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Multivariable 5 X 5 distillation control, i.e.. control of levels, pressure and compositions by one multi-
variable controller, provides opportunities to improve the control performance as compared to decen-
tralized control. Multivariable interactions can be counteracted with a 5 X 5 controller. However, the
main advantage is automatic constraint handling which cannot be realized by a fixed linear 5 X 5 con-
troller, but requires a solution based on on-line optimization, for example, using a model predictive con-
trol (MPC) strategy. A multivariable control scheme also presents some difficulties. Unconsidered model
uncertainty may be a severe problem. It may also be difficult to tune the multivariable controller. In this
paper the MPC approach is combined with the #,/u framework in order to obtain a robust design.

A one-feed two-product distillation column as shown in
Figure I, may be viewed as a 5 X 5 dynamic system.
This means that for a fixed design and a given feed the
column has five (dynamic) degrees of freedom, or in
control terms, there are five manipulated inputs which
may be used to control five controlled outputs.

The five controlled variables (outputs) are the liquid
holdup in reboiler and condenser (My, My, here
assumed on a molar basis), pressure in the condenser
(Pp), composition of light component in the top prod-
uct (distillate) (xp) and composition of light component
in the bottom product (bottoms) (xg). In this paper all
controlled outputs are measured, but measurement
errors are included in the analysis. The five manipulated
variables (inputs) are the flows of reflux, distillate and
bottoms (L, D and B, here assumed on a molar basis),
and the heat duty in reboiler and condenser (Qg, Qc).
The feed rate (F), composition (z¢) and energy content
(defined in terms of the bubble point pressure of a lig-
uid feed, PgY) all act as disturbances. In addition, there
are disturbances in all the manipulated variables.

In industry most columns are operated by single-
input-single-output (SISO) controllers and manual
adjustments. Such a decentralized (multiloop) control
structure has the advantage of being easy to retune and
to understand. However, fixed pairing of outputs and
inputs may limit the performance of the overall system,
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since the SISO controllers do not utilize information
from the other loops. Another disadvantage with decen-
tralized control is that the control performance may
seriously deteriorate if the system hits some constraint.
For example, if a stabilizing loop saturates, the system
goes unstable. To avoid this, the plant has to be oper-
ated sufficiently far away from the constraints, or facil-
ities for loop reconfiguration have to be installed
‘on-top’ of the SISO controllers.

From a theoretical point of view it is obvious that the
‘optimal’ controller should use all available information
(measurements, plant model, expected model uncer-
tainty, expected disturbances, known future setpoint
changes, known constraints, etc.) to manipulate all five
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Figure 1 One-feed two-product distillation column
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inputs in order to keep all five outputs at their optimal
values (5 X 5 control)!. It is also clear that constraint
handling is a very important issue for this ‘optimal’ con-
trol scheme, since, in general, optimality is obtained at
some constraint, for example, maximum throughput.

A fundamental difficulty with any optimizing scheme
is to define an objective function which yields a mathe-
matically optimal solution in agreement with what is
actually desired. Another problem is to obtain suffi-
ciently accurate information (measurements, plant
model, uncertainty bounds etc.) to make the optimiza-
tion worthwhile.

The purpose of this paper is to evaluate the opportu-
nities and difficulties with applying 5 X 5 control to a
distillation column. The paper is organized as follows.
In the next section we present a fairly rigorous non-lin-
ear 5 X 5 model, which, contrary to most other distilla-
tion models, does not assume constant pressure (which
would yield a 4 X 4 model). In the following section we
perform a controllability study using a linearized model.
We also consider a decentralized controller which leads
to a rather poor performance for the example column in
question. We then study the unconstrained multivari-
able problem, using the #{-norm to measure control
performance. This norm makes it possible to specify
desired responses in terms of closed-loop time con-
stants, allowable steady stage offset and acceptable
overshoot, and also allows us to address robustness
using the structured singular value?, x. We then consider
model predictive control using a state observer based
MPC algorithm3. To obtain a robust controller, we first
attempt to tune the unconstrained MPC controller to
mimic the performance of the robust #/u controller by
using u-analysis and the weights obtained from the #,
design. Of course, this may not be done directly, as an
MPC controller behaves similarly to an #,-controller,
which is not quite the same as an #-controller (the
norms are somewhat different). When the uncon-
strained performance has been assessed using u, we use
simulations to evaluate the performance for the con-
strained case.

5 X § distillation model

In this section we briefly present the distillation column
which is used as an example process in the rest of the
paper. The example column separates a binary mixture
into a top and a bottom product of relatively high
purity (99%). The column closely matches ‘column A’
studied by Skogestad and Morari®, but the model used
here 1s much more detailed:

—

Pressure is not assumed constant.

