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Abstract

The paper addresses parametric sensitivity in batch distillation processes. By

considering the e�ect of small changes in the operating parameters, e.g., initial

conditions, we show that even ideal binary columns may display highly sensitive

regions of operation. Through analysis of a general model we determine operating

conditions that favor parametric sensitivity and show that parametric sensitivity

in general will be most severe in columns operated with re
ux or internal re
ux

ratio as a manipulated input. The analytical results are veri�ed through numerical

computations for several case studies.
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1 Introduction

Batch distillation has become of increasing importance in industry during the last

decades. In academia, this is re
ected in the large number of articles that have

appeared on optimization of batch distillation operations. Somewhat surprisingly,

however, the fundamental dynamic behavior of batch distillation columns has re-

ceived little attention in the literature. In this paper we consider one important

aspect of batch distillation dynamics, namely the sensitivity of key output variables

to small changes in operating conditions. Such sensitivity is termed parametric

sensitivity.

The study of parametric sensitivity in batch distillation is important not the

least because the output of most optimization schemes is an optimal pro�le for a

so-called control variable, e.g., re
ux ratio, which is implemented in an open-loop

fashion (e.g., Macchietto and Mujtaba [10]). This implies that there is no feedback

correction if key outputs diverge from the desired trajectories and an \optimal

operating policy", when implemented, may yield highly unexpected results if the

column displays parametric sensitivity. Thus, it is crucial to understand whether

parametric sensitivity may occur and, if so, what operating conditions that favor

such sensitivity. In this work we aim at providing some preliminary insight into this

important problem.

Outline of Paper: In Section 2 we introduce the reader to batch distillation

and typical ways of operating batch columns. In Section 3 we discuss the analysis

of parametric sensitivity for general systems and discuss the validity of frequently

employed criteria for parametric sensitivity in batch reactors. In section 4 we an-

alyze a general model of a binary batch distillation column and provide analytical

conditions that identify under which operating conditions parametric sensitivity is

likely to occur. The analytical results are veri�ed through numerical computations

of several case studies. Finally, in Section 5, we discuss the practical implications

of parametric sensitivity for operation of batch columns and provide a complete

example for illustration.

2 Batch Distillation

Conventional batch distillation columns are usually operated as either a batch recti-

�er or a batch stripper, although other designs are also proposed (see e.g. Davidyan

[3]). In this work, however, we limit ourselves to rectifying columns consisting of

the di�erent sections demonstrated in the schematic in �gure 1.

The di�erent sections are a heated vessel (reboiler) where the liquid is vaporized,

the column section with trays or packed material, the condenser (total or partial)

where the vapor leaving the column is condensed, a re
ux drum which collects the

condensed vapor and one or more receivers (accumulators) where the distillate is

collected. Some of the distillate is normally returned to the column (re
ux) in order

to improve the separation.
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Figure 1: Multistage batch distillation column

Operating policies. During startup batch columns are usually operated under

total re
ux until steady state or to a state when the distillate composition reaches

a desired purity. During the production period operation is usually performed ac-

cording to one of the following policies

(1) Constant re
ux ratio

(2) Constant distillate composition

(3) Optimal re
ux ratio

For the latter case, there exists a vast literature on determining the optimal policy

in which operation is optimized based on some criteria, e.g. maximum amount

of distillate or minimum distillation time (see e.g. S�renson [18], Mujtaba and

Macchietto [12] or Kerkhof and Vissers [9]).

The results presented in this paper are for open-loop operating policies and are

therefore of relevance mainly for case (1) and (3).

Control Con�gurations. With a control con�guration we understand the ma-

nipulated inputs that are available for composition control. For instance, the LV -

con�guration implies that re
ux L and boilup V are available for composition con-

trol. Note that a con�guration results from con�guring the level control system,

e.g., the LV -con�guration results when the distillate 
ow D is used for condenser

level control. For batch distillation columns, the most common con�gurations are

probably the LV -, (L=V )V and (L=D)V -con�gurations.

In models of continuous as well as batch distillation columns it is usually as-

sumed that the control inputs, e.g., re
ux L, may be manipulated on a molar rate
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basis, i.e., in [kmol=min]. This is mainly due to the fact that it is the molar 
ows

that naturally enters the material balances in a model and thus determine the sep-

aration. However, as pointed out by Jacobsen and Skogestad (1991), in operating

columns the liquid 
ows re
ux L and distillate 
ow D are more likely to be ma-

nipulated on a mass or volume rate basis. This may seem like a trivial di�erence.

