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Abstract. This paper considers the design of a stabilizing control structure, using the in-
formation given in the pole directions. It is shown how the input/output pole directions are
related to the minimum input energy needed to stabilize a given unstable mode.

1. INTRODUCTION

In this paper we consider selecting inputs and outputs to ob-
tain a stabilizing control structure. That is, we want to answer
questions like:

� How many loops must be closed to stabilize a given
unstable plant?

� Which outputs should be controlled?
� Which input should be used for control?

To answer these questions we need to look into the direction-
ality of the poles. Pole directions for the case with distinct
poles are defined in (Havre and Skogestad, 1996), where it is
also shown how these directions can be computed from the
left and the right eigenvalue problems. In some cases poles
with multiplicity larger than one, i.e. a repeated pole, may
actually occur in chemical process plants. In this paper we
extend the definition of pole directions to the case where the
poles have multiplicity larger than two and we show how
to compute the pole directions by using the Normal Jordan
Form. Furthermore, we derive a relationship between pole
directions and the minimum input energy needed to stabilize
a given unstable mode.
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Notation. We consider linear time invariant systems on state-
space form

_x = Ax+Bu (1)

y = Cx+Du (2)

whereA 2 Rnx�nx , B 2 Rnx�m, C 2 Rl�nx andD 2
Rl�m wherenx is the number of states,l is the number of
outputs andm is the number of inputs. These equations may
be rewritten as �
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This gives rise to the short-hand notation

G
s

=

�
A B

C D

�
(3)

which is frequently used to describe a state-space model of
a systemG. The transfer function ofG defined by (3) can
be evaluated as a function of the complex variables 2 C ,
G(s) = C(sI � A)�1B + D. We often omit to show the
dependence on the complex variables for transfer functions.

Outline. The outline of the paper is a follows; the second
section defines input/output pole directions and show how
they can be computed using the Normal Jordan form. This
section also gives a couple of examples on pole directions. In



the third section we consider the problem of finding one in-
put and one output (and a SISO controller) which stabilizes a
given unstable mode with minimum input usage. The fourth
section concerns repeated poles. The result given in this sec-
tion, treats the case where the system has a repeated pole
with v linearly independent eigenvectors, and it says that one
at least needv inputs andv outputs to control this mode.
In Section 5 we discuss some limitations on the usage of
pole directions to input/output selection, and we demonstrate
through an example that parallel unstable system are difficult
to control using less control loops than the number of insta-
bilities. Section 6 contains some relevant control engineering
problems from chemical process plants. Appendix A con-
tains some relevant information about left/right eigenvalue
problems, left/right Normal Jordan Forms and shows how
these can be combined. Appendix B contains the proofs of
the main results. Some minor proofs are also given in the
main text.

Related work. Some related work are given in (Wang and
Davison, 1973; Benninger, 1986; Tarokh, 1985; Tarokh, 1992;
Hovd, 1992; Lunze, 1992; Liet al., 1994a; Li et al., 1994b).

2. POLE DIRECTIONS

The poles are defined as the eigenvalues of theA matrix
in the state-space description, and the pole or characteristic
polynomial�(s) is defined as

�(s) = det(sI �A) =

nxY
i=1

(s� pi) (4)

The gain of the systemG(s) evaluated ats = p, G(p), is
infinite in some directions at the input and the output. This is
the basis for the following definition of input and output pole
directions.

DEFINITION 1. (INPUT AND OUTPUT POLE DIRECTIONS).
If s = p 2 C is a pole ofG(s) with multiplicity q then there
existsq input and output directions,up;i 2 Cm yp;i 2 C l ,
with infinite gain fors = p.

REMARK 1. When polep has multiplicity one, we know that there exists
one input and one output direction. If the mode is unobservable thenyp =
0, and if the mode is uncontrollable thenup = 0.
REMARK 2. We have stated that there existsq input and output directions.
However, each of the input directions may not be linearly independent and
each of the output direction may not be linearly independent.
REMARK 3. As mentioned above the pole directions at the input and the
output may not be linearly independent, but as we shall see there existsq
linearly independent input state directions andq linearly independent output
state directions. These state directions are associated with a particular state-
space realization ofG, so any similarity transformation applied to give a
different state-space realization also gives a new set of input and output state
directions.

In Havre and Skogestad (1996) it is shown that for a system
with state-space realization (3) the pole input (up) and out-
put (yp) directions associated with a distinct polep can be
computed using

up = BHxL; yp = CxR (5)

wherexR 2 C nx andxL 2 C nx are the eigenvectors corre-
sponding to the two eigenvalue problemsAxR = pxR and
xHLA = xHL p.

For poles with multiplicityq > 1 it may happen that the
number of linearly independent eigenvectorsv are less than
q. In such cases the state-spaceA matrix can not be diagonal-
ized. Instead, we use theNormal Jordan Form. Section A.2
defines and shows how the left and right Jordan forms can be
combined into

MH
L AMRS

�H = S�HMH
L AMR = J (6)

whereMR andML are the non-singular similarity transfor-
mations which givesM�1

R AMR = J , MH
L AM�H

L = J

and the columns inMR andML which are eigenvectors are
scaled such that their norms are equal to one. Furthermore,S

has the structure given in (A.15) andML =M�H
R S.

LEMMA 1. (POLE DIRECTIONS). If p is a pole with multi-
plicity q of the systemG with state-space realization (3) then
theq output directions for the polep can be computed from

yp;i = CmR;i; 8i 2 [1; : : : ; q] (7)

wheremR;i 8i 2 [1; : : : ; q] corresponds to the columns in
MR associated with the polep. Theq input directions for the
polep can be computed from

up;i = BHmL;i; 8i 2 [1; : : : ; q] (8)

wheremL;i 8i 2 [1; : : : ; q] corresponds to the columns in
ML associated with the polep.

REMARK 1. If A hasnx linearly independent eigenvectors, each Jordan
block is of size1� 1, ML = XL, MR = XR andJ = � and the matrix
A is diagonalizable.
REMARK 2. If A has distinct eigenvalues, thenA hasnx linearly indepen-
dent eigenvectors andA can be diagonalized.
REMARK 3. The pole directions are independent of the state-space realiza-
tion, to see this define a new state vector with the similarity transformation
T

z = Tx

which leads to the state-space realization

_z = TAT�1| {z }
A0

z + TB|{z}
B0

u; y = CT�1| {z }
C0

z +Du

From the the construction of the Jordan form we haveM�1
R AMR = J

insertingA = T�1A0T gives

M�1
R

T�1A0 TMR|{z}
M0

R

= J



and we haveM 0
L =M 0�H

R
= T�HM�H

R
= T�HML or

m0
R;i = TmR;i; m0

L;i = T�HmL;i

The new output direction becomes

y0p = C0m0
R;i = CT�1TmR;i = CmR;i = yp

and the new input direction becomes

u0p = B0Hm0
L;i = BHTHT�HmL;i = BHmL;i = up

REMARK 4. The input and output directions can of course be normalized.

EXAMPLE 1. POLE DIRECTIONS FOR SYSTEMS IN SERIES

AND PARALLEL .

Systems in parallel. Systems in series.
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For the systems in parallel the two modesp1 andp2 appear
in different channels both at the input and at the output. This
can easily be seen from bothG(s) and the pole directions.
The first column inUp corresponds top1 = 1 and the second
column corresponds top2 = 2. We see fromUp that onlyu1
can affect the modep1 and onlyu2 can affectp2. In a similar
way we see fromYp that modep1 can only be observed iny1
and the modep2 can only be observed iny2. For the system
in parallel it is obvious that we need to control both outputs
by using both inputs in order to stabilize the system.

