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Abstract. This paper considers the design of a stabilizing control structure, using the in-
formation given in the pole directions. It is shown how the input/output pole directions are
related to the minimum input energy needed to stabilize a given unstable mode.

1. INTRODUCTION Notation. We consider linear time invariant systems on state-
space form
In this paper we consider selecting inputs and outputs to ob-
tain a.stabll'lzmg control structure. That is, we want to answer i = Az + Bu (1)
guestions like:
y=Cz+ Du (2)
¢ How many loops must be closed to stabilize a given
unstable plant? whered € R=*"= B ¢ R%=*m (C ¢ R*" andD €
¢ Which outputs should be controlled? R>™ wheren, is the number of states,is the number of
¢ Which input should be used for control? outputs andn is the number of inputs. These equations may

. . . berewritten as
To answer these questions we need to look into the direction-

ality of the poles. Pole directions for the case with distinct {x] - {A B] {x]
poles are defined in (Havre and Skogestad, 1996), where it is Yy ¢ DJlu
also shown how these directions can be computed from theThis gives rise to the short-hand notation

left and the right eigenvalue problems. In some cases poles

with multiplicity larger than one, i.e. a repeated pole, may G {i‘ﬁ] 3)
actually occur in chemical process plants. In this paper we C|D

extend the definition of pole directions to the case where the

poles have multiplicity larger than two and we show how Which is frequently used to describe a state-space model of
to compute the pole directions by using the Normal Jordan@ systemG. The transfer function o defined by (3) can
Form. Furthermore, we derive a relationship between polebe evaluated as a function of the complex variable C,
directions and the minimum input energy needed to stabilizeG(s) = C(sI — A)~'B + D. We often omit to show the

a given unstable mode. dependence on the complex variabler transfer functions.

Outline. The outline of the paper is a follows; the second
1 Also affiliated with: Institute for energy technology, P.O.Box 40, N-2007 Section defines input/output pole directions and show how
Kjeller, Norway, E-mail: kjetil@ife.no. they can be computed using the Normal Jordan form. This

2 Author to whom correspondence should be addressed. Fax: (+47) 73 595ecti0n also gives a Coup|e of examp|es on p0|e directions. In
40 80, E-mail: skoge@kjemi.unit.no.



the third section we consider the problem of finding one in-
put and one output (and as® controller) which stabilizes a
given unstable mode with minimum input usage. The fourth

In Havre and Skogestad (1996) it is shown that for a system
with state-space realization (3) the pole input)(and out-
put (y,) directions associated with a distinct pglecan be

section concerns repeated poles. The result given in this seceomputed using

tion, treats the case where the system has a repeated po

with v linearly independent eigenvectors, and it says that one

at least need inputs andv outputs to control this mode.

le
—pH.. .
up = BYxp;

Yp = Czg %)

In Section 5 we discuss some limitations on the usage ofWherézr € C"» andz, € C" are the eigenvectors corre-
pole directions to input/output selection, and we demonstrateSPonding to the two eigenvalue problemsr = prr and

through an example that parallel unstable system are difficult”~

to control using less control loops than the number of insta-

A=xlp

For poles with multiplicityg > 1 it may happen that the

bilities. Section 6 contains some relevant control engineeringnumber of linearly independent eigenvectorare less than

problems from chemical process plants. Appendix A con-
tains some relevant information about left/right eigenvalue

g. In such cases the state-spacmatrix can not be diagonal-
ized. Instead, we use tidormal Jordan FormSection A.2

problems, left/right Normal Jordan Forms and shows how defines and shows how the left and right Jordan forms can be
these can be combined. Appendix B contains the proofs ofcombined into

the main results. Some minor proofs are also given in the
main text.

Related work. Some related work are given in (Wang and
Davison, 1973; Benninger, 1986; Tarokh, 1985; Tarokh, 1992
Hovd, 1992; Lunze, 1992; lat al, 1994; Li et al, 1994).

2. POLE DIRECTIONS

The poles are defined as the eigenvalues of Ahmatrix

in the state-space description, and the pole or characteristic

polynomiala(s) is defined as

Na

¢(s) = det(sI — A) = [[ (s — p:)

i=1

(4)

The gain of the systerti(s) evaluated at = p, G(p), is
infinite in some directions at the input and the output. This is
the basis for the following definition of input and output pole
directions.

DEFINITION 1. (INPUT AND OUTPUT POLE DIRECTIONS).
If s = p € Cis a pole ofG(s) with multiplicity ¢ then there
existsq input and output directionsy,,; € C™ y,; € C',

with infinite gain fors = p.

REMARK 1. When polep has multiplicity one, we know that there exists
one input and one output direction. If the mode is unobservablethen

0, and if the mode is uncontrollable thep = 0.

REMARK 2. We have stated that there exigtmput and output directions.
However, each of the input directions may not be linearly independent an
each of the output direction may not be linearly independent.

REMARK 3. As mentioned above the pole directions at the input and the
output may not be linearly independent, but as we shall see there gxists
linearly independent input state directions grithearly independent output

d

MPAMRS™ = S~HMFAMR =7 (6)

whereMp and Mj, are the non-singular similarity transfor-
mations which givesi,' AMp = J, MEAM " = J
and the columns id/r and M, which are eigenvectors are
scaled such that their norms are equal to one. Furtherrfiore,

has the structure given in (A.15) add;, = M,;HS.

LEmMMA 1. (PoLE DIRECTIONS). If pis a pole with multi-
plicity ¢ of the systeni’ with state-space realization (3) then
theq output directions for the polg can be computed from
ym:CmRJ, Vi e [1,...,(]] (7)

wherempg; Vi € [1,...,q| corresponds to the columns in
My, associated with the poje Thegq input directions for the
polep can be computed from

Up,i :BHTTLLJ, Vi € [1,...,q] (8)
wherempy, ; Vi € [1,...,q] corresponds to the columns in
My, associated with the pole

REMARK 1. If A hasn, linearly independent eigenvectors, each Jordan
block is of sizel x 1, My, = X1, Mr = Xg andJ = A and the matrix
A is diagonalizable.
REMARK 2. If A has distinct eigenvalues, thehhasn. linearly indepen-
dent eigenvectors and can be diagonalized.
REMARK 3. The pole directions are independent of the state-space realiza-
tion, to see this define a new state vector with the similarity transformation
T

z=Tzx

which leads to the state-space realization
2=TAT '2+ TBu; y=CT 'z+4 Du
S——— ~—~ ~——"
A!

B’ c’

From the the construction of the Jordan form we hMglAMR =J

state directions. These state directions are associated with a particular staténsertingA = 7~1 A'T gives

space realization of7, so any similarity transformation applied to give a

different state-space realization also gives a new set of input and output state

directions.

