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Abstract. The objective of this paper is to derive some fundamental results for controllability analysis of scalar systems. The
effects of disturbances, delays, constraints and RHP-zeros are quantified. These results are applied to a neutralization process
where it is shown that the process must be modified to get acceptable controllability.
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1 INTRODUCTION

In process control courses the issues of controller
design and stability analysis are often emphasized.
However, in practice the following three issues are
usually more important.

L Is the plant easy to control? Before attempt-
ing to start any controller design one should have some
idea of how easy the plant actually is to control. Is it a
difficult control problem? Indeed, does there even ex-
ist a controller which meets the required performance
objectives?

I1. What control strategy should be used? What
to measure, what to manipulate, how to pair? In text-
books one finds qualitative rules to address this issue,
for example in Seborg et al. (1989) one finds in a chap-
ter called “The art of process control” these rules:

1. Control outputs that are not self-regulating

2. Control outputs that have favorable dynamic
and static characteristics, i.e., there should ex-
ist an input with a significant, direct and rapid
effect.

3. Select inputs that have large effects on the out-
puts.

4. Select inputs that rapidly effect the controlled
variables

These rules are reasonable, but what is “self-
regulating”, “large”, “rapid” and “direct”. One objec-
tive of this paper is to quantify this.

II1. How should the process be changed to im-
prove control ? For example, one may want to de-
sign a buffer tank for damping a disturbance, or one
may want to know how fast a measurement should be
to get acceptable control.

Controllability analysis. All the above three
questions are related to the inherent control charac-
teristics of the process itself, that is, to what is de-
noted the controllability of the process. Surprisingly,
in spite of the fact that mathematical methods are used
extensively for control system design, the methods
available when it comes to controllability analysis are
mostly qualitative. In most cases the “simulation ap-
proach” is used. However, this requires a specific con-
troller design and specific values of disturbances and
setpoint changes. In the end one never really knows if
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a result is a fundamental property of the plant or if it
depends on these specific choices.

The main shortcoming with the controllability
analysis presented in this paper is that all the measures
are linear. This may seem to be very restrictive, but
in most cases it is not. In fact, one of the most im-
portant nonlinearities, namely input constraints, can
be handled with the linear approach. To deal with
slowly varying changes one may perform a controlla-
bility analysis at several selected operating points. As
a last step of the controllability analysis one should
perform some nonlinear simulations to confirm the re-
sults of the linear controllability analysis. The experi-
ence from a large number of case studies has been that
the agreement is generally very good.

Definition of controllability. In this work the
term “controllability” (of a plant) has the meaning “in-
herent control characteristics of the plant” or maybe
better “achievable performance” (irrespective of the
controller). This usage is in agreement with most per-
sons intuitive feeling about the term, and was also how
the term was used historically in the control literature.
For example, Ziegler and Nichols (1943) define con-
trollability as “the ability of the process to achieve and
maintain the desired equilibrium value”. Note that
controllability is a property of the plant (process) only,
and can only be affected by changing the process itself,
that is, by design modifications.

Unfortunately, in the 60’s Kalman defined the term
“controllability” in the very narrow meaning of “state
controllability”. This concept is of interest for real-
izations and numerical calculations, but as long as we
know that all the unstable modes are both controllable
and observable, it has little practical significance. To
distinguish our use of the term from that of Kalman
we may use the term “output controllability”.

Previous work. Except for the initial work by
Ziegler and Nichols (1943), there does not seem to
have been much progress on output controllability
analysis until Rosenbrock (1970) presented a thorough
discussion on the various definitions of state control-
lability and observability, and introduced similar con-
cepts in terms of the outputs. This led to the introduc-
tion of the important notion of right half plane (RHP)
zeros (which for scalar systems is directly related to
inverse responses). The next important step towards
a quantitative analysis was made by Morari (1983)



Fig. 1: Block diagram of feedback control system.

who made use of the notion of “perfect control”. The
main issue which was missing from his analysis was
an explicit consideration of disturbances. Balchen and
Mumme (1988, pp. 16-21, pp.47-48) present some
nice controllability guidelines which are more specific
that the rules from Seborg er al. (1989) given above,
but most of them lack a theoretical justification. The
issue of disturbances has of course been discussed in
many application papers, but only recently have their
relationship to controllability been treated in a system-
atic manner (e.g., Skogestad and Wolff, 1992).

The tools for controllability analysis are now
reaching a more mature state, but still the fundamen-
tal ideas are not well known. The objective of this
paper is to present the ideas for scalar systems in a
tutorial manner. For decentralized control of multi-
variable processes the results may be generalized di-
rectly by introducing the Closed Loop Disturbance
Gain (CLDG) and the Performance Relative Gain Ar-
ray (PRGA) (Hovd and Skogestad, 1992).