For the systems in series we can see from the figure, from
G(s) and from the pole directionsUp andYp that both modes
can be stabilized by controllingy1 usingu2. FromUp we see
that the modep1 (the first column ofUp) can be affected by
using bothu1 andu2, whereas the modep2 can only be af-
fected by usingu2. In a similar wayp1 can only be observed
in y1, whereasp2 = 2 can be observed in bothy1 andy2.

EXAMPLE 2. Consider the following system:

G(s)
s

=

�
A I

I 0

�
whereA =

2
4�10 0 0 �9 �9

0 �1 0 9 �9
0 0 �1 0 0
0 0 0 �1 0
0 0 0 0 �10

3
5

G(s) =

2
666664

1
s+10

0 0 �9
(s+1)(s+10)

9
(s+10)2

0 1
s+1

0 9
(s+1)2

�9
(s+1)(s+10)

0 0 1
s+1

0 0

0 0 0 1
s+1

0

0 0 0 0 1
s+10

3
777775

The system is stable with two poles atp1 = �10 and three
poles atp2 = �1. Forp1 = �10 we have the following two
left and right eigenvectors

XR;p1 =

2
4 1 �1

0 0
0 0
0 0
0 0

3
5 and XL;p1 =

2
4 0 0

0 0
0 0
0 0
1 �1

3
5

which are linearly dependent. Similar forp2 = �1 we have
two linearly independent left and right and eigenvectors

XR;p2 =

2
4 0 0 0

1 0 �1
0 1 0
0 0 0
0 0 0

3
5 and XL;p2 =

2
4 0 0 0

0 0 0
0 0 1
1 �1 0
0 0 0

3
5

To compute the pole directions we must compute the Jordan
form. For the givenA matrix, the matricesMR, ML andS

MR =

2
4 1 0 0 1=9 0

0 1=9 �1 0 0
0 0 0 0 1
0 0 0 �1=9 0
0 1=9 0 0 0

3
5; ML =

2
4 1=9 0 0 0 0

0 0 �1=9 0 0
0 0 0 0 1

1=9 0 0 �1 0
0 1 1=9 0 0

3
5;

S =

2
4 1=9 0 0 0 0

0 1=9 0 0 0
0 0 1=9 0 0
0 0 0 1=9 0
0 0 0 0 1

3
5

transformA into Normal Jordan Form

J = S�HMH
L AMR =

2
4�10 1 0 0 0

0 �10 0 0 0
0 0 �1 1 0
0 0 0 �1 0
0 0 0 0 �1

3
5

The input and output pole directions corresponding to the
polesP = [�10 �10 �1 �1 �1 ] are

Yp =

2
4 1 0 0 1=9 0

0 1=9 �1 0 0
0 0 0 0 1
0 0 0 �1=9 0
0 1=9 0 0 0

3
5; Up =

2
4 1=9 0 0 0 0

0 0 �1=9 0 0
0 0 0 0 1

1=9 0 0 �1 0
0 1 1=9 0 0

3
5

In Figure 1 the step response tou = [ 1 1 �0:5 �0:1 0:5 ]T

is given. The analytical solution to a step change inu with
zero initial state,x0 = 0 is given by

y(t) =

2
64
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5u

By studying the analytical solution of the step response, the
elements ofG(s) and the pole directions it can be seen that
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Figure 1. Response to step inu = [ 1 1 �0:5 �0:1 0:5 ]T .
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Figure 2. PlantG and stabilizing control loop with pairinguj $ yi.

there is a correspondence between the non-zero elements of
the pole directions and in which inputs/outputs the two modes
appear.

3. STABILIZING CONTROL WITH MINIMUM
INPUT

In this section we consider the following problem, see also
Figure 2:

PROBLEM 1. Given a plant with one unstable modep (Re p >
0), with white measurement noiseni of unit intensity at each
outputyi; Find the pairinguj $ yi such that the plant is
stabilized with minimum input usage:

J = E

8<
: lim
T!1

1

T

TZ
0

u2j (t)dt

9=
; (9)

At first sight it is not clear that the output selection problem
is included at all, the reason is that the outputs do not enter
into the objective (9) explicitly. However, the output selec-
tion problem is included implicitly through the measurement
noise and the expectation operatorE. We assume that the
noise are uncorrelated zero-mean Gaussian stochastic pro-
cesses with power spectral density matrix equal to the iden-
tity I . That is, eachni are white noise processes with covari-
ance

E
�
n(t)nT (�)

	
= I � �(t� �) (10)

-

6

Re

Im

?
p�p

Figure 3. Mapping of pole from RHP to LHP with state feedback and mini-
mum input usage.

wheren = [n1 � � � nl ]
T . This problem can be cast into sev-

eral LQG problems, one for each possible pairing, and solved
numerically using a solver for Algebraic Riccati Equations
or some specialized functions for LQG, LQR or LQE prob-
lems (see for example the corresponding names in the Con-
trol System Toobox in MATLAB ). This problem is however
so simple that an analytical solution to the ARE’s can be
found. As for LQG design we will use the Separation Theo-
rem (Certainty Equivalence Principle) and find the best input
using state feedback control (LQR) under the assumption of
perfect measurement of all states. As the next step we will
construct a state-observer (LQE) and find the best output so
that

E
�
(x(t) � x̂(t))T (x(t) � x̂(t))

	
is minimized using one outputyi only.

Let us first state the solution:

SOLUTION TO PROBLEM 1.The minimum of the objectiveJ ,
for a specified inputuj and a specified outputyi is

J = 8p3

u2
p;j

y2
p;i

wherep is the pole,up;j is thej’th element in the input pole
direction andyp;i is thei’th element in the output pole direc-
tion. To minimize the control effort to stabilize the polep, one
should

� use inputuj , wherej corresponds tomaxj up;j ,
� control outputyi, wherei corresponds tomaxi yp;i.

It is well-known (Kwakernaak and Sivan, 1972) that mini-
mum input to stabilize an unstable plant with state feedback
u = �Kx(t) mirrors the unstable poles across the imaginary
axis, see Figure 3.

Optimal state feedback.For details regarding the LQR prob-
lem see Skogestad and Postlethwaite (1996). In this case, the
problem is to minimize the deterministic cost

JLQR =

1Z
0

u2j (t)dt

That is, LQR problem with zero weight on the states and
unity weight on the controluj . The optimal solution (for any
initial state) isuj(t) = �Kjx(t), where



Kj = eTj B
T| {z }

bT
j

X = bTj X

whereej is a vector of lengthm with zeros in all elements
except for elementj which equals one,bj is thej’th column
in theB matrix andX = XT � 0 is the unique positive-
semidefinite solution of the algebraic Riccati equation

ATX +XA�XBeje
T
j B

TX = 0 (11)

The solution to (11) is

X =
2p

u2p;j
xLx

T
L � 0 (12)

wherexL is the left eigenvector corresponding top.