Mp'T='A'TMg = J
~——

!
MR



(- '—-H _ qn—H -H _p-H —10 O 0o -9 -9
andwe have\l; = M~" =T~ My" =T~ My, or . TAlT o 20 o Do
, , _H G(s) = 710 whereA=| 0o o -1 0o o
mpg,; =Tmgi; mp,; =T "mr,; 0 0 0 -1 o
The new output direction becomes 1 9 0
, . L s+10 0 0 (s+1)(s+10) (s+10)2
Yp =C'mp; =CT" Tmp;=Cmg,; = yp 0 &5 0 e IO F10)
— 1
and the new input direction becomes G(S) - 0 0 s+1 0 0
0 0 0 T 0
u, = B'my ;= BT mp ;= B my; = u, 0 0 0 0 =5
REMARK 4. The input and output directions can of course be normalized. The system is stable with two polesat = —10 and three
poles atp; = —1. Forp; = —10 we have the following two
EXAMPLE 1. POLE DIRECTIONS FOR SYSTEMS IN SERIES left and right eigenvectors
AND PARALLEL. 1 -1 0o
0 0 0 0
Xpp, = |0 0 and Xp, = |0 o
0 0 0 0
0 0 1 -1
ms in parallel. ms in series. : : P
Systems in paralle Systems in series which are linearly dependent. Similar fps = —1 we have
w - n i two linearly independent left and right and eigenvectors
s§—Pp1 (X1 00 O 0O 0 O
1|22+ 1 Y1 X 10 -1 d X 0 0 0
s—p2 ¥ s— =]l0o1 o0 an =]o0o o0 1
(2] 1 Y2 Uz b2 P Rip2 00 0 Loz 1 -1 0
s—p2 (T2 Y2 00 O 0 0 0

To compute the pole directions we must compute the Jordan

pr=1, pp =2 pr=1, ps =2 form. For the giverd matrix, the matriced/g, M, andS
. L 1 0 0 1/9 0 1/9 0 0 0 0
1 0 1/9 -1 0 0 0 0 —1/9 0 0
O s§— s§— s§— = =
6= |77 V| G =R TIEA] M=o gl M= g 8o b
s—2 s—2 0 1/9 0 0o o0 0 1 1/9 0 o0
1o s SR
U=1o 1 b= RS
2 0 0 0 0o 1
v transformA into Normal Jordan Form
Y:[l 0] Y:172 10 1 o0 o0 0
Poloo1 "7 lo 2 J=S HMIAMr =10 o 11 o
0 0 0 -1 0
0 0 0 0 -1

For the systems in parallel the two modgsandp, appear  The input and output pole directions corresponding to the
in different channels both at the input and at the output. ThispolesP = [-10 -10 -1 -1 -1]are
can easily be seen from botf(s) and the pole directions.

1 0 0 1/9 o0 1/9 0 0 0 0

1 i — 0 1/9 —1 0 0 o 0 —-1/9 0 O

The first columnin’, corresponds tp; = 1 and the second Y,=1]o 0 o o 1|; Uy=|00 o o1
column corresponds @ = 2. We see fronU,, that onlyu, 0 0 0 -1/9 0 /90 0 -10
0 1/9 0 0 0 0 1 1/9 0o 0

can affect the modg, and onlyu, can affecips. In a similar )
way we see frony), that modep, can only be observed in InFigure 1 the stepresponserte=[1 1 —0.5 —0.1 0.5]"
and the mode. can only be observed ig. For the system IS given. The analytlca_l so_lutlon to a step change iwith
in parallel it is obvious that we need to control both outputs Z€r0 initial stategxo = 0 is given by

by using both inputs in order to stabilize the system.

0.1-0.1e 1% o 0 e t-01e7 _09
For the systems in series we can see from the figure, from _ 0 1-et 0 9— (9 +9t)e"
G(s) and from the pole directiorig, andY), that both modes y(t) = 0 ot 705—* L
can be stabilized by controlling usingus. FromU, we see 0 0 0 0
that the mode; (the first column ofU/;)) can be affected by 0.00(1 — e~ 10y _ g.gte 10t
using bothu; andu,, whereas the modse, can only be af- e -0te -0
fected by using:». In a similar wayp; can only be observed o
in y1, whereag, = 2 can be observed in both andys. 0-1 = 0-1e

By studying the analytical solution of the step response, the
ExamMPLE 2. Consider the following system: elements of7(s) and the pole directions it can be seen that
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wheren = [n; --- n;]T. This problem can be cast into sev-
eral LQG problems, one for each possible pairing, and solved
numerically using a solver for Algebraic Riccati Equations
or some specialized functions for LQG, LQR or LQE prob-

Figure 1. Response to stepin=[1 1 —0.5 —0.1 0.5]7.

LIEN A lems (see for example the corresponding names in the Con-
—~ G(s) trol System Toobox in MTLAB). This problem is however
T so simple that an analytical solution to the ARE’s can be
uj found. As for LQG design we will use the Separation Theo-
s rem (Certainty Equivalence Principle) and find the best input
Kji(s) ahite noise) using state feedback control (LQR) under the assumption of

perfect measurement of all states. As the next step we will
construct a state-observer (LQE) and find the best output so
that

there is a correspondence between the non-zero elements of E{(z(t) — 2(t)" (z(t) — 2(t)}

the pole directions and in which inputs/outputs the two modes. . . . .
appear. is minimized using one outpyt only.

Figure 2. PlantG and stabilizing control loop with pairing; < ;.

Let us first state the solution:

SOLUTION TO PROBLEM 1.The minimum of the objectivg

3 STABILIZING CONTROL WITH MINIMUM for a specified input;; and a specified outpuf; is

INPUT

_ _8p
J = Z 7
P,179P,

In this section we consider the following problem, see also
Figure 2:

wherep is the poleu,, ; is thej’th element in the input pole
direction andy, ; is thei'th element in the output pole direc-
tion. To minimize the control effort to stabilize the ppjene
should

PROBLEM 1. Given a plantwith one unstable mogéRe p >
0), with white measurement noisg of unit intensity at each
outputy;; Find the pairingu; < y; such that the plant is
stabilized with minimum input usage: e use inputu;, wherej corresponds tanax; u,, ,

e control outputy;, where; corresponds tenax; yp ;.
T

1 . _ . . ._
J=E{ lim = /u?(t)dt 9) It is well known (K\{vakernaak and Sivan, _1972) that mini
mum input to stabilize an unstable plant with state feedback
u = —Kz(t) mirrors the unstable poles across the imaginary
axis, see Figure 3.

