yi;opt.
REMARK 3. Of course, for the choicey2 = y1 we have thaty2;opt =
r1 is independent ofd and the matrixPd in (13) is zero. However,Pr
is still non-zero.
REMARK 4. In some cases this measurement selection problem involves
a trade-off between wantingkPdk small (wanting a strong correlation
between measured outputsy2 and “primary” outputsy1) and wanting
kPrk small (wanting the effect of control errors (measurement noise)
to be small), see Example 1.
REMARK 5. One might say that (5), (8), (9) and the resulting procedure
for output selection, generalizes the use ofPd andPr from the case
of indirect control to the more general case of minimizing some cost
functionJ .

From (11),y1 = r1 is obtained withu2 = u2;opt(d)
whereu2;opt(d) = G�1

12 (r1 � Gd1d) (replaceG�1
12 with

the pseudo-inverse,Gy
12, if G12 is not invertible). By in-

sertingu2;opt into (12) the optimal output for the con-
trolled variablesy2 are

y2;opt(d) = (Gd2 �G22G
�1
12 Gd1)| {z }

Py2;d

d+G22G
�1
12| {z }

Py2;r1

r1 (15)

If one consider to use the procedure involving�(G22) for
selection of outputs in the case of indirect control then
(15) can generate information about scaling ofy2. The
disturbances should be scaled with respect to the maxi-
mum allowed change and the referencer1 should be nor-
malized by including a diagonal matrixR1 such thatr1 =
R1~r1, (15) then becomes

y2;opt = [Py2;d Py2;~r1 ]| {z }
Py2

�
d
~r1

�

wherePy2;~r1 = Py2;r1R
�1
1 . Denote thej’th row of Py2

by [Py2 ]
j . A measure on the expected change in con-

trolled outputj when including measurement noisenj ,
is sj = k [Py2 ]

j k+ nj . A resonable scaling factor for the
controlled outputj is thensj , see Example 1.

3. EXAMPLE

EXAMPLE 1. Selection of secondary temperature mea-
surements in distillation control.Indirect control of prod-
uct compositions through temperature control on selected
trays in distillation columns is widely used in practice.



The previous literature has focused on the benefits of us-
ing inner loops controlling the temperature at one or two
selected trays with outer loops adjusting the setpoints to
the temperature loops to obtain the desired product pu-
rities. In this example we will focus on the selection of
the trays for temperature measurements. Related work in-
clude: Joseph and Brosilow (1978), Tolliver and McCune
(1980), Yu and Luyben (1984; 1987), Mooreet al.(1987),
Mejdell (1990), Wolff (1994), Leeet al. (1995) and Lee
and Morari (1996).

We consider a binary distillation column, LV-configuration,
i.e. refluxL and boilupV is used for product composi-
tion control. The pressure in the column and the liquid
holdups in the reboiler and the condenser is already con-
trolled using condenser cooling water flow, top and bot-
tom product flows. The model corresponds to column A
studied by Skogestad and Morari (1988). The basic data
are:

#Trays xD 1� xB zF L=F Mi=F [min]
41 0:99 0:99 0:5 2:71 0:5

The temperature difference across the column is13:5 �C.
The model includes composition and liquid flow dynam-
ics, resulting in a82 order model which is linearized in
the operating point. For a binary mixture with constant
pressure there is a direct relationship between tempera-
ture (T ) and composition (x). In terms of deviation vari-
ables,T = KTx, where for ideal mixturesKT is approx-
imately equal to the difference in pure component boiling
points. Data are found in (Wolff, 1994, Chapter 4).

The objective is to keep the product compositionsy1 =
[xD xB ]T at their desired values, i.e.J = ky1�r1k. The
secondary outputs to be considered are the temperature
on all the trays, of which two shall be selected to be used
for control, i.e.y2 = [Ti Tj ]

T . This is a case of indirect
control, see section 2.1. Inputs are reflux (L) and boilup
(V ), u = [L V ]T . Disturbances are changes in feed
flowrate (F ) and feed composition (zF ), d = [F zF ]T .
The disturbances and the product compositions have been
scaled such that a magnitude of1 corresponds to a change
in F of 20%, a change inzF of 20% and a change in
xB andyD of 0:01 mole fraction units. The inputsu are
scaled such that a magnitude of1 corresponds to a change
in u1 andu2 of 50%.

We consider two approaches for selecting the trays (i=j).
In the first approach we maximize the smallest singular
value of the subsystemG22 of size2�2. In the second ap-
proach we minimize the normk [Pd Pr ] k2. We consider
measurement noise of sizen in both of the temperatures.