However, as shown by Jacobsen and Skogestad (1991), the use of mass or volume


ows may introduce multiple steady states and unstable operating points in the

case of continuous distillation. The reason is that the transformation between mo-

lar and mass/volume 
ows is nonlinear, due to the composition dependence, and

may become singular under certain conditions. Based on these results we might

expect that the use of mass or volume 
ows will have a profound in
uence also

on the behavior of batch distillation columns. Thus, having �rst analyzed the case

with molar inputs in Section 4.1, we go on to analyze the case with mass inputs in

Section 4.2.

3 Analysis of Parametric Sensitivity

The concept of parametric sensitivity was introduced in the chemical engineering

literature by Bilous and Amundson [2]. They considered a tubular reactor in which

a �rst order irreversible chemical reaction occurred, and showed that small changes

in the heat transfer coe�cient may produce large changes in the e�uent. Sensitivity

was predicted analytically by the �rst order derivatives of the states to some oper-

ating parameters, and the system was said to exhibit parametric sensitivity when

these derivatives increased to very large values. Nonlinear simulations of the reactor

showed that formation of a considerable hot spot, also referred to as temperature

runaway, may occur in certain operating regions if care is not taken when choosing

the operating conditions, e.g., the ambient temperature.

Since the pioneering work of Bilous and Amundson [2], there has been a mod-

erately increasing literature on parametric sensitivity in chemical engineering pro-

cesses. Essentially all this work has been directed towards di�erent types of chem-

ical reactors. A number of di�erent criteria have been proposed for identi�cation

of regions of parametric sensitivity. Most of the early works were concerned with

developing criteria based on the geometry of the temperature pro�les in chemical

reactors. Criteria based on the occurrence of a positive second order derivative of

the temperature before the hot spot, i.e. the maximum temperature, was proposed

by Adler end Enig [1]. Such criteria have an advantage in that they are based on

intrinsic properties of the system, such that it is not required to a priori �x the

critical value of the parameter, as opposed to the criteria presented by Bilous and

Amundson. Some authors also paid attention to the close relation between para-

metric sensitivity and thermal explosion, or runaway theory (see e.g. articles by

Morbidelli and Varma [11] or Vajda and Rabitz [19]). Most of these works are yet

again based on the early results of Semenov [16].

We will in this work consider systems of nonlinear ordinary di�erential equations

on the form

_x = f (x; �(t); t) ; x (0) = x0 (1)

4



x 2 Rn; � 2 Rp; f : Rn �Rp 7! Rn

where x denotes the vector of state variables and � are the parameters, e.g., control

inputs. The solution of (1) is conveniently denoted by

x (t) = � (t; �(t);x0) (2)

From the theory of non{linear ordinary di�erential equations (see e.g Sansone and

Conti [15]) we know that a su�cient condition for the uniqueness of � (t; �(t);x0)

is that (1) be a Lipschitzian or a Carath�eodory system. The Lipschitz conditions

ensure that integral curves never intersects, thus ruling out the possibility of mul-

tiplicities along the state trajectory. These conditions are met for most models of

batch distillation columns.

In studying parametric sensitivity we are interested in the sensitivity of a nominal

trajectory x�(t) to small changes �� and �x0 in the system parameters � and the

initial state x0, respectively. In the linear approximation, the perturbation �x(t) of

the nominal trajectory is given by the solution of the linear nonstationary di�erential

equation
_�x = A(t)�x+B(t)��; �x (0) = �x0 (3)

with A(t) = @f=@x and B(t) = @f=@� evaluated along the nominal trajectory x�(t).

The state �x(t) then trace out the trajectory for the di�erence between the nominal

state x�(t) and the perturbed state x�(t)+�x(t). Typically, if jj�x(t)jj in some sense

becomes large for some t and small perturbations jj��jj and jj�x0jj, then the system

is said to exhibit parametric sensitivity (e.g., Bilous and Amundson, 1956; Vajda

and Rabitz, 1992, 1993). Thus, the de�nition of parametric sensitivity is qualitative

rather than quantitative. In general, to determine the extent of parametric sensi-

tivity one has to evaluate the sensitivity functions j�xi(t)j=j��jj and j�xi(t)=j�x0jj
by solving (3). Since, in the general case, an analytical solution does not exist for

(3), the sensitivity functions has to be computed numerically for speci�c examples.