2. Vapour holdup is included.

3. Vapour flow rate from one tray to another is com-
puted from the pressure difference between the
trays.

4. Liquid flow rate is computed from the Francis weir

formula, including a correlation between vapour
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Figure 2 Open loop step responses showing the effect of the five
inputs () on the five outputs (y). 200 min simulation time. Perturba-
tions and output ranges are displayed in Table 2.

flow and froth density’ such that a change in
vapour flow will have an initial effect on the liquid
flow (the ‘K, -effect)e.

5. Energy balance is included, but we have assumed
that the two components have the same values for
the heat of vaporization, ¢y, and cpy.

The column has 39 trays plus a total condenser and a
reboiler, and is modelled using 41 control volumes. It is
assumed that each control volume contains a perfectly
mixed two-phase system in thermal and vapour-liquid
equilibrium. An implicit UV-flash calculation is used to
obtain liquid and vapour compositions, temperature
and pressure on each tray. This yields a model with
three states (differential equations) per control volume
(the molar holdup of each component and the internal
energy), resulting in a total of 123 states for the column
with condenser and reboiler.

Table 1 Column data

Feed (o) F = 1.0 (kmol min—P
zx(1) = 0.5 (kmol kmol-D
Pt = (.11 (MPa)
Controlled
outputs (3) xp(1) = 0.99 (kmo! kmol-!
xp(1) = 0.01 (kmol kmol)
Py = 0.1 (MPa)
M, = 32.1 (kmol)
My = 11.0 (kmol)
Manipulated
inputs () Ly = 2.724 (kmol min-1)
Ox = 128.85 (MJ min-1)
0Oc = -129.02 (ML min-D
D = 0.5 (kmol min—b
B = 0.5 (kmol min-1)
Key hydraulic
parameters 7L = 24(s)
XA = 93 (s)
Koron = 05
Kawon = 08
Thermodynamic
data Relative volatility, =15
Gu = Cpa = 150 (KJ kmol-! K-1)
Covi = Cpva = 75 (KJ kmol~! K-1)

40 (MJ kmol-1)

H,, @ 65.1°C
40 (MJ kmol-!)

H., @ 750 °C
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Table 2 Data used in Figure 2

Input Perturbation at ¢ = 20 min

Lr 2724 1o 2729 kmol minl (0.18%)
Or 128.849 to 129.049 MJ min-!  (0.16%)
QOc -129.018 to -128.818 MJ min~l  (0.16%)
D 0.500 to 0.505 kmol min-!  (1.00%)
B 0.500 to 0.505 kmol min~!  (1.00%)
Output Range o

Xp 0.987 to 0.993 kmol kmol-!

Xp 0.007 to 0.013 kmol kmol-!

Py 0.099 to 0.107 MPa

My 31.000 to 33.500 kmol

My 9.500 to 12.000 kmol

The nonlinear model has been implemented in the
equation oriented simulation package SPEEDUP’. This
package has been used to obtain the steady-state solu-
tion and to linearize the system. The dynamic open-loop
responses presented in this paper (Figure 2) were also
obtained by using SPEEDUP, while the closed-loop
responses are linear simulations performed in MAT-
LAB.

A summary of the column data is given in Table 1.
Open-loop time responses are summarized in Figure 2
and Tuable 2. Note that a perturbation of Q. yields
inverse responses in all outputs except in Pp. The heat
duties, Qy and Q., are defined positive if heat is added
to the reboiler and condenser, respectively. Also note
that we assume that the heating and cooling duties are
adjusted directly, that is, there is no self-regulation and
QOr and Q¢ are not affected by changes in pressure and
temperature in the column. This may be the case, for
example, if heat is provided by condensation, and cool-
ing is provided by boiling. This assumption yields a very
long time constant for the open-loop pressure response,
and it may be estimated to be about (M, + 4M,)/F = 74
min, where M| and M, are the total liquid and vapour
molar holdups in the column, condenser and reboiler,
and F is the molar feed flow. This formuia is derived
from an overall heat balance assuming that the temper-
ature change is the same throughout the column. The
factor 4 for the vapour holdup is a typical value, and is
due to the fact that ¢py > ¢ and that some energy is
needed for evaporation when pressure increases. If we
have self-regulation in the condenser, e.g., Q. =
UA(T.q —Tp) with T, as an independent variable
rather than Q, we get F + UA/cy in the denominator
instead of F, and the time constant is much smaller, typ-
ically about 2 min.

Controllability analysis

In this section simple linear tools (e.g., Wolff et al.¥) are
used to assess the controllability properties of the plant,
that is, to evaluate any inherent performance limita-
tions. The results from the controllability analysis are
also used to specify realistic requirements for control
performance and thereby reduce the need for iterative
adjustments of the performance requirements, i.e. the
‘weights’ used to tune the controller.

Conclusions drawn from some of the measures, such
as the inputs required for perfect control or the presence
of RHP zeros, are valid independently of the control
algorithm, while some other measures (CLDG, PRGA)
only apply to decentralized control.

