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Abstract

The steady state behavior of an integrated three-product distillation column known as the Petlyuk
column is examined. When four of the outlet compositions from the column are specified, the steady state
solutions have a rather strange nature, including multiplicity. Our explanation to this behavior is based on
the solutions of the system when only three of the outlet compositions are specified. These solutions were
computed numerically using an arclenght continuation method, and their nature is explained in physical
terms. Based on the solutions, the effect of adding the fourth specification is explained.

* Correspondence should be addressed to Sigurd Skogestad, E-mail: skoge@kjemi.unit.no, phone: +47-7359-4154, fax: +47-
7359-4080



1 Introduction

The starting point for this work is the paper by Wolff
et al. (1993,1994), who studied an integrated three-
product distillation column known as the Petlyuk
column. As the Petlyuk column has five degrees of
freedom, they considered using four of these to con-
trol four of the outlet compositions from the column,
and using the remaining fifth degree of freedom to
minimize the energy consumption. They found that
the (steady state) energy consumption as a function
of the remaining degree of freedom does not have a
nice convex shape - as might be expected - but ex-
hibit a strange behavior with two solution branches
and a "hole” in the operating range (i.e. there is
a range of values for the remaining degree of free-
dom where no steady state solutions exist). The pur-
pose of this paper is to provide an explanation of the
steady state behavior found by Wolff et al.

The strategy chosen in order to provide such an
explanation is as follows: First, we find all steady
state solutions for a case with three outlet compo-
sitions specified, and interpret the solutions as ge-
ometrical surfaces. These surfaces can be linked to
our physical understanding of the column. Then, the
effects of adding/changing a fourth specification may
be viewed geometrically in terms of the surfaces.

A brief outline of the paper: First, we define some
terminology and explain the strange steady state be-
havior of the column when four outlet compositions
are specified. We then describe the mathematical
model and the numerical methods. After present-
ing the computed solution surfaces, we explain their
shapes by physical arguments. We then draw a larger
picture in terms of these solution surfaces in order to
explain the effect of adding/changing specifications
on the shape/nature of the solutions. Finally, we
discuss the relevance to operation and control.

For readers unfamiliar with the Petlyuk column,
we use the rest of this introduction to give a brief
review of previous work. The review follows that of
Wolff et al. (1993,1994).

In 1939, Brugma (1939) proposed a column de-
sign similar to the Petlyuk column, but with a re-
boiler and a condenser also in the prefractionator.
This design has been denoted a pseudo-Petlyuk de-
sign by previous workers (e.g. Wolff et al., 1994).

Stupin an Lockhardt (1971) study the use of Fenske-
Underwood equations for the design of Petlyuk columns.

Tedder and Rudd (1978) examine the energy re-
quirement of various separation arrangements, in-
cluding the pseudo-Petlyuk column.

Fidowski and Krolikowski (1986) compare the en-
ergy requirement of the Petlyuk column to other de-
signs, such as the direct and indirect sequences.

Glinos and Malone (1988) derive analytical ex-
pressions for various column designs, including the

Petlyuk column.

Chavez et al. (1986) study multiplicity in Petlyuk
columns. They have an explanation of the multiplic-
ity in terms of "matching specifications in interlinked
columns”.

Faravelli et al. (1989) examine the resilience of
the steady states of the Petlyuk column to changes
in the internal flows. Their work is based on the work
by Chavez et al.

Triantafyllou and Smith (1992) give an overview
over the design of Petlyuk columns. They explain
how the Petlyuk column may be approximated - from
a design point of view - by a regular distillation col-
umn and two side strippers.

The only report of an industrial application of a
Petlyuk column is from BASF in Germany, as re-
ported by Rudd (1992).

2 The Petlyuk column

The purpose of this section is to describe the column,
describe the problem at hand and to introduce some
terminology needed for the subsequent discussion.

The column

The Petlyuk column separates a three component
mixture of light (A4), intermediate (B) and heavy
component (C). Fig. 1 shows the system, consist-
ing of a prefractionator and a main column.
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Figure 1: Petlyuk column

The main column resembles an ordinary distilla-
tion column in that there is a reboiler at the bottom,



producing a vapor flow rate, V, and a condenser at
the top, yielding a liquid reflux, L. The prefraction-
ator, however, does not have a separate reboiler and
condenser. Instead it takes a fraction, Ry = V2/V,
of the vapor stream, V, from the main column to use
as boilup, and it takes a fraction, R = Ly/L, of the
liquid stream, L, to use as reflux.