In this work we would like to determine under which operating conditions para-

metric sensitivity is likely to occur in batch distillation. This information may

be di�cult to extract from studies of speci�c examples. Thus, we look for simple

indicators of parametric sensitivity which may be evaluated analytically. By con-

sidering equation (3) it is easily recognized that one particular situation in which

to expect large parametric sensitivity is when the trajectory is unstable, i.e., when

the perturbation �x(t) grows exponentially for small perturbations �x0 or ��. If the

Jacobian A(t) in (3) is constant, then instability of (3) (and thereby of (1)) occurs

when some eigenvalue of A is in the RHP, i.e., has positive real part. However,

for nonstationary systems, which always results when linearizing around a nominal

trajectory, A(t) varies with t and the situation is not that simple. In fact, in this

case neither necessary nor su�cient conditions for instability are available based on

an eigenvalue analysis of A(t). Su�cient conditions are, however, available if one

instead consider the eigenvalues of A(t) + AT (t) (see e.g., Willems, 1970). Such

conditions are on the other hand considered highly conservative and hence not very

useful. Other conditions based on the boundedness of the time variation of the

elements aij of A(t) or the use of Liapunov methods have also been proposed (see
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e.g. Sansone and Conti [15] or Jordan and Smith [8]), but are not considered very

useful as either due to their complexity and potential conservativeness.

Given the conservative nature of most conditions proposed in the literature for

stability, we will in this work assume that the occurrence of RHP eigenvalues usually

implies exponential growth of �x(t) locally. This is a reasonable assumption for most

systems, although rare examples of the opposite are found in the literature. An

eigenvalue analysis of A(t) is thus used to �nd candidates among \systems" (in the

sense of oprating regimes) that may display parametric sensitivity. For low{order

systems we show that simple analytical conditions may be derived for occurrence of

RHP eigenvalues. In order to illustrate the implications of the eigenvalue analysis

we will, however, compute the sensitivity for perturbations in the initial conditions

x0 for speci�c examples.

Computing the Sensitivity Functions. If we consider the homogeneous linear

system
_�x = A(t)�x; �x (0) = �x0 (4)

a solution in terms of its trajectory in state space may be given by

�x(t) = F(t; t0)F(t0; t0)
�1�x0 (5)

where F(t; t0) is called a fundamental matrix de�ned as a solution of the matrix

di�erential equation
_F (t) = A (t)F(t; t0) (6)

The transition matrix �(t0; t0) is the fundamental matrix for which the initial solu-

tion is �(t0; t0) = I , the identity matrix.

In the work by Bilous and Amundson [2] it is suggested that the transition

matrix may be computed by evaluating the matrix exponential of the integral of A,

i.e.

�(t; t0) = e

R t
t0
A(t)dt

(7)

However, in order for the integral solution (7) to be correct it is required that the

Jacobian matrices A(�) and A(t) commute, i.e. A(t)A(�) = A(�)A(t) 8t; � . This is
a severe requirement and rarely satis�ed for time{varying systems (see e.g. Wiberg

[20]). We found by comparing various ways of computing the transition matrix that

the integral solution (also suggested in a textbook by Douglas [4]) may produce

large errors, and thus contradictive results for the sensitivity functions.

4 Parametric Sensitivity in Batch Distillation

In this section we analyze a general dynamic model of a binary batch distillation

column. The following common assumptions are made for the batch columns con-

sidered

� Ideal VLE.

� Ideal trays

� Total condenser
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� Constant molar 
ows

� Negligible holdup on the plates and in the condenser.

With these assumptions we obtain a model with only two states, one for reboiler

composition and one for reboiler holdup, and this permits us to develop analytical

expressions for the eigenvalues of the Jacobian A(t), which we use for prediction of

parametric sensitivity.

The dynamics, and hence the parametric sensitivity, will in general depend on

which con�guration the column is operated with. We thus need to analyze di�erent

con�gurations separately. We start by considering the LV -, (L=D)V - and (L=V )V -

con�gurations which all have the same properties with respect to stability of the

trajectory (under the modelling assumptions given above). With these con�gura-

tions we make the common assumption that all 
ows are given on a molar rate

basis, i.e., in [kmol=min]. However, as mentioned previously, in practice, the liquid


ows are usually given on a mass or volume rate basis. In section 4.2 we therefore

consider re
ux Lw and distillate 
ow Dw given on a mass basis (subscript w) and

consider the parametric sensitivity of columns operated with the LwV -, (Lw=Dw)V -

and (Lw=V )V -con�gurations.