Proof of (12). Since,p is real (only one unstable pole)xL = �xL, up = �up.
xL is a left eigenvector,xHL A = pxHL , by taking the transposed we get
ATxL = pxL. InsertingX into (11) we obtain

ATxL| {z }
pxL

xTL
2p

u2p;j
+

2p

u2p;j
xL xTLA|{z}

pxT
L

�xL x
T
LBej| {z }
up;j

eTj B
T xL| {z }

up;j

xTL
4p2

u4p;j
= 0

2

The controller gain matrixKj becomes

Kj =

up;jz }| {
eTj B

TxL| {z }
up

xTL
2p

u2p;j
=

2p

up;j
xTL (13)

Kalman filter. In this case the Kalman filter is updated by
only using the information in outputyi, and we have no pro-
cess noise. The structure is similar to the structure in an ordi-
nary state-estimator, see Skogestad and Postlethwaite (1996,
page 355), where

_̂x = Ax̂+Bu+Kf;i(yi � eTi Cx̂) (14)

The optimal choice ofKf;i, which minimizes

E
�
[x� x̂]T [x� x̂]

	
is given by

Kf;i = Y CT ei

whereY = Y T � 0 is the unique positive-semidefinite so-
lution of the algebraic Riccati equation

Y AT +AY � Y CT eie
T
i CY = 0 (15)

The solution to (15) is

Y =
2p

y2p;i
xRx

T
R � 0 (16)

wherexR is the right eigenvector corresponding top.

Proof of (16). Since,p is real (only one unstable pole)xR = �xR, yp = �yp.
xR is a right eigenvector,AxR = pxR, by taking the transposed we get
xTRA

T = pxTR. InsertingY into (15) we obtain

2p

y2p;i
xR xTRA|{z}

pxT
R

+AxR|{z}
pxR

xTR
2p

y2p;i
� xR xTRC

T ei| {z }
yp;i

eTi CxR| {z }
yp;i

xTR
4p2

y4p;i
= 0

2

The estimator gain matrixKf;i becomes

Kf;i =
2p

y2p;i
xR

yp;iz }| {
xTRC

T| {z }
yTp

ei =
2p

yp;i
xR (17)

Minimum value of objective. To prove the minimum value
of the objectiveJ (9), we use Theorem 5.4 part (d) in Kwak-
ernaak and Sivan (1972, page 394–395). In this case, and
with the notation used here, we get

J = trfXKf;iK
T
f;ig = trfY KT

j Kjg

= trf
2p

u2p;j
xLx

T
L

2p

yp;i
xR

2p

yp;i
xTRg =

8p3

u2p;jy
2
p;i

Implications on input/output selection.The pole input/output
directions depends on scaling, so it is crucial to scale the in-
puts and outputs properly. One procedure for selecting inputs
and outputs to stabilize a given unstable mode is:

(1) Scale the inputs so that a change in each input are of
equal importance on the overall objective.

(2) Scale outputs relative to measurement noise.
(3) Select inputuj , whereuj corresponds to a large ele-

ment in input pole direction vectorup
(4) Select to control outputyi, whereyi corresponds to a

large element in output pole direction vectoryp.

If the plant has several unstable modes to be stabilized after
stabilizing one mode using one loop, the poles and the pole
directions of the partially controlled system (closed loop sys-
tem with the SISO controller included) can be recomputed. It
may be that the SISO controller has stabilized several unsta-
ble poles. If there are remaining unstable poles then new con-
trol links can be identified from the recomputed pole direc-
tions and new controllers can be included, see the Tennessee
Eastman example in Section 6.

4. REPEATED POLES

In this section we look into the special case when a system
G(s) has one or more poles with multiplicity greater than
one. An important property connected to the mode, is the
number of linearly independent eigenvectors. This gives in-
formation about the minimum number of outputs to be con-
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Figure 4. Unstable modes in parallel with input and output rotations.

trolled and the minimum number of inputs to be used for
control in order to affect the modep.

THEOREM 1. Consider a systemG with a repeated mode
p (multiplicity q) with v linearly independent eigenvectors;
in order to affect the modep one need to control at leastv
outputs usingv inputs.

This results comes from Lemma 2 given in Appendix B.2
which states that all square subsystems containing the mode
p with dimension less thanv�v has at least one zero fors =
p, so the modep is not completely controllable or observable
or both in square subsystems of dimension less thanv � v.

EXAMPLE 3. Consider the system shown in Figure 4, with
p1 = p2 = p = 1 we have

G(s)
s

=

2
64

p 0 cos� � sin�
0 p sin� cos�

cos� � sin � 0 0
sin� cos� 0 0

3
75

The state-space matrixA has two linearly independent left
and right eigenvectors for the modep = 1

XR = XL =
h
1 0
0 1

i
Input and output pole directions become

Up =
h

cos� sin�
� sin� cos�

i
; Yp =

h
cos� � sin�
sin� cos�

i
The two pole directions are orthogonal both on the input and
on the output. The transfer functionG(s) is given by

G(s) =

"
cos(�+�)(s�p)

(s�p)2 � sin(�+�)(s�p)
(s�p)2

sin(�+�)(s�p)
(s�p)2

cos(�+�)(s�p)
(s�p)2

#

=

"
cos(�+�)

s�p � sin(�+�)
s�p

sin(�+�)
s�p

cos(�+�)
s�p

#

Since we have two linearly independent eigenvectors corre-
sponding top = 1, a pole/zero cancellation occurs in all el-
ements (predicted by Lemma 2), so that no elements contain
the term(s � 1)2 in the denominator. So in order to con-
trol the modep we need to use both inputs and both outputs,
which also was stated in Theorem 1.

5. LIMITATIONS IN THE USE OF POLE
DIRECTIONS

We have already seen one limitation in the use of pole direc-
tions to select inputs and outputs. This limitation is demon-
strated in Example 3 where the systemG(s) has a repeated
modepwith two linearly independent eigenvectors. As stated
in Example 3 this system can not be stabilized by control-
ling one output and using one input. This is the fact despite
that both input pole directions has a component in one of the
inputs for all� 6= k � 90�; k 2 N and both output pole di-
rections has a component in one of the outputs for all� 6=
k � 90�; k 2 N. This problem is caused by pole/zero cancel-
lation in each element. However, the situation can be identi-
fied by the fact that the system has a repeated modep with
multiplicity two and two linearly independent eigenvectors.

In the next example we consider the same system but in this
case we havep1 6= p2 so pole/zero cancellation does not
occur for values of� and� between0� and90�. Thus, in
theory the plant can be stabilized using one input and one
output. However, in practice this may be impossible due to
the presence of a RHP-zero ingij(s) which is close to the
two RHP-poles, see (Havre and Skogestad, 1996).

EXAMPLE 4. Again we consider two subsystems in parallel,
however, in this case the two modes of the subsystems are
different, see Figure 4. We have

G(s)
s

=

2
64

p1 0 cos� � sin�
0 p2 sin� cos�

cos� � sin � 0 0
sin� cos� 0 0

3
75

The left and right eigenvectors corresponding to the modes
p1 andp2 are

XR = XL =
h
1 0
0 1

i
Input and output pole directions are

Up =
h

cos� sin�
� sin� cos�

i
; Yp =

h
cos � � sin�
sin� cos�

i
The transfer functionG(s) is given by

G(s) =

� n11(s)
(s�p1)(s�p2)

n12(s)
(s�p1)(s�p2)

n21(s)
(s�p1)(s�p2)

n22(s)
(s�p1)(s�p2)

�
where

n11(s) = (s� p2) cos(�) cos(�) � (s� p1) sin(�) sin(�)

= cos(�+ �)s� p2 cos(�) cos(�) + p1 sin(�) sin(�)

n12(s) = �(s� p2) sin(�) cos(�) � (s� p1) cos(�) sin(�)

= � sin(�+ �)s+ p2 sin(�) cos(�) + p1 cos(�) sin(�)

n21(s) = (s� p2) cos(�) sin(�) + (s� p1) sin(�) cos(�)