The feed to the system, F, is placed at the middle
of the prefractionator. The products are withdrawn
from the main column: the light component in the
distillate flow, D; the intermediate component in the
side draw, S; and the heavy component from the
bottom, B.

Note that in practice the prefractionator and the
main column may be built in a single shell using a
dividing wall.

Degrees of freedom and operating objectives

It is assumed that the holdups (condenser level,
reboiler level and pressure) are already controlled.The
system then has five degrees of freedom, which may
be represented by the parameters given above: L, V,
S, Ry and Ry. Possible objectives (specifications)
for the operation of the column might be to control
the compositions of the outlet streams and to mini-
mize the energy consumption.

If the relative volatilities are reasonably large,
there will be almost no heavy component at the top
of the main column, and almost no light component
at the bottom; it is therefore unnecessary to spec-
ify these two quantities. Hence, we need only one
degree of freedom to control each of the top and bot-
toms compositions, and two for the side composition
(possibly one if we don’t care whether the impurity
is light or heavy), a total of four (three) degrees of
freedom. The remaining degree of freedom (two de-
grees) could then be used to minimize the energy
consumption. For subsequent discussion we distin-
guish between two different sets of specifications:

1. Three compositions specified. In this case three
degrees of freedom are used to specify one con-
centration in each outlet stream, i.e. 4, top,
ZB,side 3a0d ZT¢ pottom- The remaining two de-
grees of freedom are used for energy minimiza-
tion.

2. Four compositions specified. In some cases the
side product may be specified - not in terms
of the purity of the intermediate (B), zp,,ide -
but rather in terms of both a maximum amount
of light impurity (A) and a maximum amount
of heavy impurity (C). Specifying these two
impurities is equivalent to specifying, in addi-
tion to the three specifications above, the ratio
of light to heavy impurity in the side stream,
T A,side/TC,side- In this case, there is only one
degree of freedom left for energy minimization.

Solutions and solution manifolds

We define a solution to be an operating point which

satisfy the specifications on the compositions, not
taking the energy minimization into account. Since
there are remaining degrees of freedom there will be
a family of solutions; we will denote such a family a
solution manifold.

For the first specification set above, ” Three com-
positions specified”, there are two degrees of freedom
left (five degrees of freedom minus three specifica-
tions). Hence, the solution manifold is twodimen-
sional, i.e. a surface. For the second specification
set, "Four compositions specified”, there is one de-
gree of freedom left, i.e. the solution manifold is a
curve. Note that, in general, the solution manifold
does not have to be connected; it may consist of sev-
eral parts, or branches.

Observe that the solution manifold of the second
specification set is part of the solution manifold of the
first set. Hence, by calculating the solution manifold
of the first specification set, we have also calculated °
the solution manifold of the second.

A typical solution manifold

It is not always easy to predict what type of solu-
tions to expect, not even qualitatively. For example,
consider the second specification set, with four com-
positions specified. One might intuitively think that
the energy consumption as a function of the remain-
ing degree of freedom, X say, would be a nice convex
function with a well defined minimum. However, as
was shown by Wolff et al. {17], the numerical solu-
tion typically looks like the curve shown in Fig 2,
exhibiting two solution branches and a hole in the
operating range. In the figure, the remaining degree
of freedom, X, is the vapor split fraction, Ry . Other
choices of X yield similar results.
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Figure 2: Energy consumption, V/F, as function of
Ry. Four compositions specified.

Before explaining why the energy consumption as
a function of the remaining degree of freedom has



such a shape, we describe the simple mathemati-
cal model and the numerical methods used to sup-
port our arguments. We compute all solutions of the
model for the case with three specifications.

3 Mathematical model and nu-
merical solution

3.1 Model of the column

The model is simplified as much as possible to reveal
some essential features of the Petlyuk column. It is
assumed (Fig. 1):

e Eight equilibrium stages in the prefractionator,
sixteen in the main column;

e Constant relative volatilities 4:2:1;
e Constant molar flows;
e Total condenser; and

e Reboiler taken as one equilibrium stage.