2 LINEAR CONTROL THEORY

Notation. Consider a linear process model in terms
of deviation variables

y=gu+gad (D
Here y denotes the output, u the manipulated input and
d the disturbance (including what is often referred to as
“load changes”). g(s) and g4(s) are transfer function
models for the effect on the output of the input and
disturbance, and all controllability results in this paper
are based on this information. The Laplace variable s
is often deleted to simplify notation. The control error
e is defined as
e=y—r @)

where r denotes the reference value (setpoint) for the
output.
Feedback control.

scheme
u=c(s)(r —y) 3)
where c(s) is the controller. Eliminating u from equa-
tions (1) and (3) yields the closed-loop response
y=Tr+ Sgqd 4

Here the sensitivity is S = (I + g¢)~! and the comple-
mentary sensitivity is 7' = ge(I +gc)~! =1 — S. The

Consider a simple feedback
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Fig. 2: Frequency response of g(s) = 5¢ 2% /(1+10s).

transfer function around the feedback loop is denoted
L. Inthis case . = ge. The corresponding input signal

1 u=—ce = cSr— eSgad (5)
The frequency domain. Most of the results in this
paper are based on the frequency domain. The phys-
ical interpretation for a system y = g(s)u is a fol-
lows: A persistent sinusoidal input with frequency w,
u(t) = upsin(wt), yields a persistent sinusoidal out-
put with the same frequency, y(t) = yosin(wi + ¢).
The magnitude yo and phase shift ¢ is easily com-
puted from the Laplace transform g(s) by inserting the
imaginary number s = jw and evaluating the magni-
tude and phase of the resulting complex number. We
have the system gain yo/uo = |g(jw)| and phase shift
¢ = Lg(jw) [rad].

In this paper we use a “frequency-by-frequency”
approach and at each frequency consider the response
to a sinusoidal input of unit magnitude (ug(w) = 1).
This yields the “frequency response” of the system
where we consider the gain y,(w) = |g(jw)| (and pos-
sibly the phase shift Zg(jw)) as a function of w.

In Fig. 2 the frequency response (Bode-plot) is
shown for a first-order system with time delay, g(s) =
ke=% /(1+7s). Assume that k > 1 and note for later
reference the frequency w; where the gain is 1, that
is, |g(jwg)| = 1 (this frequency is of particular interest
when g(s) is the disturbance model, and this is the rea-
son for the subscript d). The exact value is given by

k/+\/1+ (wgr)? = 1, but we often use the asymptotic
approximation k /(w47) & 1, and obtain

wdzk/'r (6)

Thus, we see that w is large if the steady-state gain k
is large (the input has a large effect on the output) or if
the time constant 7 is small (the input has a fast effect
on the output).

Bandwidth. Here bandwidth is defined as the fre-
quency wg where the loop gain is one in magnitude,
ie. |L(jwg)| = 1 (or more precicely where the low-
frequency asymptote of | L| first crosses 1 from above).



A frequency domain analysis, and in particular
of the frequency-region corresponding to the band-
width, is very useful for systems under feedback con-
trol. This is the case even when the disturbances and
setpoints entering the system are not sinusoids. The
reason is that the feedback control system usually will
amplify frequencies corresponding to the closed-loop
bandwidth, wp. For example, the effect of distur-
bances is usually largest around the bandwidth fre-
quency; slower disturbances are attenuated by the
feedback control, and faster disturbances are usually
attenuated by the process itself.

3 CONTROLLABILITY ANALYSIS

Scaling. The interpretation of most measures pre-
sented in this paper assumes that the transfer functions
g and g4 are in terms of scaled variables. The first step
in a controllability analysis is therefore to scale (nor-
malize) all variables (input, disturbance, output) to be
less than 1 in magnitude (i.e., within the interval -1 to
1). The detailed scaling procedure is outlined in the
Appendix.

Thus, in the following we assume that the signals
are persistent sinusoids, and that g and g4 have been
scaled, such that at each frequency the allowed input
|lu(jw)| < 1, the expected disturbance |d(jw)| < 1,
the allowed control error |e(jw)| < 1, and the ex-
pected reference signal |r(jw)| < 11.