= sin(� + �)s� p2 cos(�) sin(�) � p1 sin(�) cos(�)

n22(s)=�(s� p2) sin(�) sin(�) + (s� p1) cos(�) cos(�)



= cos(� + �)s+ p2 sin(�) sin(�)� p1 cos(�) cos(�)

Zeros in the individual transfer function elements are

z11 = p1
p2=p1 cos(�) cos(�)�sin(�) sin(�)

cos(�+�)

z12 = p1
p2=p1 sin(�) cos(�)+cos(�) sin(�)

sin(�+�)

z21 = p1
p2=p1 cos(�) sin(�)+sin(�) cos(�)

sin(�+�)

z22 = p1
cos(�) cos(�)�p2=p1 sin(�) sin(�)

cos(�+�)

Whenp1 = p2 = p all elements ofG(s) has a RHP-zero for
s = p and we have pole/zero cancellation. Setp1 = 1 and
consider

p2 2 [1:1; 1:01; 1; 0:99; 0:9]

The zeros of the transfer function elements are given in Ta-
ble 1. We observe that all elements has RHP-zeros.

Table 1. Zeros of the transfer function elements.

� � p2 z11 z12 z21 z22
1:1 1:15 1:05 1:05 0:95
1:01 1:015 1:005 1:005 0:995

30� 30� 1 1 1 1 1
0:99 0:985 0:995 0:995 1:005
0:9 0:85 0:95 0:95 1:05

1:1 1:321 1:032 1:067 0:779
1:01 1:032 1:003 1:007 0:978

30� 50� 1 1 1 1 1
0:99 0:968 0:997 0:993 1:022
0:9 0:679 0:967 0:933 1:221

Table 2 summarizes the pole directions, and the controlla-
bility/observability results for the case with parallel systems.
Except for�; � = 0� and�; � = 90� there is no warning
given in this table that stabilization using one input and one
output may be difficult due to the presence of nearby RHP-
zeros.

This example demonstrates one limitation on the use of pole
directions for input/output selection. The reason to this is that
the information about the zeros is not taken into account. The
example can also be viewed as a counter example on the use-
fulness of the controllability and observability measures de-
fined in Tarokh (1992), which also fails to signal the prob-
lems with SISO “controllability” for �; � different from0�

and90�.

6. CASE STUDIES

In the first example we consider a CSTR with two unstable
modes.

EXAMPLE 5. Consider a CSTR with the chemical reaction;
A(l) ! B(l). We will assume that�A = �B = � = const.,

Table 2. Controllability, observability and pole directions.

Observability
� Yp y1 a y2 b

0�
�
1 0
0 �1

�
No No

30�
hp

3=2 1=2

�1=2
p
3=2

i
Yes Yes

45�
hp

2=2 �
p
2=2p

2=2
p
2=2

i
Yes Yes

60�
h

1=2 �
p
3=2p

3=2 1=2

i
Yes Yes

90�
�
1 0
0 1

�
No No

a Observable withy1 only.
b Observable withy2 only.

Controllability
� Up u1 c u2 d

0�
�
1 0
0 1

�
No No

30�
hp

3=2 1=2

�1=2
p
3=2

i
Yes Yes

45�
h p

2=2
p
2=2

�
p
2=2

p
2=2

i
Yes Yes

60�
h

1=2
p
3=2

�
p
3=2 1=2

i
Yes Yes

90�
�
1 0
0 1

�
No No

c Controllable withu1 only.
d Controllable withu2 only.

Fin, zA, Tin

V; nA; nB ; n

A(l)! B(l)
F , T

Figure 5. CSTR - liquid phase.

Cp;A = Cp;B = Cp = const., the flow out of the tank
is independent of liquid height in the tank (the material is
pumped out), and we will assume a zero order reaction rate;

r = k(T ) = k0 e
�E
R
( 1

T
� 1

Tref
). The setup is shown in Fig-

ure 5. The material balances are

_n = Fin � F (18)

_nA = FinzA � F
nA

n
� k(T )n (19)

where
n [kmol] total mass/mole in the CSTR,
nA [kmol] mass/mole of componentA,
Fin [kmol/min] flow into the CSTR,
F [kmol/min] flow out of the CSTR,
zA [-] mole fraction of componentA in Fin,
k(T ) [-] mole of componentA reacted divided by

total moles in reactor.

The energy balance becomes



_Hz }| {
_U + p _V = _nCp (T � Tref) + nCp _T

= FinCp (Tin � Tref)� FCp (T � Tref) +

k(T )n (-�Hrx)

Rearranging yields

_T =
Fin

n
(Tin � T ) +

k(T )

Cp
(-�Hrx) (20)

where the additional symbols are
T [�K] temperature in the CSTR,
Tin [�K] temperature ofFin,
Cp [kJ/kmol�K] heat capacity of the mixture in the CSTR and
-�Hrx [kJ/kmol] heat of reaction.

At steady state we have from_n = 0, F = Fin, from _T = 0,
FinCp (Tin � T �) + k0n

�(-�Hrx) = 0 and from _nA = 0

n�A = zAn
� � k(T�)

Fin
n�2.

Linearizing the model around the operating point yields

_x = Ax+Bu+Bdd

y = Cx

wherex =

"
�n
�nA
�T

#
, u =

h
�F
�Tin

i
, d =

h
�Fin
�zA

i
, y =

h
�n
�T

i
,

A =

2
4 0 0 0

F
n�
A

n�2
� k0 � F

n�
� Ek0
RT�2

Fin
n�2

(Tin � T �) 0 �Fin
n�

+ Ek0
RT�2

-�Hrx

Cp

3
5

B =

2
4 �1 0

�
n�
A

n�
0

0 Fin
n�

3
5; Bd =

2
4 1 0

zA Fin
Tin�T�
n�

0

3
5

and
C =

h
1 0 0
0 0 1

i
The eigenvalues ofA are

�1 = �
F

n�
; �2 = 0 and

�3 = �
Fin

n�
+

Ek0

RT �2
-�Hrx

Cp
The operating point is specified in Table 3, and the phys-
ical process constants are given in Table 4. Note that the

Table 3. CSTR operating point.

Variable Value Unit Variable Value Unit
n� 1 [kmol] Tin 300 [�K]
n�A 0:2 [kmol] zA 1 [-]
T � 370 [�K] Fin 1 [kmol/min]

statex2 = �nA is not observable. The full linear state-space
model becomes

GF (s)
s

=

�
A B Bd
C 0 0

�
=

2
664

0 0 0 �1 0 1 0
�0:6 �1 �0:0514 �0:2 0 1 1
70 0 3:5 0 1 �70 0

1 0 0 0 0 0 0
0 0 1 0 0 0 0

3
775

Table 4. Physical constants for CSTR.

Variable Value Unit Variable Value Unit
k0 0:8 [min�1] E=R 8807 [�K]
Cp 40 [kJ/kmol�K] -�Hrx 3500 [kJ/kmol]

Tref = T � 370 [�K]

A minimal realization is given below, we have also scaled the
inputs using;�F = 1 (100% variation),�Tin = 20 �K, the
outputs using;�n = 0:05 (5% variation),�T = 1 �K, and
the disturbances using;�Fin = 0:5 and�zA = 1.