The mass balances for equilibrium stage ”#” are taken
as:

(1)
where L and V are the liquid and vapor molar flows
through the stage; z.; and y.,; are the liquid and va-
por mole fraction of component ”c”, where ”c” refers
to any of the three components 4, B or C.

The vapor mole fraction of component c”, y.,
is given by the vapor equilibrium:

QXLe,i

Yei =
Zc:A.B,C Qele,i

The mixer and splitter models mix or split either
liquid or vapor. The mass balance for liquid becomes:

ZF;,.I:C,.',, = ZFoutmc,out (3)
in out

where the F’s are molar flows and ”in” and ”out”
are indices over the inlet and outlet streams. This
expression determines a mixer; for a splitter more
specifications are needed: the split fraction of the
outlet flow rates, i.e. Ry or Ry, and that the outlet
flows have the same composition. The mass balance
for vapor is the same as for liquid when « is replaced
by y.

The reboiler model is taken as an equilibrium
stage with the vapor flow rate specified. The con-
denser is supposed to be a total condenser, i.e. the
condenser model simply converts vapor to liquid with
no change in compositions.

Now that the models of the column elements - the
stages, mixers, splitters, reboiler and condenser - are
established, we describe how these were combined to
an equation system.

L. Teit+l — V. Yeyi = L. Leys — V. Yeyi-1

(2)

3.2 The equation system

The model described in the previous section was solved
using the equivalent of McCabe-Thiele stepping: The
vapor and liquid compositions at the middle of the
prefractionator and the main column are guessed,
and the system is solved stage by stage towards the
top and the bottom of the column. Of course, the
guess is in general wrong, so there will be a mis-
match - residuals - in the splitters at the top and
bottom of the prefractionator, as well as in the re-
boiler and in the condenser. One may consider this
stage-by-stage procedure to be equivalent to an equa-
tion system f(z) = 0, where:

e z : unknowns consisting of five degrees of free-
dom- L, S, V, Rr, Ry - and eight guesses (four
streams times two mole fractions), a total of 13
unknowns.

e f: function values consisting of three speci-
fications and eight mismatches (four locations
times two mole fractions), a total of eleven func- |
tion values.

It is seen that there are two more unknowns than

equations, which means that there exists a two-parameter

family of solutions, i.e. a two-dimensional surface.
To find the solution surface, a continuation method
was used.

3.3 A simple continuation scheme -

Continuation methods are well established; therefore
the method used will only be briefly discussed here.
An easily accessible book on the subject is the book
by Seydel, 1988 ([12]). The method used here is not
particularly sofisticated and was chosen for its sim-
plicity.

The equation system to be solved is on the form
f(z) = 0 with two more variables than equations, i.e.
the solutions form a surface. Since a surface may be
constructed from the curves lying in it, a family of
such solution curves are found. The overall procedure
is:

1. First find an initial solution zq (with flow splits
Rr,0, Rv,0)-

2. Temporarily make an additional specification
to get only one more variables than unknowns.
The choice of additional specification is almost
arbitrary; here, we fix the ratio

(RL — R, 0)/(Rv — Rv,0).

3. Solve the resulting equation using arclength con-
tinuation to find a solution curve lying in the
solution surface.



4. Repeat for various values of the ratio

(R — Rr,0)/(Rv — Rv,), each time starting at
Zg.

5. Construct the solution surface from the com-
puted curves.

The arclength continuation method used in this
procedure is as follows: We are to solve f(z) = 0,
now with only one unknown more than the number of
equations. Assume that we have already calculated
a set of points zg, 21+ * - Z, on the solution curve, and
that we desire to find a point 2,41 a distance approx-
imately § from z,. First linearize to get the equation
for the tangent of the solution curve: 0 = J . Az,
where J = —8—11, is the Jacobian of f. It is seen that
any deviation, Az, on the tangent is in the null space
of the Jacobian. The hyperplane orthogonal to the
tangent is spanned by the row space of the Jacobian.
This suggests the following two step procedure:

1. A prediction of the next point z,4; is found by
taking a small step, §, in the direction of the
nullspace of the Jacobian, A'(J,) (tangent di-
rection). The Jacobian was computed numeri-
cally, using central differences.