4.1 LV -, (L=D)V - and (L=V )V -con�gurations

The LV , (L=D)V and (L=V )V -con�gurations are all common con�gurations in

industrial operation of batch distillation columns. However, we here make the com-

mon assumption that all 
ows are given on a molar rate basis, which usually is not

the case in industrial operation. In order to understand the di�erence of academic

models with molar 
ows and real columns with mass or volume 
ows, however, we

study this case �rst and address the case with mass 
ows in the next section.

Dynamic Model. The following equations apply for the reboiler

dHB

dt
= L � V (8)

dxB
dt

=
1

HB

[L (x2 � xB)� V (yB � xB)] (9)

where HB is the reboiler holdup whereas xB and yB denote the compositions of the

liquid and vapor phase respectively. Based on the asumption of negligible holdup

on the trays, the compositions for these are computed from algebraic equations, i.e.,

L(xi+1 � xi) + V (yi�1 � yi) = 0 (10)

For the case of constant relative volatility, �, the vapor composition is given by the

VLE equation

yi =
�xi

1 + (�� 1)xi
(11)

Analytical Treatment We now want to consider the eigenvalues of the linear

model obtained from linearization of the nonlinear model along a nominal trajectory.

The eigenvalues are computed from the Jacobian

A(t) =

 
0 0

1
H2

B

V (yB � xB)� L(x2 � xB)
1
HB

[L( �x2
�xB

� 1)� V ( �yB
�xB

� 1)]

!
(12)
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and the eigenvalues become

�1 = 0 �2 =
L(

@x2
@xB

�1)�V (
@yB
@xB

�1)

HB
(13)

We see that one eigenvalue always is 0 and this is explained by the integrating nature

of the reboiler holdup. By considering the second eigenvalue �2 we determine the

necessary and su�cient condition for a RHP eigenvalue

L

�
@x2
@xB

� 1

�
� V

�
@yB
@xB

�
> 0 (14)

It is not straightforward to determine under which conditions (14) is satis�ed. We

may however simplify (14) by a few algebraic manipulations of the model equations.

Since condenser dynamics are neglected we have that yn�1 = yD. The overall

material balance for the light component is then written

V yB + LyD = Lx2 + V yD (15)

or

yB =
L

V
x2 +

V � L

V
yD (16)

Di�erentiating equation (16) with respect to xB yields

@yB
@xB

=
V

L

@x2
@xB

+
V � L

V

@yD
@xB

(17)

and
@x2
@xB

=
V

L

@yB
@xB

+
L� V

L

@yD
@xB

(18)

Inserting (18) in (14) and simplifying yields

�2 =
(V � L)(1� @yD

@xB
)

HB

(19)

which yields the necessary and su�cient condition for a RHP eigenvalue

�2 > 0 i�
@yD
@xB

< 1 (20)

If we consider one stage columns with a total condenser we have that yD is in

equilibrium with xB. yD thus only depends on � and xB. By di�erentiation of the

VLE equation (11) we may show that a necessary and su�cient condition for a RHP

eigenvalue in this case is given by

xB >

p
�� 1

�� 1
(21)

For one stage columns we thus �nd that sensitivity is favored by separations where

the initial composition of light component xB0 and the relative volatility � are large.

For multistage columns the case is more complicated, and it is improbable to �nd

analytic conditions for the partial derivative @yD=@xB in (20). However, if we con-

sider sharp separations, some important approximate results may be derived. Most

batch columns are in practice operated such that the transient behavior (product
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drawo�) starts from an initial state of total re
ux. This leads to a large buildup of

light component in the upper section of the column. As product drawo� commences

on �nds that, close to the point where practically all light component has been with-

drawn, the mole fraction of light component drops from yD ' 1 to yD ' 0 in a short

period of time. During this period the intermediate cut is withdrawn, which is the

fraction of distillate with composition ranging from for example 0:2 � yD � 0:8,

as illustrated in �gure (2). This o�{cut is either recycled to subsequent batches

or processed separately. The size of the intermediate cut decreases strongly with
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Figure 2: Composition pro�le for distillate stream, yD

increasing E�ciency factor E = �n, as shown by Rose and Welshans [14], where

n denotes number of stages. E is often used in the literature as a measure of the

sharpness of separation (see e.g. Rose and Welshans [14] and Pigford et.al. [13]).