At first sight it is not clear that the output selection problem . ) .
Optimal state feedback For details regarding the LQR prob-

is included at all, the reason is that the outputs do not enter - -
into the objective (9) explicitly. However, the output selec- lem see Skogestad and Postlethwaite (1996). In this case, the
problem is to minimize the deterministic cost

tion problem is included implicitly through the measurement

T—oc0
0

noise and the expectation operafr We assume that the oo
noise are uncorrelated zero-mean Gaussian stochastic pro- JLor = /uQ.(t)dt
cesses with power spectral density matrix equal to the iden- !

tity 7. That is, each; are white noise processes with covari- 0

ance That is, LQR problem with zero weight on the states and
unity weight on the contral;. The optimal solution (for any
E{ntn"(r)} =1-6(t—1) (10) initial state) isu;(t) = —K;xz(t), where
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K;= X=bX

wheree; is a vector of lengthn with zeros in all elements
except for element which equals onej; is the;’th column
in the B matrix andX = X7 > 0 is the unique positive-
semidefinite solution of the algebraic Riccati equation

ATX + XA— XBejel BTX =0 (11)
The solution to (11) is
2
X="TLugl >0 (12)

D,J

wherez, is the left eigenvector correspondingito

Proof of (12) Since,p is real (only one unstable poley, = Zr, up = yp.
zr is a left eigenvectorg ¥ A= pat 7 » by taking the transposed we get
ATzp = pxp. InsertingX into (11) we obtain

2

2 2 4
ATmLmETp+—sz ILA szLBe]e BTILIE f =0
—~ p\j p»J ——l— Up.j

b pzz Up,j Up. i
|
The controller gain matriX; becomes
Up,j
’ N 2 2
K;= e]-T BTzp xpr = —pr (13)
S Uy 2]

Up

Kalman filter. In this case the Kalman filter is updated by

only using the information in outpyt, and we have no pro-

cess noise. The structure is similar to the structure in an ordi-
nary state-estimator, see Skogestad and Postlethwaite (1996

page 355), where

&= A% + Bu+ Ky (y; — el C#) (14)

The optimal choice ok ¢ ;, which minimizes
E{[z - 3]"[x — 7]}
is given by
Kf,i = YC’Tei

whereY = YT > 0 is the unique positive-semidefinite so-
lution of the algebraic Riccati equation

VAT + AY —YCTeiel CY =0 (15)
The solution to (15) is
2
Y = Lapah >0 (16)

2

wherezx g is the right eigenvector correspondingito

Proof of (16) Since,p is real (only one unstable polels = Zr, yp = Up-
rRrisa right eigenvectorAzr = pzxpg, by taking the transposed we get
L AT = paT. InsertingY” into (15) we obtain

2 2 4p>
2;17 TA+AIRZL‘£TP7£L‘RZE£CT61‘61TCIRI£ f =0
yp,i ~— = yp,i N N—— yp,i
ng PTR Yp,i Yp,i
O
The estimator gain matrik’; ; becomes
Yp,i
2p T ~T 2p
Kp;=—zpzpC" e = a7
pi S~ Yp,i

Y

Minimum value of objective. To prove the minimum value

of the objective/ (9), we use Theorem 5.4 part (d) in Kwak-
ernaak and Sivan (1972, page 394-395). In this case, and
with the notation used here, we get

J= tr{XKf K7} =tr{VKK;}

2p 2p T}_ 3

= tr{

IL'L L
p 7 yp, yp,

P Jyp 2
Implications on input/output selection. The pole input/output
directions depends on scaling, so it is crucial to scale the in-
puts and outputs properly. One procedure for selecting inputs
and outputs to stabilize a given unstable mode is:

(1) Scale the inputs so that a change in each input are of
equal importance on the overall objective.

(2) Scale outputs relative to measurement noise.

(3) Select inputu;, wherew; corresponds to a large ele-
ment in input pole direction vectar,

(4) Select to control outpuj;, wherey; corresponds to a
large element in output pole direction vectgr

If the plant has several unstable modes to be stabilized after
stabilizing one mode using one loop, the poles and the pole
directions of the partially controlled system (closed loop sys-
tem with the $so controller included) can be recomputed. It
may be that the ISo controller has stabilized several unsta-
ble poles. If there are remaining unstable poles then new con-
trol links can be identified from the recomputed pole direc-
tions and new controllers can be included, see the Tennessee
Eastman example in Section 6.

4. REPEATED POLES

In this section we look into the special case when a system
G(s) has one or more poles with multiplicity greater than

one. An important property connected to the mode, is the
number of linearly independent eigenvectors. This gives in-
formation about the minimum number of outputs to be con-



Uy 1™ . Y1 5. LIMITATIONS IN THE USE OF POLE

o R e s e e DIRECTIONS

U ) cosa o] —L 1720 G5 cosp Y2 We have already seen one limitation in the use of pole direc-
s s—P2 tions to select inputs and outputs. This limitation is demon-

strated in Example 3 where the systéifs) has a repeated
Figure 4. Unstable modes in parallel with input and output rotations. modep with two linearly independent eigenvectors. As stated
in Example 3 this system can not be stabilized by control-
trolled and the minimum number of inputs to be used for ling one output and using one input. This is the fact despite
control in order to affect the moge that both input pole directions has a component in one of the
inputs for alla # k- 90°, k£ € N and both output pole di-
THEOREM 1. Consider a systen with a repeated mode rections has a component in one of the outputs foaj
p (multiplicity ¢) with v linearly independent eigenvectors; k. 90°, k € N. This problem is caused by pole/zero cancel-
in order to affect the modg one need to control at least lation in each element. However, the situation can be identi-
outputs using inputs. fied by the fact that the system has a repeated npostith
multiplicity two and two linearly independent eigenvectors.

This results comes from Lemma 2 given in Appendix B.2 |n the next example we consider the same system but in this
which states that all square subsystems containing the modease we have, # p, so pole/zero cancellation does not

p with dimension less tham x v has at least one zero fer= occur for values oty and 3 between0° and90°. Thus, in
p, so the mode is not completely controllable or observable theory the plant can be stabilized using one input and one
or both in square subsystems of dimension less than. output. However, in practice this may be impossible due to

the presence of aHR-zero ing;;(s) which is close to the
ExAMPLE 3. Consider the system shown in Figure 4, with two RHP-poles, see (Havre and Skogestad, 1996).
p1 = p2 = p = 1we have

EXAMPLE 4. Again we consider two subsystems in parallel,

g 0 |cosa —sina however, in this case the two modes of the subsystems are
s P sina cosa . .
G(s) = | o7 —smal 0 0 different, see Figure 4. We have

sin3 cos 0 0 P1 0 cosa —sina

G(S) 5 0 P2 sina cosa

The state-space matriz has two linearly independent left cos@ —sinf| 0 0

and right eigenvectors for the mogde= 1 sinf cosf | 0 0
1o The left and right eigenvectors corresponding to the modes
Xp=X1 =
R L [0 1] p1 andp, are

Su=xi= ) ]

Input and output pole directions are

U, — | cose sina ], _ [cosp —sinpg
P | —sina cosa]’ p sinB cosf

Input and output pole directions become

[ cosa sina], _ [cosp —sinpg
Up = [—sina cosa]’ Yy = [sinﬁ cos 3 ]
The two pole directions are orthogonal both on the input and

on the output. The transfer functi¥(s) is given by The transfer function#(s) is given by

n11(s) ni2(s)
G(S) — [(s—m)(s—pz) (s—m)(s—pz)}
. n21(s) n22(s)
cos(a+B)(s—p) _ sin(a+B)(s—p) Gp)(—p2)  G-p1)(s—p2)
G(s) = | .. (s—p)? (s—p)?
sin(a+8)(s—p) cos(a+3)(s—p) where
(s—p)? s—p)?
cos(a+p3) _ sin(a+p)
— [ sinigﬁﬁ) Cos(i;rpﬁ) ] ni11(s) = (s — p2) cos(a) cos(B) — (s — p1) sin(a) sin(f)
s—p s—p = cos(a + B)s — p2 cos(a) cos(B) + p1 sin(a) sin(3)