The model used in this section was obtained by lin-
earizing the non-linear model using the linearization
package CDI within SPEEDUP and then reducing the
number of states from 123 to 15, using ‘ohkapp’ from
Robust Toolbox®. The open-loop model of the plant has
two pure integrators namely the holdups in reboiler and
condenser. These pure integrators may cause numerical
problems for CDI and for the model reduction routine.
To avoid this problem, the levels are stabilized in the
non-linear model, before linearization, using very low
proportional feedback from the levels to D and B,
respectively, thereby placing the eigenvalues at —0.0001
instead of 0.

Scaling

RGA, poles and zeros are independent of scaling, but
most other measures depend critically on scaling. There-
fore, all results and plots in the following are in terms
of scaled variables, i.e., all outputs, setpoints, inputs
and disturbances are scaled by ‘the maximum accept-
able deviation (mad)’ from the desired operating condi-
tion of each variable, such that the scaled variables stay
within * 1 if the acceptable deviation limits are not vio-
lated. The values used for scaling are tabulated in Table
3. For example, the scaled reflux (input) is u, =
AL/ L1, Where Li., is the maximum allowed devia-
tion in reflux. From Table 3 L4 = 2.7 kmol min~!, and
since this is equal to the nominal flow, we get that
u, = -1 corresponds to zero reflex and u, = +1 corre-
sponds to a reflux of 5.7 kmol min'.

Note that the performance requirement for the levels
are very lax, as the allowed error in Tuble 3 (30.0 and
10.0) is much larger than the allowed setpoint change
(0.5 and 0.5). This is reasonable since we have no strict
requirements for level control, but rather want to use
variations in level to avoid sudden changes in the prod-
uct flows, D and B.

Relative gain array (RGA)

The RGA! was originally introduced as a steady state
interaction measure and as a tool for input—output pair-
ing for decentralized control. However, the RGA may
be computed frequency-by-frequency and used to assess
the interaction at frequencies other than zero, and also
to analyse sensitivity to input uncertainty for multivari-
able control!l. The frequency dependent RGA for a

Table 3 Maximum acceptable deviation (mad) for used scaling.
(Units and order of elements for these vectors are given in Zable 1.)

Output error Vg =1[0.01 0.01 0.050 30. 10.]T
Setpoints Tnad =[0.01 0.01 0.0250 0.5 0.5]T
Inputs Uinag =1[2.7 130 130 0.5 0.5]T
Feed disturbances Arad =1[0.15 0.1 0.025)T
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Figure 3 Relative gain array elements as function of frequency (solid lines: diagonal elements)

square system G is defined by RGA(w) = G(w) X
(G'(jw))T, where the symbol X denotes element-by-ele-
ment multiplication.

The steady state RGA for the linearized 5 X 5 plant
is:

Ly Ox Oc D B
xp | 3676 6465 2888 000  0.00

xg | -35.72 63.49 -26.76 0.00 0.00
Py -0.04 2.16 -1.12 0.00 0.00
My 0.00 0.00 0.00 1.00 0.00
My 0.00 0.00 0.00 0.00 1.00

(H

We see that there are strong two-way interactions in
the upper left 3 X 3 subsystem, while the condenser
level and distillate flow (M and D) and the reboiler
level and bottoms flow (M} and B) form two decoupled
1 X 1 subsystems. The physical explanation for the lat-
ter is that manipulation of D affects My, and B affects
M, but has almost no influence on the other outputs.

The RGA elements (RGA,) as function of frequency
are shown in Figure 3 with the diagonal RGA elements
(i = ) as solid lines. We see that the RGA elements
decrease as frequency increases, but there are significant
interactions also at frequencies corresponding to the
expected closed loop bandwidth (2 = 0.1 rad min).

The 3 X 3 interaction for the composition and
pressure subsystem could in principle (if there was no
uncertainty) be corrected for by a multivariable con-
troller, for example a decoupler. However, the large
RGA elements (Figure 3) at frequencies around the
closed-loop bandwidth signal high sensitivity to
diagonal input uncertainty!' and thereby prevent the

use of a decoupler. Thus, we may already at this stage
conclude that it is essential to consider input uncer-
tainty when tuning a multivariable controller for this
plant.

RHP zeros

The 5 X 5 model has no multivariable right half plane
(RHP) zeros. However, there are RHP zeros in several
elements of the 5 X 5 model, as shown from the inverse
responses in Figure 2. Specifically, a change in cooling
duty Q. yields inverse responses for all outputs, except
for the pressure. The main reason behind this is that a
change in Qc, with the other manipulated inputs kept
constant, yields an inverse response for the vapour flow
V; entering the condenser. Initially, an increase in cool-
ing yields a fast increase in Vy. However, with increased
cooling, O, and constant heating, Qg, the column tem-
perature starts decreasing, and the heat of vaporization
increases leading to a steady state decrease in Vi =
Oc/H*r. The inverse responses in the outputs are very
slow (zero locations: z;; = 0.0367; z,; = 0.0264; z,; =
0.0204; z;; = 0.0580 min-'), so for single-loop control
the cooling duty can only be used to control the pres-
sure. However, this means pairing on a negative RGA-
element and results in the complications described in
the previous section. Using the results from Hovd and
Skogestad!? we know that the negative RGA (3,3-ele-
ment) must imply that there is a RHP transmission zero
in the remaining subsystem, since there is no RHP zero
in the 3,3 SISO-element itself and no 5 X 5 RHP trans-
mission zeros. Indeed, we find that the upper 2 X 2 sys-
tem (from L; and Qy to xp and x;) has a RHP
transmission zero at 0.0129 min-! (the lower 2 X 2 sys-
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tem, from D and B to M, and My, is decoupled and
does not influence this value). This RHP transmission
zero implies that fast control of both compositions
(closed loop bandwidth less than about 75 min) requires
that the pressure controller is functioning, if SISO pres-
sure control paired on the 3,3 element is used.