If we denote the time when collection of intermediate cut begins by t�, we may use

the following approximations in the vicinity of t�

t < t� yD ' 1; @yD=@xB ' 0 ) �max ' (V � L)=HB

t > t� yD ' 0; @yD=@xB � 1 ) �max ' 0
(22)

The approximation is valid for sharp separations, and we provide numerical results

for some example columns in the next section which illustrates that such is the case.

Numerical Results. In �gure we show that the Jacobian matrix displays RHP

eigenvalues for a large operating region.

In order to con�rm the analytical results derived above, we perform simulations

for a few case studies. We consider a base case of a column with the data given

in Table 1. The e�ect of changing � and xB0 was examined by computing the

eigenvalues and sensitivity functions for two additional cases where we changed the

values given for the base case to � = 5 and xB0 = 0:75 respectively. The composition

pro�les for the three cases are shown in �gure 3, where the solid line illustrates the

base case. The solid line in �gure 4 shows the maximum eigenvalue along the

trajectory of the base case, and we see that the eigenvalue is in the RHP for a

9



Table 1: Process data for base case

Number of trays : N = 8 + Total condenser

Molar re
ux : L = 5 [kmole=min]

Molar Boilup : V = 5:5 [kmole=min]

Relative volatility : � = 4

Molar weight of light component : M1 = 20 [kg=kmole]

Molar weight of heavy component : M1 = 40 [kg=kmole]

Initial composition in reboiler : xB0 = 0:5

Initial amount in reboiler : HB0 = 100kmoles
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Figure 3: Composition pro�les for distillate for LV {con�guration

extended period of time. By comparing �gures 3 and 4 it is seen that �max for all

cases displays a peak in the region where yD drops. We also note that the magnitude

of �max increases somewhat with increasing values of � and x0, in agreement with

the analytical results presented above. It should however be emphasized that the

magnitude of �max is small such that large sensitivity is not to be expected. In order

to investigate the goodness of our previous assumptions leading to the approximate

equations for �max in (22), we obtained the following results from the simulations

�max (t = 77:8 < t�) = 0:0078 (V � L)=HB = 0:0083

�max (t = 128:6 < t�) = 0:0131 (V � L)=HB = 0:0141
(23)

We further see that �max ' 0 for t > t�, and thus conclude that our assumptions

are viable for these separations.

Figure 5 shows the sensitivity function @xB=@xB0. The sensitivity function gives

the e�ect of a small perturbation in the initial composition on the composition of the

reboiler. Since the magnitude of the sensitivity function, k�xBk, grows exponentially
when �max > 0 we have that parametric sensitivity is exhibited. k�xBk however
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decays to zero as xB goes to zero, so that one may argue that the columns are

only locally divergent (unstable). The implications are however not restricted to

local phenomena as there are large deviations also for yD . We do not present

results for other variables such as yD in this section. E�ects of sensitivity on other

variables than the states (xB) will be considered later in the article in terms of

a more complete case study. By comparing with �gure 4 we further note that

largest sensitivity k�xBkmax is found close to the peak value of �max. This clearly

shows that there is a close connection between exponential divergence and positive

eigenvalues.
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4.2 LwV -, (Lw=V )V - and (Lw=Dw)V - con�gurations

We consider here the case where the liquid 
ows are given on a mass rate basis,

i.e., Lw and Dw in [kg=min] (similar results are obtained if we instead consider

volumetric 
ows). As mentioned above this is the typical case in industrial batch

columns. For the case of the (Lw=Dw)V -con�guration, the units for the 
ows are not

important if both re
ux and distillate 
ow are measured in the same units. Thus,

the results presented in the previous section will apply also to the (Lw=Dw)V -

con�guration. However, as we shall see, the use of re
ux on a mass rate basis has a

strong impact on parametric sensitivity for the LwV - and (Lw=V )V -con�gurations.

Note that these two con�gurations are identical if we assume boilup V �xed.

The transformation between mass and molar re
ux is given by

L =
Lw
M

; M = yDM1 + (1� yD)M2 (24)

Here M1 and M2 denote the molar weight of the light and heavy component respec-

tively. Note that the transformation is strongly nonlinear due to the dependence

of the distillate composition yD. For the case of continuous distillation, Jacobsen

and Skogestad [6] have shown that the transformation even may become singular

causing multiple steady state solutions and instability. Thus, we should expect

the transformation (24) to have a signi�cant impact also on the behavior of batch

distillation columns.