G(s)
s

=

2
64

0 0 �1 0
70 3:5 0 20

20 0 0 0
0 1 0 0

3
75 and Gd(s)

s

=

2
64

0 0 1 0
70 3:5 �35 0

20 0 0 0
0 1 0 0

3
75

In the minimal realization, statex2 = �nA is removed and
the newx2 is the temperaturex2 = �T . The pole directions
corresponding to the polesP = [ 0 3:5 ] are

Up =
h
1 �0:9988
0 0:9988

i
and Yp =

h
�0:9988 0
0:9988 1

i
From the pole directions we consider to control the temper-
ature (y2) using the flowF (u1). By using a LQG controller
based ong21(s), it is verified that both modes can be stabi-
lized with this control link. However, we did not manage to
stabilize both modes using one PI-controller.

In the next example we consider the Tennessee Eastman prob-
lem, where we use the pole directions to find a stabilizing
control structure.

EXAMPLE 6. TENNESSEEEASTMAN PROBLEM. The Ten-
nessee Eastman problem is shown in Figure 6. For details
about the Tennessee Eastman problem refer to (Downs and
Vogel, 1993). The figure contains both measurementsyi and
manipulated variablesuj . Also given in the figure are can-
didate outputs (yi) for stabilizing control. A separate num-
bering scheme is given for those outputs. Table 5 summa-
rizes the selected candidate outputs for stabilizing control
and the corresponding variable number in the full model (re-
ferred to as PID No.). Also given in the table is the scaling
of the outputs used in this analysis. The manipulated vari-
ables are summarized in Table 6, also given in the table is
the suggested scaling of the inputs used in this analysis. The
linearized model in the in the base case (mode 1, 50/50 G/H
mass ratio) is used in this example.

The model has six unstable poles in the operating point con-
sidered

Pu = [ 0 0:001 0:023� 0:156i 3:066� 5:079i ]

The pole output directions are



Figure 6. Tennessee Eastman test problem

Table 5. Candidate outputs for stabilizing control of the Ten-
nessee Eastman problem.

Variable name No.a PID No.b Scaling
Reactor pressure y1 y7 54:1 [kPa]
Reactor level y2 y8 1:5%
Reactor temperature y3 y9 1:2 [�C]
Separator temperature y4 y11 1:0 [�C]
Separator level y5 y12 1:0%
Separator pressure y6 y13 52:6 [kPa]
Stripper level y7 y15 1:0%
Stripper pressure y8 y16 62:0 [kPa]
Stripper temperature y9 y18 1:0 [�C]
Reactor cooling water
outlet temperature

y10 y21 0:2 [�C]

Separator coolingwater
outlet temperature

y11 y22 0:2 [�C]

a Variable number in the smaller model used in the analysis.
b Variable number in the full model provided by Downs and Vogel.

jYpj =

2
6666666666664

0:000 0:001 0:041 0:112
0:000 0:004 0:169 0:065
0:000 0:000 0:013 0:366
0:000 0:001 0:051 0:410
0:009 0:580 0:488 0:315
0:000 0:001 0:041 0:115
1:605 1:192 0:754 0:131
0:000 0:001 0:039 0:107
0:000 0:001 0:038 0:217
0:000 0:001 0:055 1:485
0:000 0:002 0:132 0:272

3
7777777777775
 y15

 y21

We have taken the absolute value to avoid complex conjugate
directions. The first column corresponds to the polep1 =
0, the second column corresponds to the polep2 = 0:001,
the third column corresponds to the complex conjugate pair
p3;4 = 0:023� 0:156i and the fourth column corresponds to
the complex conjugate pairp5;6 = 3:066 � 5:079i. We see

Table 6. Manipulated variables in the Tennessee Eastman
problem.

Variable name No.a Stream no. Scaling
D feed flow u1 2 10%
E feed flow u2 3 10%
A feed flow u3 3 10%
A and C feed flow u4 4 10%
Compressor recycle valve u5 10%
Purge valve u6 9 10%
Separator pot liquid flow u7 10 10%
Stripper liquid product flow u8 11 10%
Stripper steam valve u9 Stm 10%
Reactor cooling water flow u10 CWS 10%
Condenser cooling water flow u11 CWS 10%
Agitator speed u12 10%

a Variable number in both the full model and the model used in the analysis.

that outputy15 in the full model (row7) has the largest com-
ponent in the output direction of polep1 = 0, and non of the
other outputs has significant components in this direction. In
a similar way outputy21 (row 10) has a large component in
the pole output direction corresponding to the complex con-
jugate pairp5;6 = 3:066� 5:079i. The input pole directions
are

jUpj =

2
66666666666664

6:815 6:909 2:573 0:964
6:906 7:197 2:636 0:246
0:148 1:485 0:768 0:044
3:973 11:550 5:096 0:470
0:012 0:369 0:519 0:356
0:597 0:077 0:066 0:033
0:132 1:850 1:682 0:110
22:006 0:049 0:000 0:000
0:007 0:054 0:009 0:013
0:247 0:708 1:501 2:020
0:109 0:976 1:446 0:753
0:033 0:094 0:201 0:302

3
77777777777775
 u8

 u10



Table 7. Tunings of PI-controllers

Loop kp Ti
y15 $ u8 �0:1 [1=�C] 1 [min]
y21 $ u10 �0:05 [m3/h] 300 [min]
y12 $ u7 �0:0025 [m3/h] 200 [min]

By considering both input and output pole directions at the
same time we arrive at the suggested pairings;y15 $ u8
andy21 $ u10 which corresponds to controlling the stripper
level using the stripper liquid product flow and controlling re-
actor cooling water outlet temperature using the reactor cool-
ing water flow. It can also be seen from the pole directions
that these two loop will interact very little since the common
elements in the two directions are almost zero. It is worth
noting that both of these loops was also included by McAvoy
and Ye (1994) in their study.

Using two PI-controllers with tunings given in Table 7, we
manage to stabilize all the unstable modes except the mode
p2 = 0:001. By recomputing the pole directions with the
controllers included we get

Yp =

2
6666666666664

�0:001
�0:005
0:000
0:001
�0:867
�0:001
0:000
�0:001
0:001
0:000
�0:002

3
7777777777775

 y12
Up =

2
66666666666664

�7:363
�7:536
1:410
11:515
�0:346
�0:065

2:465
0:000
�0:062
0:008
0:901
�0:078

3
77777777777775
 u7

We see that the output pole direction has a large element in
y12 and only small elements in the other outputs. From the
input direction we see that inputu4 is the best choice, how-
ever, this is a feed stream. We would like to avoid (if possi-
ble) to use the feed streams to stabilizing control and rather
use these to set the production rate. The feed streams are all
gas, so it makes sens from a physical point of view that these
manipulated variables have large effect. Alsou1 andu2 are
feed streams so this leaves us with inputu7 which is the sep-
arator liquid flow. The pairing;y12 $ u7 then corresponds to
controlling the separator level using the separator liquid flow.
The controller parameters are given in Table 7. After closing
this loop the plant is stabilized. Figure 7 shows the Tennessee
Eastman plant with the controllers included. The mode clos-
est to the imaginary axis is about0:07which corresponds to a
time constant about14 hours, which from the operators point
of view may seems like a unstable mode drifting away. The
procedure can also be repeated on the stable modes which
one wants to affect. The intention with this example was to
demonstrate a systematic approach to the problem of control
structure design and not to design a complete control struc-
ture for the Tennessee Eastman problem. Also note that no
effort has been put into tuning of the controllers by us, we

have used the tunings given in (McAvoy and Ye, 1994).

7. SUMMARY

� Input/output pole directions is defined, and it is shown
how to compute these directions using Jordan forms.

� The input/output pole directions is related to the mini-
mum input energy needed to stabilize one unstable pole
using a single loop controller.