Input saturation

Input saturation imposes a fundamental limitation on the
control performance. The inputs required for perfect con-
trol are ¥ = G-Ir + G"'Gyd. Thus, in terms of scaled vari-
ables the elements in the matrices G' and G-'G, should
be less than 1 in the frequency range where control is
needed. For our example, with the allowed variations in
the inputs as given by u,,, in Table 3, we find from fre-
quency-dependent plots of the elements of these matrices
(not shown) that input saturation is not a serious prob-
lem for this plant, not even at relatively high frequencies.

Decentralized control

Controllability analysis

Consider again the steady-state RGA in Equation (1).
The conventional ‘LV-configuration’, which is consid-
ered for the decentralized controller in this paper, cor-
responds to pairing on the diagonal elements.

The first observation from the steady-state RGA is
that the 4,4 and 5,5 elements are 1.0 while all other ele-
ments in columns 4 and 5 and rows 4 and 5 are zero.
Following the conventional pairing rule for decentral-
ized control we should pair on elements close to 1, i.e.
use D to control M, and B to control M. Also, since
manipulation of D affects My, and B affects My, but
has almost no influence on the other outputs, it follows

2

that composition control is insensitive to the tuning of
the level loops. This is one of the main advantages with
the LV-configuration. (One possible advantage with
other configurations, such as the DV-configuration, is
that the closure of the level loops affects the composi-
tion control such that the interactions are reduced, for
example as expressed in terms of the RGA for the
remaining 2 X 2 composition control problem.)

The second observation is that the 3,3 element is neg-
ative. From the results of Grosdidier et al.,”* we know
that a decentralized control scheme with integral action
paired on this negative RGA element leads to:

1. The overall system is unstable, or

2. The pressure loop is unstable, or

3. The remaining system is unstable if the pressure
loop fails.

In practice, this means that using Q. to control Py

and tuning for a stable pressure loop and a stable over-
all system leads to instability if the pressure loop fails,
e.g. if Q¢ saturates. Thus, one must be very careful to
avoid saturation in the pressure loop if decentralized
LV control is used.
Remark. Note that we assume in this paper that the
heat duties Q. and Qy are independent variables. If self-
regulation was included, for example by manipulating
T, or Ty, then the negative RGA-element will most
likely disappear.

From the frequency-dependent RGA plot in Figure 2
we note that the diagonal elements are fairly large
(about 3) also in the frequency region important for
control, w = 0.1 rad min-'. Thus, we can expect interac-
tions at these frequencies when decentralized control is
used.

CLDG

10

10

107 ¢

10

10 10

10

10 10° 10
Frequency [rad/min]

Figure 4 Closed loop disturbance gain for decentralized control
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The RGA is useful for selecting pairings. However, to
evaluate decentralized performance for setpoint changes
the Performance RGA, which is scaling dependent, is
the appropriate tool. The PRGA is not shown here, but
one main finding is that the worst setpoint change is for
top composition, x5, and in particular that a strong
interaction is expected for the pressure.

The closed-loop disturbance gains (CLDG) yield the
effect of disturbances under decentralized control. For
all outputs the worst disturbance is the feed rate F, and
the effect of this disturbance is given in Figure 4. The
bandwidth requirement for rejecting a 15% disturbance
in F is about 14 min for top composition (xp), 7 min for

bottom composition (xz) and 6 min for top pressure
(Pp).

Simulations with LV configuration

One conclusion from the controllability analysis is that
it is difficult to obtain very good control performance
with decentralized control due to the strong 3 X 3 inter-
action. This is confirmed by the simulation in Figure 5
which shows the response to a setpoint change xp (at ¢
= 0 min) and to a step increase in the feedrate F (at ¢t =
100 min). Note that these two upsets were identified as
the most difficult ones to handle by the controllability

xB xD
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o4l VPO B B 1
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Figure 5 Simulated decentralized control performance for setpoint change in x at t = 0 and 15% feed disturbance at r = 100 min. Upper plot:

scaled controlled outputs. Lower plot: scaled manipulated inputs
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Figure 6 Simulated decentralized control performance with constraint on cooling (Q, > 0), for setpoint change in xp at t = 0 and 15% feed dis-
turbance at ¢ = 100 min. Upper plot: scaled controlled outputs. Lower plot: scaled manipulated inputs

analysis. In the controllability analysis we also predicted
that we would encounter instability if the pressure loop
failed due to the negative 3 X 3 element in the steady-
state RGA. This is confirmed by the simulation in Fig-
ure 6 where we have introduced the constraint that we
cannot allow any more cooling than the nominal value
of ~128.85 MJ min™! (in terms of scaled deviation vari-
ables presented in the figure the constraint is that Q¢ = 0).