Since we have two linearly independent eigenvectors corre- n12(s) = —(s — p2) sin(a) cos(B) — (s — p1) cos(a) sin(B)
sponding top = 1, a pole/zero cancellation occurs in all el- = —sin(a + #)s + pa sin(a) cos(B) + p1 cos(a) sin(B)
ements (predicted by Lemma 2), so that no elements contain
the term(s — 1) in the denominator. So in order to con-
trol the modep we need to use both inputs and both outputs, = sin(a + f)s — p> cos(a) sin(f) — p1 sin(e) cos(f)
which also was stated in Theorem 1. naz(s) = —(s — p2) sin(a) sin(B) + (s — p1) cos(a) cos(B3)

n21(s) = (s — p2) cos(a) sin(B) + (s — p1) sin(e) cos(B)



= cos(a + B)s + p2 sin(a) sin(3) — p1 cos(ex) cos(B)

Table 2. Controllability, observability and pole directions.

Zeros in the individual transfer function elements are

Observability
/p1 cos(a) cos(8)—sin(a) sin(B) g Y n'
_ pa/p1 cos(a) cos —sin(a) sin
211 = Pp1 2701 cos(a+P3) 0° [1 0] No No
. . -1
215 = py B2/p1sin(a) cos(8)+cos(a) sin(8) 0
sinet) 30° Vv3/2 1/2 Yes Yes
_  p2/p1 cos(a) sin(B)+sin(a) cos(8) ~1/2 V3/2
221 = P1 sin(a+03) /3 /3
) . 2/2 —V2/2
29 :plcos(a)cos(ﬁigszzi/fé)sm(a)sm(g) 45° [ﬁ/z V)2 ] Yes Yes
o /2 —V3/2
60 I:\/E/z 1/ } Yes Yes
Whenp, = p, = p all elements of7(s) has a Rip-zero for 90° [1 0] No  No
s = p and we have pole/zero cancellation. et= 1 and 0!
consider a Observable withy; only.
pe €[1.1,1.01,1,0.99,0.9] b Observable withys only.
The zeros of the transfer function elements are given in Ta- Cg”tro”ab'“ty _ .
ble 1. We observe that all elements hasrRzeros. = P e
0° (o %] No No
Table 1. Zeros of the transfer function elements.
30° [‘/5/2 1/2] Yes  Yes
o 8 P2 211 212 z21 2922 -1/2 V3/2
1.1 || .15 105 105 0.5 . V32 Ve
1.01 || 1.015 1.005 1.005 0.995 45 [—ﬁ/z vaz| Yes  Yes
30° [ 30° | 1 1 1 1 1
/2 V/3/2
0.99 || 0.985 0995 0.995 1.005 60° [_\//g/Q i ] Yes  Yes
09 || 08 095 095 1.05 L
11 || 1321 1.032 1.067 0.779 90° [o 1] No  No
1.01 || 1.032 1.003 1.007 0.978
30° | 50° 1 1 1 1 1 ¢ Controllable withuq only.
0.99 || 0.968 0.997 0.993 1.022 d Controllable withus only.
09 || 0679 0.967 0.933 1.221

F‘iny ZAI ﬂn

Table 2 summarizes the pole directions, and the controlla-
bility/observability results for the case with parallel systems.
Except fora, 3 = 0° anda, 8 = 90° there is no warning
given in this table that stabilization using one input and one
output may be difficult due to the presence of nearlypR
zeros.

V) naA,nNp,n

F, T
A(l) = B()

{

Figure 5. CSTR - liquid phase.

Cpa = Cpp = C, = const, the flow out of the tank
This example demonstrates one limitation on the use of poleis independent of liquid height in the tank (the material is
directions for input/output selection. The reason to this is that pumped out), and we will assume a zero order reaction rate;
the information about the zeros is not taken into account. The, — (T) = k, ¢ %t~ 73 The setup is shown in Fig-
example can also be viewed as a counter example on the usgrre 5. The material balances are
fulness of the controllability and observability measures de-

fined in Tarokh (1992), which also fails to signal the prob-

lems with Sso “controllability” for «, 3 different from0° n=F ;AF (18)
and9o°. na = Finza— F— —k(T)n (29)
n
where
n [kmol] total mass/mole in the CSTR,
6. CASE STUDIES na [kmol] mass/mole of component,
) ) . F; [kmol/min]  flow into the CSTR,
In the first example we consider a CSTR with two unstable F [kmol/min]  flow out of the CSTR,
modes. e [1 mole fraction of componentt in Fi,,
k(T) [] mole of component4 reacted divided by

EXAMPLE 5. Consider a CSTR with the chemical reaction; total moles in reactor.

A(l) = B(l). We will assume that4 = pp = p = const., The energy balance becomes



H
—— ) Table 4. Physical constants for CSTR.
U+ pV =0nCp (T — Tret) + nC,T

Variable Value Unit Variable  Value Unit
=FinCp (Tin — Trer) — FCp (T — Trer) + ko 0.8 [min—1] E/R 8807 [°K]
4 kJ/kmol°K] | -AHyx kJ/kmol
K(T)n (-AH.) Trefci . 3700 [ J/[OKO] ] 3500  [kJ/kmol]
Rearranging yields
R k(T) A minimal realization is given below, we have also scaled the
T= o (Tin = T) + o (-AH:x) (20) inputs using AF = 1 (100% variation),AT;, = 20 °K, the
b outputs usingAn = 0.05 (5% variation),AT = 1°K, and
where the additional symbols are the disturbances usings /i, = 0.5 andAz4 = 1.
T [°K] temperature in the CSTR,
T; [°K] temperature off},,, 0 0(-10 0 0|1 0
° ' [ [ s | 70 3.5 0 20 s | 70 3.5|—35 0
-CAper [k[Jlglrlr(]r(:olT] r%eeaatti"?ﬁ'éﬁooﬁ.me e inthe CSTR and Gls) = 20 0[]0 0 and Ga(s) = 20 0] 0 O
At steady state we have from= 0, F = F,,, fromT = 0, 0 L]0 0 0 1]00
FinCp (Tin — T*) + kon*(-AH,x) = 0 and fromng = 0 L o )
nE =t — BT a2 In the m|n|mal realization, state, = Any4 is remqved _and
A A Fin the newz, is the temperature, = AT'. The pole directions
Linearizing the model around the operating point yields corresponding to the poldd = [0 3.5] are
¢ = Az + Bu + Byd 1 —0.9988 _ [-0.9988 0
y=_Cx Up = [o 0.9988 ] and Y, = [ 0.9988 1]
An
wherez = lAnA] u= [ﬁﬁ ] d= [iiin] Ly = {2;] From the pole directions we consider to control the temper-
AT in A ature {j;) using the flowF (u;). By using a LQG controller
0 0 0 based ony,; (s), it is verified that both modes can be stabi-
A= F:A2  — — Bko, Iized_ yvith this control Iin_k. However, we did not manage to
fi“z (Tw—T%) 0 —Fag RE;& Aolf,” stabilize both modes using one PI-controller.
-1 0 1 0 )
B=|_-mM B, = oA P Inthe next example we consider the Tennessee Eastman prob-
S Fo | Tw-T* lem, where we use the pole directions to find a stabilizing
n* " control structure.
and
_J1 00
- [0 0 1] EXAMPLE 6. TENNESSEEEASTMAN PROBLEM. The Ten-
The eigenvalues ol are nessee Eastman problem is shown in Figure 6. For details
F about the Tennessee Eastman problem refer to (Downs and
A=——0, A=0 and Vogel, 1993). The figure contains both measuremgnéd
j2) Eko -AH., manipulated variableg;. Also given in the figure are can-
Az = — didate outputsy;) for stabilizing control. A separate num-