� When selecting the manipulated variable and the output
to be controlled pole directions provide useful informa-
tion. However, one also need to consider if the selected
transfer function has zeros in the region nearby the pole.

8. REFERENCES

Benninger, N. F. (1986). Proper choice of input and output variables
by means of new consistent structure measures.Large Scale Sys-
tems:Theory and Applications1, 161–166.

Downs, J. J. and E. F. Vogel (1993). A plant-wide industrial process control
problem.Computers chem. Engng.17(3), 245–255.

Havre, K. and S. Skogestad (1996). Effect of RHP zeros and poles on perfor-
mance in multivariable systems. In:Proc. from Control’96. University
of Exeter. pp. 930–935.

Hovd, M. (1992). Studies on Control Structure Selection and Design of Ro-
bust Decentralized and SVD Controllers. PhD thesis. Norwegian Uni-
versity of Science and Technology, Trondheim.

Kwakernaak, H. and R. Sivan (1972).Linear Optimal Control Systems. Wi-
ley Interscience. New York.

Li, K., Y. Xi and Z. Zhang (1994a). A new method for selection of variables
in industrial process control systems. In:Proceedings of the Asian
Control Conference. Tokyo. pp. 219–222.

Li, K., Y. Xi and Z. Zhang (1994b). Selection of manipulated variables for
industrial process control. In:Proceedings of the Asian Control Con-
ference. Tokyo. pp. 223–226.

Lunze, J. (1992).Feedback Control of Large-Scale Systems. Prentice-Hall.
Englewood Cliffs.

McAvoy, T. J. and N. Ye (1994). Base control of Tennessee Eastman prob-
lem.Computers chem. Engng.18(5), 383–413.

Skogestad, S. and I. Postlethwaite (1996).Multivariable Feedback Control,
Analysis and Design. John Wiley & Sons. Chichester.

Strang, G. (1986).Linear Algebra and Its Applications. Harcourt Brace Jo-
vanovich. Orlando, Florida.

Tarokh, M. (1985). Fixed modes in multivariable systems using constrained
controllers.Automatica21(4), 495–497.

Tarokh, M. (1992). Measures for controllability, observability, and fixed
modes.IEEE Transactions on Automatic Control37(8), 1268–1273.

Wang, S. H. and E. J. Davison (1973). On the stabilization of decentralized
control systems.IEEE Transactions on Automatic Control18(5), 473–
478.

Appendix A. EIGENVALUE PROBLEMS AND
NORMAL JORDAN FORM

A.1 Left and right eigenvalue problems

Assume in the following that the dimensions ofA is n � n. The standard
eigenvalue problem (referred to in this context as the right eigenvalue prob-



Figure 7. Tennessee Eastman plant with control loops included

lem) is to find the eigenvalue� and the eigenvector (referred to as the right
eigenvector)xR which satisfy

AxR = �xR (A.1)

In a similar way, the left eigenvector problem is to find eigenvalue� and the
left eigenvectorxL which satisfy

xHL A = xHL � (A.2)

It is well known that any scalars 2 C times an eigenvector also is an eigen-
vector and that eigenvectorsx1; : : : ; xk corresponding todifferent eigen-
values�1; : : : ; �k, then those eigenvectors are linearly independent. These
properties are of course valid for both types of eigenvalue problems.

The following property relates the the right eigenvectorxR;1, correspond-
ing to an eigenvalue�1, to the left eigenvectorxL;2, corresponding to an
eigenvalue�2, when�1 6= �2.

PROPERTY1. Left and right eigenvectors which corresponds to different
eigenvalues, are orthogonal to one another.

Proof. Let xR;1 be a right eigenvector corresponding to the eigenvalue�1
andxL;2 be a left eigenvector corresponding to the eigenvalue�2 we then
have

AxR;1 = �1xR;1 and xHL;2A = �2x
H
L;2

Multiplying the latter on the right byxR;1 gives

�2x
H
L;2xR;1 = xHL;2AxR;1 = xHL;2�1xR;1

which impliesxHL;2xR;1 = 0 since�2 6= �1. 2

The eigenvalue problems (A.1) and (A.2) can be written on matrix form by
arrangingxR;i andxL;i so that they both correspond to eigenvalue�i. We
then form the matrices

XR = [xR;1 xR;2 � � � xR;n ]

XL = [xL;1 xL;2 � � � xL;n ]

and the diagonal matrix� = diagf�ig. Then we have the following rela-
tionships

AXR = XR� and XH
L A = �XH

L (A.3)

The right eigenvalue problem of the transpose ofA (AT ) becomes

ATX = X� (A.4)

Taking the transpose of (A.4) gives

XTA = �XT (A.5)

Comparing (A.5) and the last equation in (A.3) gives thatXL = �X , that
is, the left eigenvectors are equal to the conjugate of the right eigenvectors
to AT . In MATLAB the left eigenvectors can therefore be computed as the
conjugate of the right eigenvectors ofAT .

Scaling. Since any scalar times an eigenvector is an eigenvector, the eigen-
vectors can be scaled independently. It is usual to scale the eigenvectors so
that the norm of the vectors are equal to one. Note that the eigenvectors are
still not unique they can be multiplied with a complex number with magni-
tude one and arbitrary phase. In this work we assume that both left and right
eigenvalues are scaled so that their norm are one. Consider next a pair of
left and right eigenvectors (xL;i; xR;i) corresponding to the eigenvalue�i,
define the scalarsi = xHL;ixR;i and the diagonal matrixS = diagfsig. In
the case ofn linearly independent eigenvectors we can write the diagonal-
ization ofA in terms ofXR,XL andS, see (A.9).

n linearly independent eigenvectors.It is well known that a matrixAwith
n linearly independent eigenvectorsxR;i can be diagonalized by the matrix
XR

X�1
R AXR = � or A = XR�X

�1
R (A.6)

In a similar wayA can be diagonalized byXL if A hasn linearly indepen-
dent left eigenvectors.

XH
L AX�H

L = � or A = X�H
L �XH

L (A.7)



From (A.6) and (A.7) we have

X0
L = X�H

R
(A.8)

whenA hasn linearly independent right eigenvectors. When computing the
left eigenvectors according to (A.8) it follows that the left eigenvectors are
scaled so thatxHR;ixL;i = 1. To see this multiplyX0

L on the left withXH
R

to obtainXH
RX0

L = XH
RX�H

R
= I. It is therefore necessary to normalize

the left eigenvectors,XL = X0
LS, whereS contains the inverse of the norm

of the columns inX0
L on the diagonal. MultiplyingXL on the left byXH

R
reveals

XH
RXL = XH

RX0
LS = XH

RX�H
R S = S

which is desired. Multiplying (A.3) on the left byXH
L , using (A.8) and

XL = X0
LS we obtain

XH
L AXR = SH� = �SH (A.9)

The last identity follows since two diagonal matrices commute. In a similar
way we can multiply (A.3) on the right withX�1

R
= S�HXH

L to obtain

A = XR�S
�HXH

L = XRS
�H�XH

L (A.10)

n distinct eigenvalues. In the case ofn distinct eigenvalues there existsn
linearly independent eigenvectors and we have

XH
L XR = XH

RXL = S = diagfxHL;ixR;ig

A.2 Normal Jordan Form

It is not our intention to show how to compute the Normal Jordan Form or
to derive it. However, the intention is to show how we can use the Normal
Jordan Form to obtain both left and right generalized vectors which can be
used to describe the directionality of those poles or eigenvalues which do
not have sufficient number of linearly independent eigenvectors.