The controllers used in the simulations were tuned to
yield a closed loop time constant of 3 min for the pres-
sure loop, about 15 min for top composition x, and 8
min for the bottom composition x; (individually, i.e.
without considering interactions). The level loops, which

have essentially no effect on the rest of the system, were
very loosely tuned to closed loop time constants of 30 min.

H./u control

Weight selection

In this section we study the unconstrained control prob-
lem using the #(/u framework. The purpose is to study
possible improvements in performance with multivari-
able control. The #{-norm is used because it is rather
straightforward to specify the desired responses in terms



256 Opportunities and difficulties with 5 X 5 distillation control: P. Lundstrém and S. Skogestad

Figure 7 Block diagram for robust #,-problem

=

Figure 8 M — A structure for g-analysis

of ‘classical’ measures such as closed-loop time con-
stants, allowable steady state offset and acceptable
overshoot. Furthermore, one significant advantage with
the #, -norm is that it allows worst-case model uncer-
tainty to be included explicitly (using the structured
singular value, denoted SSV or w).

The block diagram in Figure 7 defines the problem
studied in this section. K 1s the controller to be designed.
It may be a two-degree-of-freedom (TDF) controller
with separated inputs r (setpoint) and y,, (measured out-
puts) as in the figure, or with a one-degree-of-freedom
controller (ODF) with input r - y,.

G is the normalized (scaled) plant model with eight
inputs (five manipulated inputs # and three unmeasured
disturbances ¢) and five outputs y. The scalings used for
the normalization of G are given in Table 3.W,, W, and
W, are weight matrices for setpoints r, disturbances d
and measurement noise n, respectively. W, and W, are
weights on deviation from desired setpoint, e, and
manipulated inputs, wu, respectively. The weighting
matrices are diagonal with elements [W.] = ro.o/Vimad
[Wd=1,[W,]=00L[W]=1and

[W.]s) = LTS M a0 4= 0.0001 )
M, ty5+ A4

with 7, = [30 30 30 60 60] min. For the compositions,
for which the setpoints r and controlled outputs y have
identical scalings, My is the maximum allowed peak of
the sensitivity function and 7 is the required closed-
loop response time for that output. Note that A is very
small so that integral action is in practice required for
all outputs.

Model uncertainty is represented by W,D;'A,D, = WA,
which models input uncertainty, and D;'A.D W, =
A W, which models output uncertainty. A, (and A)) is
any diagonal matrix with #,-norm less than one, and
the Ds are scalings for the wu-problem as discussed
below. W, = 0.1 . I and W, = {6s/(0.56s+1}. I,
corresponding to 10% relative gain uncertainty in each
input, and a delay of up to approximately 6 = 1 min in
each measurement.

Table 4 Controller element-by-element modulus at w = 0.01 rad

€ €xB €rp €MD (273
Ly 1.4289 0.3660 0.2290 1.1815 0.7863
Ok 0.1913 0.9435 0.4865 0.3867 0.4439
Q¢ 0.3328 0.7201] 0.7358 0.4851 0.0370
D 0.0663 0.0339 0.0193 1.3192 0.1242
B 0.0875 0.0986 0.0376 0.3217 0.7884

We arrived at this problem formulation and these
weights through several steps, starting with a pure #f.-
problem with only setpoints and no uncertainty and
ending up with the overall y-problem as defined by Fig-
ure 7. In the following we shall go through some of
these steps because it yields some insight.

Setpoint tracking with no uncertainty

This corresponds to the case with d= 0,A=0,A,=0
and yields a pure # -problem for which synthesis soft-
ware is readily available®!4. The optimal controller
yields a closed-loop #,-norm equal to 0.83. Since this is
less than | the performance requirement for the worst
case direction is achieved with some margin. The #£-
controller uses rather high gains at high frequencies; the
‘roll-off” frequency is about 10 rad min-'. This is typical
for all the cases we studied and it may be avoided by
using a slightly sub-optimal controller with higher 7L-
norm. This sub-optimal controller yields a blend of #£{
and #, optimality (which is desirable since our ultimate
objective is to use model predictive control which uses
the #H,-norm) with ‘roll-off” at a lower frequency than
the optimal #-controller, resulting in better robustness
with respect to high frequency uncertainty. For this case
a sub-optimal controller with % -norm equal to 1.0
(rather than 0.83) gave approximately the same low-fre-
quency behaviour as the optimal controller, but a ‘roll-
off> frequency of about 0.2 rad min™".
The obtained suboptimal controller is a “full’ § X 5
controller; however, a more careful analysis of the con-
troller reveals the following two interesting properties.
1) The controller may be decomposed into one 3 X 3
controller for composition and pressure control and
two single-loop controllers for the levels, corre-
sponding to a multivariable LV-configuration.