The dynamic model is in this case the same as the one given in section 4.1 with

the addition of equation (24). The Jacobian of the dynamic model linearized around

a nominal trajectory now becomes

A(t) =

0
B@ 0

L
@yD
@xB

(M1�M2)

M

V (yB�xB)�L(x2�xB)
H2

B

L(
@x2
@xB

�1)�V (
@yB
@xB

�1)+(x2�xB)L
M2�M1

M

@yD
@xB

HB

1
CA (25)

The analytical expressions for the eigenvalues becomes highly complex in this case

and we therefore make use of the matrix properties trace and determinant of

A, denoted trA and detA respectively, in the following analysis. From the charac-

teristic equation for the 2 � 2 case we may conveniently write the solution for the

eigenvalues as

�1;2 =
trA�

q
(trA)2 � 4detA

2
(26)

We easily deduce from (26) that RHP eigenvalues occur for the cases where detA < 0

or trA > 0.

Analytical Treatment. From the Jacobian A(t) (25) we derive

detA = � [V (yB � xB)� L(x2 � xB)]L
M2�M1

M
@yD
@xB

H2
B

(27)

trA =
L( @x2

@xB
� 1)� V ( @yB

@xB
� 1) + (x2 � xB)L

M2�M1

M
@yD
@xB

HB

(28)

The expression for the trace of A may be simpli�ed to

trA =
(V � L)(1� @yD

@xB
) + (x2 � xB)L

M2�M1

M
@yD
@xB

HB

(29)
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We �rst investigate the conditions for which detA < 0. By examing the indi-

vidual terms in (27) we make the following observations. Due to the second law

of thermodynamics it is required that @yi=@xi > 0 for homogeneous mixtures (see

e.g. Doherty and Perkins [5]), thus @yD=@xB > 0. Further we always require that

V �L = D > 0, since the opposite implies a negative distillate stream or draining of

the condenser. Since we also have that yB > x2, we derive the following necessary

and su�cient condition for detA < 0, i.e., the existence of one and only one RHP

eigenvalue, from equation (27).

M2 > M1 (30)

The molar weight of the heavy component (M2) is for most separations carried out

in industry larger than the molar weight of the light component. Hence for most

industrial separations one should expect RHP eigenvalues, and therefore potentially

exponential divergence of nearby trajectories, at all times t! Furthermore, this

eigenvalue will in general be signi�cantly larger than the eigenvalues found with

molar 
ows in section 4.1.

We would now like to understand under which operating conditions we get the

largest value of the positive eigenvalue. If detA decreases (becomes more negative)

and trA simultaneously increases then the RHP eigenvalue increases in magnitude.

We �nd three conditions that has this e�ect

� Large internal 
ows L and V .

� Large di�erence between the molar weights.

� Large values of @yD
@xB

, i.e., intermediate values of distillate composition yD.

Given the results from the treatment above, we then turn to the case where

M1 > M2. Separations of water and some organic liquids are examples of such

mixtures. In this case we have that detA > 0 for all t and hence either we have

two RHP eigenvalues or we have two LHP eigenvalues. To study this closer we now

focus on the condition trA > 0 for RHP eigenvalues. From equation (29) we note

that

trA <
(V � L)(1� @yD

@xB
)

HB

(31)

and thus, if trA > 0, we have that the maximum eigenvalue must be less than or

equal to the maximum eigenvalue for the (L=V )V - and LV -con�gurations given by

(20). Thus, in this case the use of mass 
ows should expectedly reduce the sensitivity

compared to the case with molar 
ows, i.e., the mass 
ows have a stabilizing e�ect.

Numerical Results. The process data for the example column is given for the base

case in table 1. To gain more insight into the conditions that favor sensitivity for

operation with the LwV { and (Lw=V )V {con�gurations, we again consider behaviour

in the vicinity of t ' t� in some more detail. If the size of the intermediate cut is

small, this implies that the distillate composition (yD) remains close to one until it

abruptly drops to virtually zero in a short period of time. Since the molar weight of

the distillate stream is a unique function of the top composition (see equation (24),
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the size of the re
ux (molar) stream will change as follows

t0 � t � t� L ' L1 =
Lw
M1

t� � t � t� + �t L1 � L � L2 =
Lw
M2

t� + �t � t � tf L ' L2

(32)

As �t decreases operation of the column with LwV con�guration becomes essen-

tially similar to the LV con�guration except for the period of time denoted by �t

in Equation (32). L changes quite abruptly from L ' L1 to L ' L2 on a small in-

terval (�t) and this interval decreases as n increases. The nonlinear transformation

between molar and mass re
ux L = Lw=Mw is thus close to singular, such that one

might expect sensitivity to increase. On the other hand one must take into account

that the e�ect of the transformation contributes on a decreasing interval such that

the integral e�ect may decrease.