A defective matrixA is a matrix which does not possessn linearly indepen-
dent eigenvectors and can not be diagonalized. Those matrices which cannot
be diagonalized can be brought into Normal Jordan Form.

If a matrix hass linearly independent eigenvectors, then it is similar to a ma-
trix which is in Normal Jordan Form withs square blocks on the diagonal:

J =M�1AM =

2
4 J1

.. .
Js

3
5

Each block has one eigenvector, one eigenvalue, and 1’s just above the diag-
onal:

Ji =

2
64
�i 1

.. .
...
�i 1

�i

3
75

It follows thatAM = MJ , the single eigenvector for each block satisfy
Awi = �iwi and for each blockJi of size greater than one there exists
sizefJig � 1 additional vectorswi which satisfyAwi = �iwi + wi�1.
These additional vectors are calledgeneralized vectors. The eigenvectors
together with the generalized vectors form the matrixM which has rank
equal ton. SinceM has rank equal ton,M�1 exists andJ =M�1AM .

We will denoteM for MR since it multipliesA on the right inAMR =
MRJ . Following the same arguments for constructions ofMR andJ (see
Strang, 1986) it follows that there also exists aML such that

MH
L A = JMH

L (A.11)

Since bothMR andML are nonsingular we can write

J = M�1
R

AMR or A =MRJM
�1
R

(A.12)

J =MH
L AM�H

L
or A =M�H

L
JMH

L (A.13)

From (A.12) and (A.13) it follows that

M 0
L = M�H

R (A.14)

REMARK 1. We can split up bothAMR = MRJ andMH
L A = JMH

L .
To do this letMR;i be the columns inMR corresponding toJi and let
similarly ML;i be the columns inML corresponding toJi. From the right
Jordan form we get

A [MR;1 � � � MR;s ] = [MR;1 � � � MR;s ]

2
4 J1

. ..
Js

3
5

which givesAMR;i = MR;iJi, and from (A.11) we get2
4MH

L;1

...
MH
L;s

3
5A =

2
4 J1

. ..
Js

3
5
2
4MH

L;1

...
MH
L;s

3
5

which givesMH
L;i = JiMH

L;i.
REMARK 2. FromAMR =MRJ and for Jordan block numberi,AMR;i =
MR;iJi it follows that the first columnmR;i inMR;i is the eigenvector and
the remaining columns inMR;i are the generalized vectors. LetmR;i de-
note columni in MR and assume that the size of the Jordan block is three,
we get

A [mR;i mR;i+1 mR;i+2 ] =

[mR;i mR;i+1 mR;i+2 ]

"
�i 1 0
0 �i 1
0 0 �i

#

orAmR;i = �imR;i,AmR;i+1 = �imR;i+1+mR;i andAmR;i+2 =
�imR;i+2 +mR;i+1.
REMARK 3. For the left Jordan problem the ordering of the vectors is op-
posite to that of the right Jordan problem. That is, the last column inML;i is
the eigenvector and the remaining columns are the generalized vectors. We
haveMH

L A = JMH
L and for Jordan block numberi, MH

L;iA = JMH
L;i.

LetmL;i denote columni in ML and assume that the size of of the Jordan
block is three, we get"

mH
L;i

mH
L;i+1

mH
R;i+2

#
A =

"
�i 1 0
0 �i 1
0 0 �i

#"
mH
L;i

mH
L;i+1

mH
L;i+2

#

ormH
L;iA = �im

H
L;i +mH

L;i+1,mH
L;i+1A = �im

H
L;i+1 +mH

L;i+2 and

mH
L;i+2A = �imH

L;i+2

Scaling.We know that each eigenvector can be scaled independently, how-
ever, the generalized vectors described byAwi = �iwi + wi�1 must be
scaled with the same scalar as the eigenvector which starts the string. As
an example, suppose that we have found an eigenvectorw1 and two gener-
alized vectorsw2 andw3 so thatAw1 = �w1, Aw2 = �w2 + w1 and



Aw3 = �w3 + w2 are all satisfied. Next assume that we scale the eigen-
vectorw1 to becomew0

1 = sw1 wheres 2 C . In order to satisfyAw2 =

�w2 + w0
1 we must scalew2 with the same scalars to obtainw0

2 = sw2

andAw0
2 = �w0

2+w
0
1 which again imply that we must scalew3 with s. So,

for each Jordan block we have one degree of freedom for scaling. The struc-
ture of the scaling matrix is then for a matrix withs linearly independent
eigenvectors

S =

2
4 s1I1

. ..
ssIs

3
5 (A.15)

wheresi 2 C and the sizes of the identity matricesI1; : : : ; Is are equal
to the sizes of the corresponding Jordan blocksJ1; : : : ; Js. It follows from
(A.14) that selectingML = M 0

LS,

MH
RML =MH

RM 0
LS =MH

RM�H
R = S (A.16)

Usually we select the scalingss1; : : : ; ss to be real and equal to the inverse
of the norms of the columns inM 0

L corresponding to the left eigenvectors.
This implies that alls1; : : : ; ss are real, and by taking the complex conju-
gate transpose of (A.16) we obtain

MH
L MR = SH = S = MH

RML (A.17)

Multiplying (A.11) on the right withMR gives

MH
L AMR = JMH

L MR = JSH (A.18)

which is valid for all diagonal scaling matricesS with the predescribed
structure given in (A.15). In a similar way we can multiplyAMR = MRJ
on the left byMH

L to get

MH
L AMR = SHJ = JSH (A.19)

So,S andJ commute, which can also be seen from

JS =

2
4 J1

.. .
Js

3
5
2
4 s1I1

. ..
ssIs

3
5

=

2
4 J1s1I1

. ..
JsssIs

3
5 =

2
4 s1I1J1

.. .
ssIsJs

3
5

=

2
4 s1I1

. ..
ssIs

3
5
2
4 J1

. ..
Js

3
5 = SJ

When the scalerss1; : : : ; ss are all realSH = S.

Multiplying AMR = MRJ on the left withM�1
R = M 0H

L = S�HMH
L

gives

A =MRJS
�HMH

L = MRS
�HJMH

L (A.20)

A.3 Inverse ofJ

The inverse ofJ consisting ofs square blocks along the main diagonal is
the matrix

J�1 =

2
4 J�1

1

.. .
J�1
s

3
5

and the inverse of a Jordan block of sizev

Ji =

2
6664
p 1 � � � 0 0
0 p � � � 0 0
...

...
.. .

...
...

0 0 � � � p 1
0 0 � � � 0 p

3
7775
9>>>=
>>>; v (A.21)

is

J�1
i =2
664

1=p �1=p2 � � � (�1)v�2=pv�1 (�1)v�1=pv

0 1=p � � � (�1)v�3=pv�2 (�1)v�2=pv�1

.

.

.
.
.
.

. . .
.
.
.

.

.

.
0 0 � � � 1=p �1=p2

0 0 � � � 0 1=p

3
775 (A.22)

Appendix B. PROOFS OF THE RESULTS

B.1 Proof of Lemma 1

From (A.19),A = M�H
L SHJM�1

R , then we have

(sI � A) = (sI �M�H
L

SHJM�1
R

)

= (M�H
L SHM�1

R s�M�H
L SHJM�1

R )

=M�H
L SH(sI � J)M�1

R (B.1)

andG(s) can be written

G(s) = C(sI �A)�1B +D

= CMR(sI � J)
�1S�HMH

L B +D (B.2)

as an alternative we could extract the scalings on the other side of(sI �
J)�1

G(s) = CMRS
�H(sI � J)�1MH

L B +D (B.3)

Consider(sI � J)�1 for s = p

(sI � J)�1 =

2
4 (sI1 � J1)�1

.. .
(sIs � Js)�1

3
5

for the Jordan blocks involvingp

(sIi � Ji)
�1 =

2
6664
1=(s� p) �1=(s� p)2 � � �

0 1=(s� p) � � �
...