2) The 3 x 3 pressure and composition controller is
essentially a decoupler. This may be seen by evalu-
ating the condition number of GK.

These two statements are not true when disturbances
and/or uncertainty is considered, as discussed below.

Remarks. For setpoint tracking of this system without
uncertainty there is (1) no advantage in using the infor-
mation from Mp (Mp) to compute manipulated inputs
other than D (B); (2) no advantage in computing D (B)
based on information from measurements other than
My, (My); (3) no advantage with a TDF controller, since
there are no uncertainties and no disturbances.
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Including model uncertainty

Robust performance analysis of the system in Figure 7
with model uncertainty is performed by connecting the
scaled outputs [é4]T to the scaled inputs [I/‘\t? A" through
a ‘performance perturbation” A, and then rearranging
the system into the MA-structure showing in Figure 8
where A = diag{A,A,,Ap}. To analyse such a system we
must use the structured singular value, u instead of the
#H.-norm. In this paper we use as a tight approximation
for u the scaled % -norm, min, ||DMD||.. The structure
of the D-scales depend on the model uncertainty. In our
case with diagonal uncertainty at the input and the out-
put we get D = diag {D,D,./..;} where D; and D, are
diagonal matrices each with five entries which are
‘adjusted’ to minimize the scaled #,-norm above. The u-
optimal controller is then obtained by DK-iteration'*:

1. K-step. Fix D and obtain K by minimizing the
H,-norm (ming || DM(K)D|l...

2. D-step. Obtain D-scales by computing z using the
upper bound, min, |[DMD|..

These D-scales are frequency dependent and are fitted
to low order transfer functions. One iterates between
these two steps until convergence. Note that conver-
gence to the u-optimal controller is not guaranteed with
this procedure, although it usually works well if the
problem is reasonably scaled to begin with. Usually
only a few iterations are performed such that a sub-
optimal u-controller is obtained.

Setpoint tracking with input uncertainty

To consider the effect of model uncertainty we added
input uncertainty (but no disturbances or output uncer-
tainty) and obtained an ODF controller by DK-itera-
tion. Actually we found that the controller obtained by
using D, = I, was almost as good as any other con-
troller. It yields ugp = 0.938. This value could possibly
be reduced a few percent by a more sophisticated higher
order D-scale, but after a few DK-iterations with only
slightly reduced ugzp, we decided to use D; = I, This
choice leads to a low order controller and it also makes
it easy to apply the #./u weights in the MPC design (see
next section).

In Table 4 the gains of the ODF controller at fre-
quency o = 0.01 rad min~! are given. The main differ-
ence between this controller and the controller designed
for no uncertainty is that this controller does not invert
the plant. Also note that the diagonal elements are the
largest elements in each row/column. A second differ-
ence is that the level measurements My and My are not
only used to compute D and B but have a major impact
also on the other manipulated variables. However, note
that D and B are almost only affected by M, and M,.
We found that this #.-controller can be reasonably well
approximated by a decentralized L/D V/B configuration
(compare with Equation (11) in Skogestad and
Morari'), In this scheme D is computed from My, B is

computed from My, but L. is computed from both xp
and M, and V is computed from both x; and Mjp.
These results are consistent with earlier findings which
found that this configuration has much lower RGA-val-
ues and is preferable when there is input uncertainty.

Remarks. (1) Here we do not consider any distur-
bances, and the reason for utilizing the level measure-
ments when computing Ly, Qr and Q. must be that the
effect of the input uncertainty shows up in these mea-
surements. (2) The required bandwidth for the pressure
response is not very high; however, the controller tuned
for input uncertainty ‘chooses’ to use a high pressure
bandwidth to reduce the effect of the uncertainty. (3) A
two-degrees-of-freedom controller improves the perfor-
mance in this case. It yields ugp = 0.94 using D; = Iys.
Again this is explained by the fact that the uncertainty
acts as a disturbance.

Including disturbances and output uncertainty

Including disturbances and output uncertainty to the
problem yields the system shown in Figure 7. This sys-
tem will after a few DK-iterations yield a controller of
rather high order, due to the D-scales. To avoid this
high order controller, we use a problem formulation
without output uncertainty when synthesizing the con-
troller, and then check the performance using u-analysis
on the full problem.

It turns out that the neglected measurement delays
(high frequency output uncertainty) can be dealt with
by using a sufficienty sub-optimal #,-controller. The
finding from the previous section, that D; = I is a
good D-scale simplifies the design even further to a pure
H-problem.