The ideal controller and plant inversion. The
objective of the control system is to manipulate u such
that the control error ¢ remains small in spite of dis-
turbances and changes in the setpoint. The ideal con-
troller will accomplish this by inverting the process
(Morari, 1983) such that the manipulated input be-
comes (set y = r in (1) and solve for u):

'r— g7 gad (7
An ideal feedforward controller operates in this man-
ner. Usually, the disturbance is not measured and feed-
back control is used instead. As may be expected, the
input signal generated under feedback is also given by
eq.(7) at frequencies where feedback is effective. In-
troducing the fact ¢S = ¢g~!T into (5) yields the fol-
lowing expression for the input signal under feedback
control

u=g-

u=g '"Tr— g 'Tgqd (8)

At low frequencies, w < wp, where |ge(jw)| > 1
and feedback is effective we have S &~ O and T =~ 1,
and we rederive (7). Consequently ideal control (in-
version) requires fast feedback (high bandwidth).

On the other hand, inherent limitations of the sys-
tem may prevent fast control. The limitations may
include constraints on the allowed input signal « and
non-minimum phase elements in g(s) such as time de-
lay and right half plane zeros. If these requirements

n this paper we assume that = is less than 1 at at all frequen-
cies, but in general the allowed magnitude of » may be frequency
dependent.

for high and low bandwidth are in conflict then con-
trollability is poor. The objective of the remaining part
of this section is to quantify these statements. The re-
sults are derived for feedback control, although some
of them also apply to feedforward control.

3.1 Disturbances and bandwidth

The effect of a disturbance on the output at a fre-
quency w in the absence of control is

y(w) = ga(jw)d(jw) ®
(we are here assuming that » = O such that the con-
trol error e = y). The worst-case disturbance at this
frequency has magnitude 1, i.e., |d(jw)| = 1. Further-
more, at each frequency the output should be less than
1 in magnitude, i.e., we need control if |y(jw)| > 1.
Consequently, at frequencies where |gs(jw)| > 1 we
need control (feedforward or feedback) in order to
avoid that the output exceeds its allowed bound. Typ-
ically, |g4(jw)| is larger than 1 at low frequencies and
drops to zero at high frequencies. In this case the fre-
quency, wq, where |gq(jwg)| = 1 is a useful controlla-
bility measure: At frequencies lower than w; we need
control to reject the disturbance, and thus w4 provides
a minimum bandwidth requirement for control, and
we have the approximate requirement

wp > wy (10)

Example. Consider the disturbance model (recall
Fig.

B2 ga(e)= ke /(L rge) 1

where kg = 5 and 75 = 10 [min]. Scaling has been ap-
plied to g4, so this means that with no control, the ef-
fect of disturbances on the outputs at low frequencies
is kg = 5 times larger than what we allow. Thus con-
trol is required, and since g, crosses 1 at a frequency
wg = kq/7g = 0.5 rad/min, the minimum bandwidth
requirement for disturbance rejection using feedback
control is wp > 0.5 rad/min.

Remarks.

1. Scaling is critical for any controllability measure in-
volving disturbance rejection.
2. The following rule from the introduction is quanti-
fied:
o Control outputs that are not self-regulating
3. The rule can be quantified as follows: Control out-
puts y for which |{ga(jw)| > 1 at some frequency.

4. In words we have proved that “large disturbances
with a fast effect” require fast control. Specifically,
if the disturbance is increased, then to get acceptable
performance the bandwidth (speed of response) of the
control system has to be increased.

5. To be more specific assume that the disturbance is in-
creased by a factor «, and assume that at frequency
wgq the slope of |ga(jw)| on the Bode-plot is —g [rel-
ative change in |gq4|/relative change in w) (in the ex-
ample above # = 1). Then the bandwidth has to be
increased by a factor a3 to counteract the increased
disturbance.

6. Note that a delay in the disturbance model has no ef-
fect on the required bandwidth. On the other hand,
for feedforward control a delay will make control eas-
ier.



3.2 Input constraints

Consider the response to a “worst-case” sinusoidal
disturbance of magnitude 1 (|d(jw)| = 1) and assume
r = 0. From Eq.(7) the input magnitude needed for
perfect control (e = 0) is

|ul = |gal/lg] (12)
Strictly speaking, perfect control is not required, and
the input needed for “acceptable” control (Je| < 1)
is |u] = (lga| — 1)/]g]- The difference is small at
frequencies where |g4| is larger than 1, and the in-
put needed for perfect control will be used in the
following?.

Consider frequencies w < wy where control is
needed to reject disturbances. The requirement is that
|u(jw)| < 1 at each frequency. To fulfill this one must
require

lg(Gw)| > |9a(iw)|, Vw < wq (13)

Similarly, to be able to track a setpoint of magnitude
1 at each frequency (r(jw) = 1) one must require

lgGw)| > 1, Yw < w, (14)

where w, is the frequency up to which setpoint track-
ing is desired.
Remarks.