n*  RT**> C,
The operating point is specified in Table 3, and the phys-
ical process constants are given in Table 4. Note that the

bering scheme is given for those outputs. Table 5 summa-
rizes the selected candidate outputs for stabilizing control
and the corresponding variable number in the full model (re-
ferred to as PID No.). Also given in the table is the scaling

Table 3. CSTR operating point. . . . . .
P 9p of the outputs used in this analysis. The manipulated vari-

Variable Value  Unit | Variable Value Unit ables are summarized in Table 6, also given in the table is
n* 012 {tmo:} Tin 3?0 [‘E*]ﬂ the suggested scaling of the inputs used in this analysis. The
n* . mo ZA - : ; : :

o 50 [°K] ey L fkmolimin] linearized model in the in the base case (mode 1, 50/50 G/H

mass ratio) is used in this example.

stater; = An, is not observable. The full linear state-space The model has six unstable poles in the operating point con-
model becomes

sidered
0 0 0 -10 1 0
—0.6 —1 —0.0514[—0.20 1 1 . .
Gr(s) = AIBBil _ | 20 o 35 0 1 -700 P,=1[0 0.001 0.023+0.156¢ 3.066 + 5.079]
¢lo 0 1 0 0 0 0 0 0 o
0 0 1 0 0 0 0 The pole output directions are



Figure 6. Tennessee Eastman test problem

Table 5. Candidate outputs for stabilizing control of the Ten-
nessee Eastman problem.

Variable name No.2 | PID No.P Scaling
Reactor pressure Y1 Y7 54.1 [kPa]
Reactor level Y2 ys 1.5%
Reactor temperature Y3 Yo 1.2[°C]
Separator temperature Y4 Y11 1.0[°C]
Separator level ys Y12 1.0%
Separator pressure Y6 Y13 52.6 [kPa]
Stripper level Y7 Y15 1.0%
Stripper pressure ys Y16 62.0 [kPa]
Stripper temperature Y9 Y18 1.0[°C]
Reactor cooling water

outlet temperatgure Yio Y21 0.2[°C]
Separator coolingwater

out‘I)et temperaturge yut Y22 0.2[°C]

& Variable number in the smaller model used in the analysis.

b variable number in the full model provided by Downs and Vogel.

[0.000
0.000
0.000
0.000
0.009
0.000
1.605
0.000
0.000
0.000

| 0.000

|Yp| =

0.001
0.004
0.000
0.001
0.580
0.001
1.192
0.001
0.001
0.001
0.002

0.041
0.169
0.013
0.051
0.488
0.041
0.754
0.039
0.038
0.055
0.132

0.1127
0.065
0.366
0.410
0.315
0.115
0.131
0.107
0.217
1.485

0.272 |

<~ Y15

Y21

Table 6. Manipulated variables in the Tennessee Eastman

problem.
Variable name No.® | Stream no.| Scaling
D feed flow u1 2 10%
E feed flow U 3 10%
A feed flow u3 3 10%
A and C feed flow U4 4 10%
Compressor recycle valve us 10%
Purge valve ug 9 10%
Separator pot liquid flow w7 10 10%
Stripper liquid product flow ug 11 10%
Stripper steam valve ug Stm 10%
Reactor cooling water flow u10 CWS 10%
Condenser cooling water flow w13 CWS 10%
Agitator speed ui2 10%

a Variable number in both the full model and the model used in the analysis.

that outputy; 5 in the full model (row7) has the largest com-
ponent in the output direction of pote = 0, and non of the
other outputs has significant components in this direction. In
a similar way outpug»; (row 10) has a large component in
the pole output direction corresponding to the complex con-
jugate paitp; ¢ = 3.066 &= 5.079:. The input pole directions

are

We have taken the absolute value to avoid complex conjugate

directions. The first column corresponds to the pale=

0, the second column corresponds to the gele= 0.001,

the third column corresponds to the complex conjugate pair
p3.4 = 0.023 = 0.156¢ and the fourth column corresponds to
the complex conjugate pais ¢ = 3.066 = 5.079:. We see

r 6.815  6.909
6.906  7.197

0.148 1.485

3.973  11.550

0.012  0.369

U,| = 0.597  0.077
p 0.132  1.850
22.006 0.049

0.007  0.054

0.247  0.708

0.109  0.976

L 0.033 0.094

2.573
2.636
0.768
5.096
0.519
0.066
1.682
0.000
0.009
1.501
1.446
0.201

0.964
0.246
0.044
0.470
0.356
0.033
0.110
0.000
0.013
2.020
0.753

0.302

< usg

< UuU10



Table 7. Tunings of Pl-controllers

Loop kp T;
Y15 <> ug —0.1 [I/OC] 1 [min]
Y21 > u10 —0.05[m?3/h] 300 [min]
Y12 < wy  —0.0025[m3/h] 200 [min]

By considering both input and output pole directions at the
same time we arrive at the suggested pairings; <> us
andy»; < u19 Which corresponds to controlling the stripper
level using the stripper liquid product flow and controlling re-
actor cooling water outlet temperature using the reactor cool-
ing water flow. It can also be seen from the pole directions
that these two loop will interact very little since the common
elements in the two directions are almost zero. It is worth
noting that both of these loops was also included by McAvoy
and Ye (1994) in their study.

Using two PI-controllers with tunings given in Table 7, we
manage to stabilize all the unstable modes except the mod
p2 = 0.001. By recomputing the pole directions with the
controllers included we get

_ - - —7.3631

—0.001
—7.536

—0.005
1.410

0.000
11.515

0.001
—0.346

—0.867 | < y12
Y, = 0.001 — | 70065
P : P 2.465 | + ur

0.000
0.000

—0.001
—0.062

0.001
0.008

0.000
0.002 0.901

- - L —0.078 ]

We see that the output pole direction has a large element in

y12 and only small elements in the other outputs. From the
input direction we see that input, is the best choice, how-
ever, this is a feed stream. We would like to avoid (if possi-

ble) to use the feed streams to stabilizing control and rather

e

have used the tunings given in (McAvoy and Ye, 1994).