The controller used for the simulations shown in Fig-
ure 9 was obtained by #-synthesis using a problem
with setpoint changes, disturbances, noise and input
uncertainty, but without output uncertainty. To obtain
robustness w.r.t. the neglected measurement delays
(high frequency output uncertainty), we synthesized a
sub-optimal #-controller with #,-norm 1.35. Then we
computed g for the full problem. ug, with output uncer-
tainty is 1.21 and uge is 0.99, i.e. the performance is not
quite as good as required by the weights, but stability is
guaranteed for the worst case plant.

The response of this controller is shown by the
dashed lines in Figure 9. As can be seen, it performs
much better than the decentralized controller shown in
Figure 5.

Final remarks

Some final remarks seem in order. Most of these are in
accordance with previous findings.

1) With the scalings used for the plant, the optimal
input uncertainty D-scales are close to 1 for all
cases. The optimal D-scales for the output uncer-
tainty are about 5.
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Figure 9 Simulated unconstrained control performance for setpoint

change in xp at t = 0 and 15% feed disturbance at ¢+ = 100 min. Solid lines:

MPC. Dashed lines: g-controller. Upper plot: scaled controlled outputs. Lower plot: scaled manipulated inputs

2) The weights were chosen to yield u = 1 +0.2 for all
problems. The reason is that interpretation of u is
difficult if it is too different from 1.

3) A controller designed for setpoint changes only
does not perform well if disturbances are consid-
ered.

4) A controller designed without considering input
uncertainty performs poorly with input uncertainty.

5) A controller designed without considering output
uncertainty performs well if the controller is slightly
#, sub-optimal.

Model predictive 5 X S control

In this section we use a model predictive control algo-
rithm which involves constrained on-line optimization
over a finite receding horizon to explicitly address input
constraints. There are several different variants of these
schemes, but they differ mainly in the way that future
outputs are predicted. The commonly used QDMC
algorithm!?” makes the crude assumption that all distur-
bances act as steps on the outputs, but as shown by
Lundstréom et al.'® this may lead to poor results when
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both compositions are controlled. Therefore, we use a
state observer based MPC algorithm with a constant
Kalman filter gain*. The tuning parameters for this
MPC controller are: Hp the output prediction horizon,
H_ the control horizon, A, output weight, A, input
weight and K; the Kalman filter gain. The filter gain is
a function of the disturbance model and the disturbance
and noise covariance matrices.

Recently Lee and Yu" presented tuning rules for
obtaining robust MPC performance. For the case of
diagonal input uncertainty they penalize the input
moves using A, in order to obtain robustness. Applying
this method to the distillation problem from Skogestad
et al?® gave up, = 2.23, whereas the optimal value is
known to be less than 0.9782'. This is not satisfactory,
and therefore, in this paper we do not use the input
weight A, but the observer parameters to obtain
robustness with respect to input uncertainty.

Our main objective is to use the weights obtained
from the rigorous robustness analysis in the previous
section as a starting point for weight selection for the
MPC controller. There are several difficulties here.
First, the MPC scheme uses the #;-norm rather than the
H-norm. Second, the MPC controller is a finite horizon
controller which contains additional tuning parameters.
Third, uncertainty can not be included explicitly.

In spite of these difficulties, we were able to tune the
MPC controller to mimic the g-controller very closely.
One reason for this success is probably that the #/u-
controller is sub-optimal and therefore ‘#4-i1sh’ and eas-
ier to mimic with MPC. The final tuning of the response
time was done by adjusting a single parameter « in the
output weight to minimize x in the robustness problem
defined in the previous section. The input uncertainty
was in the MPC design represented by opening the loop
through A, (Figure 7), which results in a weight (D))
penalizing the use of u and a disturbance weight
(WD) acting on the plant inputs. Output uncertainty
was not included since the robustness analysis found
that this uncertainty was not crucial. The tuning para-
meters are summarized next.

Optimization part of MPC controller.
1 min, horizons H, = 60 and H_= 3.

Sampling time:

A = aW;

e’

‘/\u = w‘Wul + |Dlj (3)

(where W, and W, are the #-weights and D, and D-
scale representing the input uncertainty).

Kalman filter part of MPC controller. Augmented dis-
turbance model to include model uncertainty

Gy = C(sI - A'B = G diag{ W,D/',W,} (4)

This leads to the Kalman filter gain K; = P,CTV"! where
P; is obtained by solving the Riccati equation PAT +
AP; — P.CTV-ICP; + BWBT = 0 where the covariance
matrices for disturbance is W = [; and for noise is V' =
W

The optimal value of a (Equation 3), for the same
problem specification as in the previous section, was
found iteratively. For a chosen value of o we obtained
the frequency response of the discrete controller, added
zero order hold elements at the outputs of the controller
and computed u. After some iterations, a value u = 1.15
was obtained for « = 0.03. The linear robust perfor-
mance was thus in fact somewhat better than the sub-
optimal #,-controller obtained earlier.