...
.. .

0 0 � � �
0 0 � � �

(�1)v�2=(s� p)v�1 (�1)v�1=(s� p)v

(�1)v�3=(s� p)v�2 (�1)v�2=(s� p)v�1

...
...

1=(s� p) �1=(s� p)2

0 1=(s� p)

3
7775 (B.4)



When insertings = p we see that the upper triangular part of(sIi� Ji)
�1

becomes1. We partitionMR andML into blocks so that the columns
in MR andML corresponding to Jordan block numberi, are collected in
MR;i andML;i then (B.2) can be rewritten

G(s) = C [MR;1 � � � MR;s ] �2
4 (sI1 � J1)�1

...
(sIs � Js)�1

3
5 �

2
4 �s1I1

.. .
�ssIs

3
5
2
4MH

L;1

...
MH
L;s

3
5B +D

Assume that block number one is the block involvingp, insertings = p in
G(s) gives

G(s = p) = C [MR;1 � � � MR;s ] �2
41 � T1�s1 .. .

O � Ts�ss

3
5 �
2
4MH

L;1

...
MH
L;s

3
5B +D

whereTi is used to signal an upper triangular matrix compatible in size with
Ji,1 is used to signal infinity gain andO is used to signal finite gain. The
directions associated with infinite gain at the output are those contained in
MR;1, or if Jordan blocki is involved, then those directions are contained
in MR;i. The output directions becomes

Yp = CMR;i; 8i whose Jordan block involvesp.

By consideringGH(s = p) we find that the corresponding input directions
become

Up = BHML;i; 8i whose Jordan block involvesp.

2

B.2 Proof of Theorem 1

In order to prove Theorem 1 we need some more notation. The plantG(s)
of sizel �m hasm inputs andl outputs. We consider next a subsystem of
G, G
;�(s) where the multiple
 describes the outputs and the multiple�
describes the inputs. As an example, if we consider the2� 2 subsystem of
G, consisting of the outputs2 and4 and the inputs1 and3we get
 = (2; 4)
and� = (1; 3). Let furthern
 andn� denote the number of elements in the
multiples
 and�. We define the matrixN
 of sizel�n
 , where columnj
in N
 corresponds to elementj in 
, is equal to the unit vectorei of sizel,
with zeros in all positions except for positioni which contains1 and where
i is elementj in 
. We define the matrixN� in a similar way as am� n�
matrix consisting of unit vectors in each column with zeros in all elements
except for elementi which contains1, wherei is equal to elementj in � for
columnj. Then we have that

G
;�(s) = NT

 GN�

s

=

�
A B�
C
 D
;�

�
whereB� = BN� , C
 = NT


 C andD
;� = NT

 DN� . If for example


 = (2; 4), � = (1; 3) andG is of size4� 3 then

N
 =

"
0 0
1 0
0 0
0 1

#
; N
 =

�
1 0
0 0
0 1

�

and

G
;�(s) =
�
0 1 0 0
0 0 0 1

�" g11 g12 g13
g21 g22 g23
g31 g32 g33
g41 g42 g43

#�
1 0
0 0
0 1

�
=
�
g21 g23
g41 g43

�
LEMMA 2. Consider a systemG with with a repeated modep (multiplicity
q) and withv linearly independent eigenvectors. For all square subsystems

described byGr
;�
s

=

h
A B

r
�

C
r

 D

r

;�

i
ofG with dimensionr� r, wherer <

v, the modep is not completely observable or not completely controllable or
both at the same time. Furthermore, inG
;� we have at leastv�r pole/zero
cancellations.

REMARK. This result says that if a system G has modep with multiplicity q
andv � q linearly independent eigenvectors corresponding to the modep,
then the controller needs to take into accountv outputs andv inputs to affect
the modep. So, the controller with minimum number of inputs and outputs
which can affect all thev modesp, is av � v controller, see Theorem 1.

Proof of Lemma 2. The selected square subsystem of sizer, has state-space

realizationGr
;�(s)
s

=

h
A B

r
�

C
r

 D

r

;�

i
, where ther selected inputs (corre-

sponding to the columns in the overallB matrix) are specified by ther-
multiple �, and ther selected outputs (corresponding to rows in the overall
C matrix) are specified by ther-multiple
.Gr
;�(s) is then given by

Gr
;�(s) = Cr
(sI � A)�1Br
� +Dr


;�

=
Cr
adj(sI � A)Br

�
+Dr


;�
�(s)

�(s)

Since,�(p) = 0 it is sufficient to show that the system described byG0r

;�

(s)
s

=h
A B

r
�

C
r

 0

i
hasv� r zeros fors = p. The zeros ofG0r


;�(s) are the values

of s where the matrix h
sI �A Br

�
Cr
 0

i
is singular,det(

h
sI � A Br

�

Cr
 0

i
) = 0. The zeros and the input/output zero

directions are independent of the state-space realization so we define a new
state vectorz =M�1

R x and consider

h
M�1
R 0
0 Ir

i h
(sI � A) Br

�
Cr
 0

i h
MR 0
0 Ir

i
=

h
sI � J M�1

R
Br



Cr
MR 0

i
=

h
sI � J S�HUH

p;�
Yp;
 0

i
whereYp;
 contains the output directions for the selected outputs described
by
, andUp;� contains the input directions for the selected inputs described
by�. When insertings = p, v columns andv rows inpI�J become equal
to zero sinceJ hasv Jordan blocks withp on the diagonal, one Jordan
block for each independent eigenvector. So, the rank ofpI � J is nx � v.
We haver columns inUp;� andr rows inYp;
 . If r < v then the matrixh
pI � J S�HUH

p;�

Yp;
 0

i
becomes singular, the rank can at maximum become

nx � v + 2r and we need rank equal tonx + r, if the matrix shall be
non-singular, which leaves us with a zero of multiplicityv � r. Since, the
poles span the wholev dimensional space described by thev independent
eigenvectors in the state-space, it is sufficient to show that the state input
zero direction is within thisv dimensional space to achieve pole/zero can-
cellation. Sets = p and consider the solution to the set of equationsh

pI �A Br
�

Cr
 0

i h
x
u

i
The obvious solution isx = xR andu = 0, so the space described by the
eigenvectors contains the state input zero direction. Note that for a repeated



modep with v linearly independent eigenvectors, any linear combinations
of the independent eigenvectors also are an eigenvector. As an example con-
siderv = 3; xR;1, xR;2 andxR;3 are all linearly independent eigenvectors
corresponding top

A � (axR;1 + bxR;2 + cxR;3) = p � (axR;1 + bxR;2 + cxR;3)

In a similar way we can show that the space described by the left eigenvec-
tors contain the state output zero direction. So, pole/zero cancellation of at
least orderv � r occurs. Note that pole/zero cancellation of higher order
may occur if the minimal realization ofGr
;�(s) does not containr poles
p. As an example, if a minimal realization ofGr


;�
(s) contains no poles for

s = p, we havev pole/zero cancellations (with the possibility of even more
pole/zero cancellations ifq > v). 2