7. SUMMARY

¢ Input/output pole directions is defined, and it is shown
how to compute these directions using Jordan forms.

e The input/output pole directions is related to the mini-
mum input energy needed to stabilize one unstable pole
using a single loop controller.

e When selecting the manipulated variable and the output
to be controlled pole directions provide useful informa-
tion. However, one also need to consider if the selected
transfer function has zeros in the region nearby the pole.

8. REFERENCES

Benninger, N. F. (1986). Proper choice of input and output variables
by means of new consistent structure measutesge Scale Sys-
tems:Theory and Applicatiorls 161-166.

Downs, J. J. and E. F. Vogel (1993). A plant-wide industrial process control
problem.Computers chem. Engngj7(3), 245-255.

Havre, K. and S. Skogestad (1996). Effect effzeros and poles on perfor-
mance in multivariable systems. Rroc. from Control’96 University
of Exeter. pp. 930-935.

Hovd, M. (1992). Studies on Control Structure Selection and Design of Ro-
bust Decentralized and SVD Controllers. PhD thesis. Norwegian Uni-
versity of Science and Technology, Trondheim.

Kwakernaak, H. and R. Sivan (1972jnear Optimal Control SystemsVi-
ley Interscience. New York.

Li, K., Y. Xi and Z. Zhang (1994). A new method for selection of variables
in industrial process control systems. Proceedings of the Asian
Control ConferenceTokyo. pp. 219-222.

Li, K., Y. Xi and Z. Zhang (1994). Selection of manipulated variables for
industrial process control. IProceedings of the Asian Control Con-
ference Tokyo. pp. 223-226.

Lunze, J. (1992)Feedback Control of Large-Scale Systefentice-Hall.
Englewood Cliffs.

McAvoy, T. J. and N. Ye (1994). Base control of Tennessee Eastman prob-
lem. Computers chem. Engng8(5), 383-413.

use these to set the productlon rate. The feed streams are aﬂkogestad, S. and |. Postlethwaite (1998ltivariable Feedback Control,

gas, so it makes sens from a physical point of view that these

manipulated variables have large effect. Alsoandu, are
feed streams so this leaves us with inpuivhich is the sep-
arator liquid flow. The pairingj;» < u7 then corresponds to
controlling the separator level using the separator liquid flow.
The controller parameters are given in Table 7. After closing
this loop the plant is stabilized. Figure 7 shows the Tennesse
Eastman plant with the controllers included. The mode clos-
est to the imaginary axis is abdu7 which corresponds to a
time constant aboutt hours, which from the operators point
of view may seems like a unstable mode drifting away. The

procedure can also be repeated on the stable modes which

one wants to affect. The intention with this example was to

e

Analysis and Desigrdohn Wiley & Sons. Chichester.

Strang, G. (1986)Linear Algebra and Its Applicationddarcourt Brace Jo-
vanovich. Orlando, Florida.

Tarokh, M. (1985). Fixed modes in multivariable systems using constrained
controllers.Automatica21(4), 495-497.

Tarokh, M. (1992). Measures for controllability, observability, and fixed
modesJEEE Transactions on Automatic Cont®r(8), 1268-1273.
Wang, S. H. and E. J. Davison (1973). On the stabilization of decentralized
control systemdEEE Transactions on Automatic Cont®(5), 473—

478.

Appendix A. EIGENVALUE PROBLEMS AND
NORMAL JORDAN FORM

demonstrate a systematic apprqach to the problem of controly 1 | eft and right eigenvalue problems

structure design and not to design a complete control struc-

ture for the Tennes;ee Easj[man problem. Also note that NOassume in the following that the dimensions 4fis n x . The standard
effort has been put into tuning of the controllers by us, we eigenvalue problem (referred to in this context as the right eigenvalue prob-



Figure 7. Tennessee Eastman plant with control loops included

lem) is to find the eigenvalug and the eigenvector (referred to as the right
eigenvector): g which satisfy

and the diagonal matria = diag{\;}. Then we have the following rela-
tionships

Azp = \zp (A1) AXp=XgA and XHA=AXE (A.3)
; f T
In a similar way, the left eigenvector problem is to find eigenvaiend the The right eigenvalue problem of the transposeldf4 ™) becomes
left eigenvectorr ;, which satisfy AT X = XA (A.4)
e A =2 (A2)
Taking the transpose of (A.4) gives
Itis well known that any scalar € C times an eigenvector also is an eigen- XTA=AXxT (A.5)
vector and that eigenvectors , . . .,z corresponding talifferent eigen-
valuesAi,. .., \g, then those eigenvectors are linearly independent. These Comparing (A.5) and the last equation in (A.3) gives thgt = X, that

properties are of course valid for both types of eigenvalue problems.

The following property relates the the right eigenvectgy,;, correspond-
ing to an eigenvalue\;, to the left eigenvector, », corresponding to an
eigenvalue)z, when; # Aa.

PROPERTY1. Left and right eigenvectors which corresponds to different
eigenvalues, are orthogonal to one another.

Proof. Letz g 1 be a right eigenvector corresponding to the eigenvalue
andzr, » be a left eigenvector corresponding to the eigenvalgieve then
have

AIR,l = /\121?3,1 and :L‘g,zA = )\2:1?5,2

Multiplying the latter on the right by r | gives
/\21;21,2@.3,1 = mf,zAa:R,l = mf,z)\lfR,l

which impliesz ,zr 1 = 0 sinceXs # Ar. ml

The eigenvalue problems (A.1) and (A.2) can be written on matrix form by
arrangingz g ; andz z, ; So that they both correspond to eigenvalye We
then form the matrices

xR,n ]

Xr=[Tr1 ZTRr:2

Xr=[zr1 zrp2 ZTL,n ]

is, the left eigenvectors are equal to the conjugate of the right eigenvectors
to AT. In MATLAB the left eigenvectors can therefore be computed as the
conjugate of the right eigenvectors 4f .

Scaling. Since any scalar times an eigenvector is an eigenvector, the eigen-
vectors can be scaled independently. It is usual to scale the eigenvectors so
that the norm of the vectors are equal to one. Note that the eigenvectors are
still not unique they can be multiplied with a complex number with magni-
tude one and arbitrary phase. In this work we assume that both left and right
eigenvalues are scaled so that their norm are one. Consider next a pair of
left and right eigenvectorscg, ;, zr,;) corresponding to the eigenvalue,

define the scalas; = zgimR,i and the diagonal matri§ = diag{s;}. In

the case of linearly independent eigenvectors we can write the diagonal-
ization of A in terms of X g, X1, and S, see (A.9).

n linearly independent eigenvectors.It is well known that a matrixA with
n linearly independent eigenvectats; ; can be diagonalized by the matrix
Xr

X 'AXp=A or A=XpAX,' (A.6)

In a similar wayA can be diagonalized h¥ ;, if A hasn linearly indepen-
dent left eigenvectors.