The solid lines in Figure 9 show the simulated perfor-
mance of the MPC controller when no constraints are
active, that is, when it behaves like a linear controller.
The response is seen to be very similar to the y-optimal
controller found previously (dashed lines). The main
difference is the speed of response of the levels and the
use of inputs D and B.

Figure 10 shows the MPC responses when Q is con-
strained to be at its nominal value. As we see, the MPC
controller preserves stability, and manages to keep the
levels and the pressure close to their desired values.
However, the composition control is relatively poor
since the compositions can not be maintained at their
setpoints when one degree of freedom is lost.

Some final remarks

1. In the simulations we used a 1 min delay in each
measurement and used —10% input gain error in all
inputs expcept Qp which has +10% uncertainty®.

2. The unconstrained simulation shows that the con-
troller performs well both for setpoint tracking and
disturbance rejection. No excessive input usage is
required. The performance for the outputs in Figure
9 is significantly better than for the decentralized
scheme shown in Figure 5.

3. In the constrained case the use of a MPC scheme
avoids the need for complicated logics including
overrides and retuning. If the decentralized control
scheme from the Section on controllability analysis
1s used, then the system goes unstable when Q. is
fixed. The multivariable g-controller does not go
unstable, but performs very poorly, and simulations
show that it goes unstable when Qg is fixed.

4. In the simulations there was given no forewarning
about the desired setpoint change at ¢+ = 0. Most
controllers are causal and would not be able to
make use of this information, but in many MPC
implementations such information may be used.
For example, if at t = —100 min the MPC optimizer
was told that a setpoint change is desired at t = 0,
then it would immediately start changing the inputs
to make the transition as optimal as possible.

*The MPC controller we use here is from the program ‘scmpc’ in the
MPC-toolbox for MATLAB?.

'This input uncertainty was found to be the worst of all + 10% com-
binations.
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Figure 10 Simulated MPC performance with constraint Q> 0, for setpoint change in xp at 1 = 0 and 15% feed disturbance at ¢ = 100 min. Upper

plot: scaled controlled outputs. Lower plot: scaled manipulated inputs

Discussion

It is often desirable to use a compensator-based con-
troller which retains some of the simplicity of a decen-
tralized controller, that is, K = C,Ky,,(s)C, where C,
and C, are fixed matrices (or at least contain very sim-
ple dynamics) which take care of the interactions
whereas Kg,, consists of simple single-loop controllers
to take care of the dynamic effects. One insight from
analysing the optimal multivariable controllers is that a
precompensator C, (mixing of measurements, that is use
level measurement also for composition control) is use-
ful, while a postcompensator C, (mixing of inputs) is

less useful due to the presence of input uncertainty. A
pure precompensator scheme is sometimes implemented
as a regular decentralized control scheme, but with a
‘feed-forward’ action from the disturbances, where dis-
turbances are estimated from level and pressure mea-
surements. Another insight is that a multivariable
prefilter (two degrees of freedom controller) may reduce
the interactions for setpoint changes. Although such
schemes may improve the multivariable properties of
the controller, they will still need special logics to han-
dle constraints.

The reboiler and condenser holdups of a distillation
column (and to some extent also the pressure) do not
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have to be tightly controlled, but may be considered
‘slack’ output specifications. The slackness of these
specifications yields a system which may be viewed as a
temporarily non-square system with access of inputs.
That is, as long as the levels M, and M are within their
upper and lower limits we may use all five inputs L,
Or, Oc, D and B to control three outputs xp, xg, and
Pp. At first one may believe that the ‘freed’ inputs may
be used to improve control performance. However, in
the case of a distillation column, the ‘freed’ variables D
and B are not effective for controlling xp, xy or Pp, so
the slack level requirements cannot be used to improve
the composition or pressure control; however, the slack
specifications are often used to eliminate fast variations
of the inputs D and B.

Conclusions

The results in this paper indicate that the main advan-
tages with 5 X 5 distillation control are the improved
disturbance detection by indirect use of the level and
pressure measurements, and the explicit input constraint
handling. One difficulty is the tuning of the controller,
but in our example we were able to tune the MPC
scheme quite easily to get acceptable robustness. The
following procedure was used: (1) Define a robust #£-
problem with an optimal u-value close to 1. (2) Use the
weights and scaling found for this problem to derive
MPC tuning parameters. The critical uncertainty, in this
case at the inputs, is represented as fictitious distur-
bances. (3) One adjustable parameter in the MPC con-
troller is used to minimize x. (4) Time simulations are
used to check the results and possibly adjust some
weights. The resulting controller is not ‘optimal’ in any
mathematical sense, but was found to perform very well.

In terms of the distillation model we have assumed
that the heat duties Q, and Qp are independent vari-
ables for control. This yields a somewhat unusual
behaviour in terms of the open-loop pressure. It would
be interesting to study the effect of introducing some

mechanism of self-regulation for the pressure by having
the heat duties depend on the column temperatures.
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