2. A correction is made iterating in the row space
of the Jacobian, R(JT), by Newton-Rapson like
iterations using the pseudoinverse of the Jaco-
bian, JF, evaluated at the previous point, zy:

k k k
A= =TT f(ah), k=1,2,3--

(4)

3.4 Numerical results

As the solutions forms a two parameter family - i.e. a
surface - one may parametrize it by almost any two
variables. Here, we use the liquid and vapor split
fractions, Ry and Ry, as parameters. Any other
quantity, Q say, may thus be considered a function
of these two parameters, formally Q = Q(RL, Ry).

Figs. 3 and 4 show a typical result as a function of
the parameters, Ry and Ry. Fig. 3 show the calcu-
lated energy requirement, represented by the boilup
V/F; Fig. 4 show the calculated ratio of light to
heavy component in the side stream, z 4,,ide/ZC,side-
As can be seen, the energy surface is a nice con-
vex function with a well defined energy minimum,
whereas the ratio of light to heavy component in the
side stream has the shape of a saddle.

4 Discussion of results

In this section we first make a physical argument as
to why the surfaces ought to have the shape they
have. We then explain the connection between the
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Figure 3: Calculated energy consumption, V/F, as a
function of Ry and Ry. Three compositions speci-
fied.
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Figure 4: Calculated ratio of light to heavy impurity
in side stream. Three compositions specified.

shape of these surfaces and the effect of specifying
e.g. the side stream impurity.

Shape of the energy surface

First, consider the calculated energy requirement as

a function of the liquid and vapor split fractions, Rp
and Ry, Fig. 3. The energy surface looks as we
might intuitively expect, with a well defined mini-
mum. Any excursion from the minimum point costs
in terms of energy. Too high Ry and Ry means that
we use all the vapor and liquid in the prefractiona-
tor, not leaving much to the main column, which is
stupid. A similar argument applies to low Ry and
Ry, not leaving much for the prefractionator. High
Ry and low Ry means that the liquid to vapor ratio
is too high in the prefractionator and too low in the
main column, again stupid. A symmetrical argument
applies to low Ry and high Ry.



Shape of the z 4 ,id./2c,side Surface

Next, consider Fig. 4 showing the calculated ra-
tio of light to heavy component in the side stream,
T A,side/TC side 8 a function of the liquid and vapor
split fractions, Ry and Ry.

A change in one of the split fractions has an ef-
fects on both the prefractionator and the main col-
umun. For example, consider a decrease in the liquid
split fraction, Ry (while keeping Ry and the other
three product compositions constant). This affects
the purity of the sidestream in two ways:

1. By degrading the separation in the prefraction-
ator: The liquid to vapor ratio, L/V, in the
prefractionator decreases, and if it becomes suf-
ficiently low, there is a breakthrough of heavy
component, C, at the top of the prefractionator
into the main column. This heavy component
ends up in the side stream, reducing the ratio
of light to heavy component in the side stream,

xA,.u'de/xC,aide-

2. By improving the separation in the main col-
umn: The liquid to vapor ratio, L/V, in the
main column increases, which by itself increases
the concentration of light component, A, in the
side stream, and increases the ratio of light to

corresponding points on the two surfaces are placed
above one another.

Specifying the z4,side/ZC,side ratio is equivalent
to finding the intersection of the saddle, Fig 5¢, with
a horizontal plane. Since the surface is a saddle, this
intersection yields two branches of intersection curves
(marked with O’ in the figure). The corresponding
branches on the energy surface are found by project-
ing these two curves upward onto the energy con-
sumption surface, Fig 5b. The original figure with a
"hole” in the operating range, Fig. 5a, is found by
projecting the branches onto the Ry — V/F plane.

This explains the effect of adding the fourth spec-
ification on the outlet composition. It can be seen
geometrically the effect of changing the value of the
fourth specification; this corresponds to translating
the horizontal plane upwards or downwards. Thus
we have obtained a qualitative picture of the effect
of the fourth specification.

5 General discussion

A comment on the saddle shape

heavy component in the side stream, z 4,side/*C,sidSince the flow split fractions Ry and Ry repre-

The two effects are thus competing, indicating that
the ratio z 4 side/c,sidge May have a mazimum along
a line of constant Ry. This is indeed the case and
may be explained as follows: If Rp is decreased to-
wards zero starting from a relatively high value, then
the ratio 4 side/TC,side Will first increase due to the
second effect, but a further reduction of Rp will de-
crease T4 side/TC,side due to the first effect (break-
through of heavy component). A similar argument
along a line of constant Ry (varying the vapor split
fraction, Ry) yields a minimum along this direction.