XPAX;T =A or A=x;"AXE (A7)



From (A.6) and (A.7) we have We will denote M for Mg since it multipliesA on the right inAMpg =

Mg J. Following the same arguments for constructions\f and.J (see

Xy =xz" (A.8) Strang, 1986) it follows that there also existd/&, such that

. . . . MPA=gMF (A.11)
when A hasn linearly independent right eigenvectors. When computing the
left eigenvectors according to (A.8) it follows that the left eigenvectors are ) )
scaled so thatl .7, ; = 1. To see this multiplyX’} on the left with X &/ Since bothM g and M, are nonsingular we can write

i H x/ Hy—H
to obtam_XR X7 = Xy Xg" = I.Itis therefore necessary to normalize J= M}glAMR or A= MRJMIgl (A.12)
the left elgenvectorsXL = X S, whereS contains the inverse of the norm
o . - I

of the columns inX/. on the d|agonal. MultiplyingX 1, on the left by X T=MEAM=® o A=M"HjmE (A.13)
reveals L L L L

XHx, =xEx;s=xHx,"s=5s

From (A.12) and (A.13) it follows that

which is desired. Multiplying (A.3) on the left by(f, using (A.8) and ( ) ( )
X = X/, S we obtain My =M" (A.14)

REMARK 1. We can split up bottlMp = MgJ andMF A = JMH.

To do this letMp ; be the columns iM/x corresponding ta/; and let
similarly M7, ; be the columns i/, corresponding t@/;. From the right
Jordan form we get

XFAXR = SHA = ASH (A.9)

The last identity follows since two diagonal matrices commute. In a similar
way we can multiply (A.3) on the right witk ;* = S—# X ¥ to obtain 1

A[Mg Mp]=[Mg, Mg s]

A=XgASTHXH = Xps—HAXE (A.10) Js

which givesAMpg ; = Mg ;J;, and from (A.11) we get

n distinct eigenvalues. In the case of: distinct eigenvalues there exists MH MH
. ; ) L,1 J1 L,1
linearly independent eigenvectors and we have
: A= :
X Xp = XEX, =8 = diag{s 25} M 7o) L
S »S

which glvesMH =J; MH

REMARK 2. FromAMR = MRJ and for Jordan block numbérAMp ; =
Mg ;J; itfollows that the first colummn g ; in Mg ; is the eigenvector and
the remaining columns i/ ; are the generalized vectors. Lt ; de-

It is not our intention to show how to compute the Normal Jordan Form or note columri in Mz and assume that the size of the Jordan block is three,
to derive it. However, the intention is to show how we can use the Normal we get
Jordan Form to obtain both left and right generalized vectors which can be

used to describe the directionality of those poles or eigenvalues which do

A.2 Normal Jordan Form

A[mRgr;i MRi+1 MRiy2] =
not have sufficient number of linearly independent eigenvectors. [ a o 2] X 10
i
A defective matrixA is a matrix which does not posseséinearly indepen- [mRr,i mRit+1 MRri+2] | 0 XN 1
dent eigenvectors and can not be diagonalized. Those matrices which cannot 0 0 X

be diagonalized can be brought into Normal Jordan Form.
orAmpg ; = A\impg,i, AMR i+1 = \imRg i+1+mp; andAmpg ;410 =
AimR,i+2 + MR i1
REMARK 3. For the left Jordan problem the ordering of the vectors is op-
posite to that of the right Jordan problem. That is, the last colund i); is
the eigenvector and the remaining columns are the generalized vectors. We
haveM [’ A = JM[" and for Jordan block numbéy M[". A = JM[T .

Js Letmy ; denote column in M7, and assume that the S|ze of of the Jordan

block is three, we get

Each block has one eigenvector, one eigenvalue, and 1's just above the diag-

If a matrix hass linearly independent eigenvectors, then it is similar to a ma-
trix which is in Normal Jordan Form with square blocks on the diagonal:

J1
J=M"1AM =

H H
onal: mr i Xi 1 0 mr i
A1 mif i lA=10 XN 1 mil
H . H
J; = MR, it2 0 0 Allmi,,
A1
i N ormL A= /\mLz+mLz+1mez+1A /\mLH_l—l—mLH_2 and

my, 7,+2A Ai mL Jit2

It follows that AM = M J, the single eigenvector for each block satisfy

Aw; = X\;w; and for each block/; of size greater than one there exists
size{.J;} — 1 additional vectorsv; which satisfyAw; = \jw; + w;_1.
These additional vectors are callgéneralized vectorsThe eigenvectors
together with the generalized vectors form the mafvixwhich has rank
equal ton. SinceM has rank equal ta, M~ exists and/ = M~1 AM.

Scaling. We know that each eigenvector can be scaled independently, how-
ever, the generalized vectors describedy; = \;w; + w;_; must be
scaled with the same scalar as the eigenvector which starts the string. As
an example, suppose that we have found an eigenvegt@nd two gener-
alized vectoraws andws so thatAw; = Awi, Awz = Awsz + wi and



Aws = lws + wy are all satisfied. Next assume that we scale the eigen-

vectorw; to becomew| = sw; wheres € C. In order to satisfydw, =
Aws + w) we must scalevs with the same scalar to obtainw!, = sw»
andAw), = Aw), +w/ which again imply that we must scale with s. So,

J7t

for each Jordan block we have one degree of freedom for scaling. The struc-and the inverse of a Jordan block of size

ture of the scaling matrix is then for a matrix withlinearly independent
eigenvectors

s11q
(A.15)

ssls

wheres; € C and the sizes of the identity matricés, ..., I; are equal
to the sizes of the corresponding Jordan blagks. . ., J;. It follows from
(A.14) that selecting;, = M} S,

MEM, = MEM, S = MEM T =5 (A.16)
Usually we select the scalings, . . ., ss to be real and equal to the inverse
of the norms of the columns i/, corresponding to the left eigenvectors.
This implies that allsy, . . ., s are real, and by taking the complex conju-
gate transpose of (A.16) we obtain

MM =8" =5 =M M, (A.17)
Multiplying (A.11) on the right withM i gives
MEAMp = IMEMp = 757 (A.18)

which is valid for all diagonal scaling matriceés with the predescribed
structure given in (A.15). In a similar way we can multiphM p = MgJ
on the left byM F to get

MHAMg =S50 ] =JsH (A.19)

So,S and.J commute, which can also be seen from

J1 s1l1
JS = _
L Js ssls
M Jisi111 s1l1J1
L Jsss1s sslsJs
[s11y J1
- _ =SJ
L ssls Js

When the scalersy, ..., ss are all realS” = S.