1. Maximizing �(G22). The primary outputs (y1), the
disturbances (d) and the inputs (u) are scaled as described
above. Since we lack data for the variations in the opti-
mal values of the secondary outputs (y2), we use (15) to
generate the scaling factors fory2. For each combination
with two temperature measurements, we have the follow-
ing effect of disturbances (d) and changes in composition
setpoints (r1) on the temperatures (y2)

Py2;d = Gd2 �G22G
�1
12 Gd1; Py2;~r1 = G22G

�1
12 R

�1
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Figure 3. Effect of symmetric tray location on�(G0
22), n = 0:3 �C

whereR�1
1 = diagf0:01; 0:01g such thatr1 = R�1

1 ~r1,
and ~r1 is normalized in magnitude to be less than one.
The combined matrixPy2 = [Py2;d Py2;~r1 ] describes
the effect of disturbances and references on the controlled
outputs. Denote rowj of the combined matrix with[Py2 ]

j ,
and compute the two scaling factors

st = k [Py2 ]
1
k2 + n; sb = k [Py2 ]

2
k2 + n

wheren is the amount of measurement noise in the tem-
peratures. The subscriptst andb stands fortop andbot-
tom. The scalings of the outputsy2 is then taken to be
Dy2 = diagf1=st; 1=sbg, i.e.G0

22 = Dy2G22 whereG22

is the lower part of the model andG0
22 is the correspond-

ing rescaled model using the scalersst andsb. Figure 3
show�(G22), �(G0

22), st andsb for n = 0:3 �C with
temperature measurements symmetric around the feed tray,
i.e. two temperature measurements with equal distance
from the feed tray (one above and one below the feed
tray). The curve�(G0

22) in Figure 3 indicates that the op-
timal tray combination is8=34. Note that if rescaling is
left out, curve�(G22) in Figure 3, the result is far from
tray combination8=34. So, it is important to scale the
secondary outputsy2 properly when using this selection
procedure. When considering all

�
41
2

�
= 820, we find

that tray combination7=34maximizes�(G0
22) whenn =

0:3 �C. The upper part of Table 1 summarizes our results
for different levels of measurement noise. From the table

TABLE 1: Optimal tray combinations for different noise levels.

Measurement noise,n [�C] 0:1 0:3 0:7 1:0

�(G0
22)

Syma 5=37 8=34 9=33 10=32
All b 5=37 7=34 9=33 10=32

k [Pd Pr ] k2
Syma 5=37 8=34 10=32 11=31
All b 5=37 7=34 9=32 11=31

a Tray combinations symmetric around the feed tray are considered.
b All 820 tray combinations are considered.

we see, as expected, that the optimal location for tem-
perature measurement is closer to the column ends with
decreasing measurement noise.

2. Indirect control, minimizing k[Pd Pr ]k. In this case
we consider to select outputs which minimizek[Pd Pr ]k2.
Both Pd andPr depends on output scaling (y1), Pd de-
pends on input scaling (d) andPr on e2, which repre-
sents the control error in the secondary outputs, which
for perfect steady-state control, is equal to the measure-
ment noisen. The primary outputs, the disturbances and
the inputs are scaled as described above. The secondary
outputs are scaled relative to the noisen. The results for
the tray combinations symmetric around the feed tray, are
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shown in Figure 4. If we have zero control error and per-
fect temperature measurements (n = 0), then it is optimal
to measure the temperature at the ends of the column,
see lines forkPdk2 in Figure 4. To be practical, we need
to consider some measurement noise, perfect control can
easily be achieved at steady-state using integral action in
the loops. The effect of noise in the temperature measure-
ments on the primary outputs is given by the linekPrk2
in Figure 4. Measuring to close to the column ends yields
a finite non-zerokPrk2 (because changes in temperature
imply changes in composition) and measuring close to
the feed trays yields strong interactions inG22. This de-
scribes the characteristic shape ofkPrk2. The combined
effect of the disturbance and the control error due to mea-
surement error, is given byk [Pd Pr ] k2 in Figure 4.
When considering all possible combinations we find that
tray combination7=34minimizek [Pd Pr ] k2 whenn =
0:3 �C, which is equal to what we obtained for�(G22).
The lower part of Table 1 gives the results for the other
noise levels.

In summary, we see that the two approaches yield simi-
lar results. Increasing the amount of measurement noise
(control error), moves the measurements towards the mid-
dle of the column. We also see that the optimal locations
for temperature measurements are close to the best loca-
tions obtained when considering only the tray combina-
tions symmetric around the feed tray. This does not apply
in general but is merely a result of requiring equal prod-
uct purities and feed compositionzF = 0:5. Tray combi-
nation7=34 compares well with (Lee and Morari, 1996)
who found the choice7=35 to be the best, however they
only considered15 possible combinations of two temper-
atures.

4. SUMMARY

Generally, the optimal values of all variables will change
with time during operation (due to disturbances and other
changes). For practical reasons, we have considered a hi-
erarchical strategy where the optimization is performed
only periodically. The question is then:

� Which variables (controlled outputs) should be kept
constant (between each optimization)?

Essentially, we found that we should select variablesy2
for which the variation in optimal value and control error
is small compared to their controllable range (the range
y2 may reach by varying the inputu2). This is hardly a

big surprise, but it is nevertheless useful and provides the
basis for our procedure for selecting controlled outputs.

The objective of the control layer is then to keep the con-
trolled outputs at their reference values (which are com-
puted by the optimization layer). The controlled outputs
are often measured, but we may also estimate their val-
ues based on other measured variables. We may also use
other measurements to improve the control of the con-
trolled outputs, for example, by use of cascade control.
Thus, the selection of controlled and measured outputs
are two separate issues, although the two decisions are
obviously related. The measurement selection problem is
discussed in (Havre and Skogestad, 1996).
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