We consider the same case studies as reported for the LV {con�guration, and

the re
ux is in this cas given by Lw = 100 [kg=min]. In �gure 6 we illustrate typical

pro�les for the distillate composition and the molar re
ux. The dramatic changes

that occur in the vicinity of t� is quite clearly demonstrated. We see that L drops

from L ' 5 to L ' 2:5 within a small region of operation such that (32) applies.
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Figure 6: Distillate composition and molar re
ux pro�les for LwV {con�guration

Figure 7 a) shows that �max exhibits a considerable peak in the region where yD
drops, and we note that �max is signi�cantly larger than with the (LV ){con�guration.

The peaks of the sensitivity functions are however not signi�cantly larger. The

reason is that we only consider the magnitude of the absolute sensitivity. If one

alternatively computes the scaled sensitivity, which are obtained by introducing ap-

propriate scaling, we demonstrate in our �nal example that the sensitivities are

signi�cantly larger. We also recognize the exponential growth of the sensitivity

functions when �max > 0. This is taken as a partial con�rmation of the connection

between parametric sensitivity and occurrence of RHP eigenvalues.
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Figure 7: �max and sensitivity functions for Lw{con�guration

4.3 Other Con�gurations

Among other possible con�gurations for column control we may consider the DwV

con�guration. By following the treatment of the LwV con�guration, we �nd that

conditions for sensitivity is in fact opposite to the LwV case. Sensitivity is thus

likely only for separations where M1 > M2. This result compares well to similar

results on multiplicity for the continuous case (see Jacobsen and Skogestad [6] and

[7]), where it is found that multiplicity with the DwV con�guration is unlikely.

Sensitivity with the LwV con�guration may thus be avoided by changing condenser

level control from using re
ux Lw to distillate Dw.

5 Implications for Operation of Batch Columns

We have so far only considered the e�ect of perturbations in the initial states on one

of the state variables, i.e. the composition of the reboiler. In practice, however, one

is usually more concerned with other characteristics such as the distilllate composi-

tion xD and the amount of accumulated distillate MD. One should also consider the

e�ect of changes in other parameters, such as mass re
ux Lw. Even though para-

metric sensitivity may be independent of parameterisation [11], the magnitudes of

the sensitivity functions may be di�erent. The choice of operating strategy, that is

the policy on how to stop the distillation of a cut, may also signi�cantly in
uence

the e�ect of small perturbations. In this section we provide results showing that

small perturbations in the initial states and mass re
ux may have dramatic e�ect

on for instance the impurity in the accumulated distillate. We also demonstrate

that greatest sensitivity is found if the distillation is stopped according to a given

time.

Scaling of output variables. In order to make the variations in each output

variable comparable, we introduce scaling as suggested by Skogestad and Morari

[17]. Let x�D and x�B denote the nominal values for the accumulated distillate and

reboiler composition. We use the following scaling
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�(1� xD) =
�(1� xD)

1� x�D

xB0

�xB0
(33)

�xB =
�xB
x�B

xB0

�xB0
(34)

where �(1 � xD) = xD � x�D and �xB = xB � x�B are deviations from nominal

operation. This way we get percentage deviation in composition of impurity and

reboiler composition for a 1% perturbation in xB0. Note that the deviation for

the distillate composition is, as for the reboiler composition, given in terms of the

fraction of impurity.

5.1 Example column with tray holdups

In order to investigate an example of some industrial relevance, we looked at an ex-

ample column where we also include holdups on all plates including the condenser.