Multiplying AMp = MgJ onthe leftwithM ' = M = S—HAH
gives

A=MgrJSTHME = Mps—HJMH (A.20)

A.3 Inverse of J

The inverse of/ consisting ofs square blocks along the main diagonal is
the matrix

p 1 --- 0 0
0 p --- 0

o

(A.21)

oS .-
_

(-1)v~1/p”
(—1y?=2/pv—1

(-1)P=2/p !
(—1)P =8 /p 2

1/p —1/p?
0 1/p

(A.22)
—1-/102

1)p
0 1/p

o o
o o

Appendix B. PROOFS OF THE RESULTS
B.1 Proof of Lemma 1

From (A.19),4 = M; " S JM7", then we have

(sT —A)=(sI — My "SHIMZ")
=M 5" Mpts — M HsH MLt
=M; s (st —)My! (8.1)

andG(s) can be written

G(s)=C(sI —A)~'B+D
=CMp(sI—J) 'S~ FMEB+ D (B.2)

as an alternative we could extract the scalings on the other si¢iel of
J)t

G(s) = CMpS~H (s - 1)"'MEB+ D (B.3)
Consider(sT — J)~!fors =p
(sy — Jp)~ !
(sI—J) ' =
(sIs — Js)~ 1
for the Jordan blocks involving
(s =p) =1/(s —p)* -+
0 1/(s=p) -
(sI; = J;) 1 = :
0 0
0 0
(=1)"72/(s =p)°~ (=171 /(s = p)"
D"/ =p)" 2 (=12 /(s —p)" !
(B.4)

/(s - p)?
0 1/(s - p)



When insertings = p we see that the upper triangular par{ef; — J;) ! and
becomesso. We partition Mz and M7, into blocks so that the columns 911 912 913
in M and My, corresponding to Jordan block numbeiare collected in Go3(s) = [8 (1) 0 0] 921 922 923 {

Mg ; and M7, ; then (B.2) can be rewritten 0 11] g3 gs2 gs3

1 0

00| = [921 923]

0 1 941 943
941 ga2 943

LEMMA 2. Consider a systery with with a repeated mode (multiplicity

G(s)=C[Mgra -+ Mgys]- tho linearly i . h
(sTy — 1)~ q) and withv linearly mdepengent eigenvectors. For all square subsystems
described byG" Z f‘ B of G with dimension- x r, wherer <
7,8 cr|Dl 5
v, the mode is not completely observable or not completely controllable or
(SIS - Js)71 i —
both at the same time. Furthermore,Gh, 3 we have at least —r pole/zero
511, M cancellations.

B+ D
REMARK. This result says that if a system G has mgdeth multiplicity ¢

5 " . . ) !
§sls ML,S andv < ¢ linearly independent eigenvectors corresponding to the mpde
then the controller needs to take into accounutputs and inputs to affect

Assume that block number one is the block involvingnsertings = p in ) . .
rg 9 p the modep. So, the controller with minimum number of inputs and outputs

G ives
(5)9 which can affect all the modesp, is av x v controller, see Theorem 1.
Proof of Lemma 2The selected square subsystem of siZeas state-space
Gle=p)=CMr1 - Mrs]: realizationG" (s) = [%—B}g—] where ther selected inputs (corre
s) = , -
00 - T151 M ) 7,8 ST . b
sponding to the columns in the overd matrix) are specified by the-
: B+D multiple 3, and ther selected outputs (corresponding to rows in the overall
O -Ts5s ME C matrix) are specified by the-multiple +. G ﬂ(s) is then given by
whereT; is used to signal an upper triangular matrix compatible in size with
J;, oo is used to signal infinity gain an@ is used to signal finite gain. The Z.p(s)=Ch(sI — A)—lBg + Dl 5
directions_associated With iqfinite gain at the outpgt are those contai_ned in CI,adj(sI _ A)Bg +Dr B¢(s)
Mg, 1, or if Jordan blocki is involved, then those directions are contained = o
in Mg ;. The output directions becomes b(s)
Yy = CMg,;, Viwhose Jordan block involvgs Since,¢(p) = 0itis sufficient to show that the system described%yﬁ(s) =
[ : BO ] hasv — r zeros fors = p. The zeros OG;TB(S) are the values
By consideringG'’¥ (s = p) we find that the corresponding input directions Y ’

become of s where the matrix oA 5
_ pH ) ; ; [ Ccr 0 ]

Uy = B" My ;, Viwhose Jordan block involvgs ¥
I —
<y
directions are independent of the state-space realization so we define a new

state vector = Mglm and consider

o B, .
is singular,det( [S Oﬁ )y = 0. The zeros and the input/output zero

B.2 Proof of Theorem 1
[M,;I 0 ] [(slfA) Bg] [MR 0 ]

In order to prove Theorem 1 we need some more notation. The @lant 0 I cr 0 0 I

of sizel x m hasm inputs and outputs. We consider next a subsystem of B [s[ —J MI;lBZ;] B [s] —J S—HU}%]

G, G 3(s) where the multipley describes the outputs and the multiple - LCIMg 0 L Yo 0

describes the inputs. As an example, if we consideftke2 subsystem of

G, consisting of the outpusand4 and the inputd and3 we gety = (2,4)

andg = (1, 3). Letfurthern, andng denote the number of elements in the

multiplesy and3. We define the matrixV,, of sizel x n~, where columry

in N, corresponds to elemetjitin v, is equal to the unit vectar; of sizel,

with zeros in all positions except for positierwhich containsl and where

i is elementj in . We define the matriXVg in a similar way as an X ng

matrix consisting of unit vectors in each column with zeros in all elements

B . i . Yp.y
except fgr elementwhich containsl, wheres is equal to element in 5 for e — v+ 2r and we need rank equal 10, + r, if the matrix shall be
columnj. Then we have that

non-singular, which leaves us with a zero of multiplicity— r. Since, the

whereY), -, contains the output directions for the selected outputs described
by~, andU,, 3 contains the input directions for the selected inputs described
by 8. When insertings = p, v columns and rows inpI — J become equal

to zero sinceJ haswv Jordan blocks withp on the diagonal, one Jordan
block for each independent eigenvector. So, the rankiof J isn; — v.

We haver columns inU,, 3 andr rows inYp . If » < v then the matrix

pl —J s~ HyH : :
o ».8 | becomes singular, the rank can at maximum become

.[4alB poles span the whole dimensional space described by théndependent
G, g(s) = N:;FGNB = {C—’Diﬁ] eigenvectors in the state-space, it is sufficient to show that the state input
T8 zero direction is within thi®) dimensional space to achieve pole/zero can-
whereB; = BNg, Cy = N,,TC andD, g = N,YTDNB. If for example cellation. Set = p and consider the solution to the set of equations
v =(2,4), 8 = (1,3) andG is of size4 x 3 then pl—A B[z
" B
00 10 v
Ny = (1) g , Ny= [0 0:| The obvious solution is = zr andu = 0, so the space described by the
0 1 01 eigenvectors contains the state input zero direction. Note that for a repeated



modep with v linearly independent eigenvectors, any linear combinations
of the independent eigenvectors also are an eigenvector. As an example con-
siderv = 3; zr,1, xr,2 andz g, 3 are all linearly independent eigenvectors
corresponding t@

A-(axpr,1 +brr2 +ctr3) =p-(azr,1 + brr2 + cTr 3)

In a similar way we can show that the space described by the left eigenvec-
tors contain the state output zero direction. So, pole/zero cancellation of at
least orders — r occurs. Note that pole/zero cancellation of higher order
may occur if the minimal realization aﬂ;ﬁ(s) does not contain poles

p. As an example, if a minimal realization 6" ,(s) contains no poles for

s = p, we havev pole/zero cancellations (Witﬁ the possibility of even more
pole/zero cancellations if > v). O