To summarize: The © 4 ,ige/ZC,side Surface has a
maximum along a line of constant Ry and a mini-
mum along a line of constant R, that is, the surface
has the shape of a saddle.

Combining the surfaces

Now that the general shape of the solution surfaces
has been established, we explain what this means
in terms of specifying e.g. the Z4,.ide/TC,side Ta-
tio. Consider Fig. 5, showing an idealized picture
of the solution surfaces (functions of the liquid and
vapor split fractions, Ry and Ry). Fig 5c shows the
T A,side/TC,side Tatio, while Fig 5b shows the energy
consumption. The two surfaces have been placed
above each other on purpose, to emphasize that points
on the two surfaces that have the same arguments Ry,
and Ry correspond to each other. In other words,

sent some sort of trade-off between the column sec-
tions - i.e. larger internal flows in one column sec-
tion means less in another - it should not come as
a surprise to find maxima or minima along lines of
constant Ry or lines of comstant Ry. Also, since
the Petlyuk column has a near top-bottom symme-
try, one would expect Ry, to have a similar effect on
the T4 side/TC,side Tatio as Ry has on the resiprocal
of this quantity, i.e. Zc,side/Z4,side- This indicates
strongly that the T4 side/Zc,side ratio as a function
of Rr, and Ry has the shape of a saddle; at least it
should not be very surprising. One may conjecture
that such saddle shapes should be quite common in
integrated column arrangements. Adding a specifi-
cation on a ‘saddle-like quantity would then imply
multiple solution branches and complex multiple so-
lutions.

Operation and Control

As shown by Wolff et al. (1993,1994), it is relatively
easy to control the Petlyuk column for the case with
three compositions specified, but the fourth specifi-
cation complicates matters. It is not obvious how to
design a good feedback control system in this case.
However, systems with more manipulated variables
(in our case, the degrees of freedom) than outputs
(in our case, the outlet concentrations) normally do
not have fundamental limitations in achievable con-
trol performance (i.e. bandwidth limitations). Since
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Figure 5: Relation between three specifications and four specifications. Note: surfaces have been idealized.

there is one excess degree of freedom when four outlet
compositions are specified, we do not expect any fun-
damental limitations in the achievable performance
in this case. The design of such controllers is an area
of future research.

A comment on thermodynamics

[n this work, we have used a very simple model with
constant relative volatilities; still, this system ex-
hibits a rather complex steady state behavior. More
rigorous thermodynamics yield similar results (Wolff
«t al,, 1993, 1994). However, it should be noted that
more complex thermodynamics might complicate the
steady state behavior even further.

6 Conclusion

Complex steady state behavior of Petlyuk columns -
with multiple solutions and a "hole” in the operating
range - was explained by physical/geometrical argu-
Inents. The numerical method used for supporting
the arguments was an arclength continuation method
4pplied to a simple mathematical model of a Petlyuk
¢olumn.

The nature of the solutions are similar to what is
obtained by more rigorous models.
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Nomenclature

Greek

Subscripts
bottom

c

n

out

side

top

Bottoms flow rate [mole/time]

Distillate Hlow rate [mole/time]

equation system of Petlyuk column

Feed flow rate [mole/time]

Jacobian matrix of f(z)

Liquid reflux flow rate in top of main column [mole/time]}
Liquid flow rate in top of prefractionator [mole/time]
Liquid split fraction at top of prefractionator, Ly /L [-]
Ry, in the vector zg [-]

Vapor split fraction at bottom of prefractionator, Vo /V [-]
Ry in the vector zg [-]

Side stream flow rate [mole/time]

Vapor flow rate from reboiler [mole/time]

Vapor flow rate in bottom of prefractionator [mole/time]
Liquid mole fraction [-]

Vapor mole fraction [-]

unknown vector in equation system f(z)

Starting value of z for continuation algorithm

relative volatility [-]

indicates bottoms flow .

index over component A (light), B (intermediate), C (heavy)
index over inlet streams

index over outlet streams

indicates side stream

indicates distillate flow