The process data given in table 2 are essentially the same as for the previous ex-

amples given in table 1, with a few minor changes in addition to including tray

holdups. We may add the two speci�cations xDs and xBs since we have two degrees

Table 2: Process data for example column with holdups

Number of trays : N = 8 + Total Condenser

Tray holdups : Mi = 0:1 kmole

Molar re
ux : L = 4:1205 [kmole=min]

Mass re
ux : Lw = 90:019 [kg=min]

Molar Boilup : V = 5 [kmole=min]

Relative volatility : � = 3

Molar weight of light component : M1 = 20 [kg=kmole]

Molar weight of heavy component : M1 = 40 [kg=kmole]

Initial composition in reboiler : xB0 = 0:5

Initial amount in reboiler : HB0 = 100kmoles

Speci�cations : xDs = 0:98

xBs = 0:05

of freedom left, i.e. we may specify both the re
ux policy and the �nal batch time

for the separation. We will consider columns with molar boilup V and either molar

or mass re
ux as independent variables, i.e. (Lw=V )V { and (L=V )V {con�guration.

From simulations we found that separation with constant (Lw=V )V requires 70%

longer batch time and 75% increase in energy consumption compared to operation

with constant (L=D)V . The reason is that L decreases with time when (Lw=V )V

is constant, due to changes in composition. This is a non{optimal way of operating

the column, since the ideal situation would be to increase the re
ux at the end of

the batch in order to improve the separation. In order to obtain both speci�cations
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on xDs and xBs the columns need to be operated under higher re
ux during the

production period, which o� course increases both the time and energy to obtain

the required speci�cations. As a comment to industrial operation of batch columns,

this result actually means that for binary separations where M2 > M1, the optimal

con�guration for constant re
ux will be the (Lw=Dw)V { or the DwV {con�guration.

Nonlinear simulations. In tables 3 and 4 we give the scaled sensitivities �xB,

�MD and � (1� xD) which are computed for two alternative operating strategies.

We consider stopping the batch at a given time tf or at a given composition on the

top tray x8. Sensitivities are computed for perturbations in xB0 and Lw. From the

Table 3: Scaled sensitivities for 1 % �xB0

Stop at tf �xB �MD �(1� xD)

LV 9.40 0.0 25.5

LwV 16.90 4.4 206.0

Stop at x8
LV 0.10 1.0 2.1

LwV 0.01 1.0 5.0

Table 4: Scaled sensitivities for 1% �Lw

Stop at tf �xB �MD �(1 � xD)

LV 32.7 4.44 124.6

LwV 83.6 5.00 1317.0

Stop at x8
LV 5.2 0.13 7.5

LwV 1.0 1.65 82.1

data in table 3 and 4 we see that the sensitivities decrease if the batch is stopped at a

given composition. This is hardly surprising, and perhaps rather obvious. However

stopping for a �nal composition requires an accurate and fast measurement, which

only rarely is availiable. Reliable measurements in terms of GC''s typically have a

delay of 15-15 minutes. In practice one would use a temperature measurement in the

top of the column in order to estimate the compositions, or even better a cascade

structure where both composition and temperature measurements are used. The

results clearly demonstrates that very small changes in input speci�cations such as

re
ux, or changes in initial conditions may have a severe e�ect on the �nal products,

e.g. distillate composition. Due to unavoidable measuring errors sensitivity will

allways be present. It should be emphasized that uncertainty in the initial states

is of special importance for batch processes that are operated within a chain of

operations, which often is the case for batch columns.
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Figure 8 illustrates scaled sensitivities for a 1% perturbation in L for the LV {

con�guration, when the column is stopped at a given time. As can be seen from

the plot,the sensitivities are large. Figure 9 shows in a similar fashion the scaled
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Figure 8: Scaled sensitivity functions for example column with LV {con�guration

sensitivities for the LwV {con�guration.
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6 Conclusions

� Ideal binary batch columns may exhibit parametric sensitivity (PS), i.e.

nominal trajectories are locally unstable

� PS is demonstrated even for columns with molar inputs, but the largest

sensitivities are found in columns with mass inputs

� Evidence for sensitivity has been provided in terms of

(1) analytical results (eigenvalues, �)

(2) numerical simulations

� We have demonstrated that occurrence of right half plane (RHP) � nor-

mally serve as strong indicators of sensitivity, in that regions of sensitivity

was enveloped by regions of RHP � for all examples considered.

� Conditions that favor PS were found to be

(1) Large relative volatilities

(2) Large di�erences in molar weights

(3) Large internal 
ows, i.e. L and V

� PS was shown to have greatest e�ect for columns operated with

(1) LwV - and (Lw=V )V -con�gurations.

(2) Final time policy

� Implications for operation of batch columns was given, by considering

nonlinear simulations of an example column
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