1. We have quantified the following rule from the intro-
duction:

o Select inputs that have large effects on the out-
puts.

2. The rule may be quantified as follows: In terms of
scaled variables we should have |g| > |g4| at fre-
quencies where |gq| > 1, and additionally we should
have |g| > 1 at frequencies where setpoint tracking
is desired.

3. This remark applies also to the previous subsection
on disturbances and bandwidth. If there are several
disturbances then they should be analyzed individu-
ally to identify the most difficult ones. This could
be the starting point for proposing design modifica-
tions. The worst-case combined effect of several dis-
turbances is obtained by simply adding together their
individual effects. For example, let the effect of dis-
turbance d. on y be gax. Then to consider the worst-
case combination one may simply replace |gq4| by
> |9ax] in the above expressions.

4. For unstable plants we need a minimum bandwidth p
to stabilize the system (see below). In this case we
need |g| > |ga| and |g| > 1 up to the frequency p.
Otherwise, the input will saturate, and the plant can
not be stabilized.

5. Since the input needed for perfect control is indepen-
dent of the control implementation, the bounds (13)
and (14) apply also to feedforward control.

3.3 Time delay and right half plane zeros

It is well-known that time delays and right half
plane (RHP) zeros limit the achievable speed of re-
sponse. We shall here quantify this statement in terms
of upper bounds on the allowed bandwidth. The

2For multivariable systems the differences between perfect and
acceptable control may be large if the plant is ill-conditioned.

derivation makes use of the complementary sensitivity
function T" which is the transfer function from setpoint
to output, i.e., y = T'r.

Consider an “ideal” controller which is integral
square error (ISE)-optimal for the case with step
changes in the setpoint (this controller is “ideal” in the
sense that it may not be realizable in practice because
the required inputs may be infinite). That is, the objec-
tive is to minimize | o°° |e(t)|2dt for the case where 7(t)
is a step, and with no penalty on the input u. In this
case the corresponding “ideal” complementary sensi-
tivity for a plant with RHP-zeros at z; and a time delay
6 is (see Morari and Zafiriou, 1989, p. 58)

— —S5tZ _gs

T= H Pl (15)
where Z; is the complex conjugate. Note that 7" is “all-
pass” since |T'(jw)| = 1 at all frequencies. Given
T we can compute the loop transfer function I =
T/(1 — T), and then obtain the bandwidth as the fre-
quency where |L(jw)| crosses 1.
Time delay. Consider a plant with a time delay, that
is, g(s) contains the term e~%*, The “ideal” controller
can “invert away” most of the dynamics in g(s), but it
can notremove this delay. Thus, even the “ideal” com-
plementary sensitivity function will contain the delay,

T=e? (16)
The loop transfer function corresponding to this ideal
response is L = e~ %? /(1 — e=%%). At loe frequencies,
wh < 1, we have e~?* & 1 — @5 (Taylor series expan-
sion of exponential) and L =~ %, and thus the low-
frequency asymptote of | L(jw)| crosses 1 at frequency
1/6 (the exact frequency where | L(jw)| crosses 1 is at
%% = 1.05/8), that s, this is the bandwidth frequency.
In practice, the “ideal” controller can not be realized,
and this will provide an upper bound on the bandwidth
and we have approximately

wp < 1/0 V)
Real RHP zero. Consider a plant with an inverse
response, that is, g(s) contains a term (—s + z) cor-
responding to a real RHP zero at z. Again, the
“ideal” controller can not remove the effect of this
RHP zero. Thus, even the “ideal” complementary sen-
sitivity function will contain the RHP-zero

—5+2z

= 18
T stz (18)

The loop transfer function corresponding to this ideal
response is L = (—s + z)/2s. The low-frequency
asymptote of |L(jw)| crosses 1 at frequency z/2. In
practice, the “ideal” controller can not be realized, and
this will provide an upper bound on the bandwidth and
we have approximately

z
- 1
(.«JB<2 (19)

Remarks on bounds (17) and (19).

1. The bounds are independent of scaling.
2. The bounds provide a quantification of the rules

e Control outputs that have favorable dynamic
and static characteristics, i.e., there should ex-
ist an input with a significant, direct and rapid
effect.



o Sclect inputs that rapidly effect the controlled
variables

3. To reject a disturbance we obtained the requirement
wp > wq. Combining this with (17) yields an upper
limit on the allowed delay, # < 1/wq. Similarly, we
getwg < z/2.

4. Tt will be possible to have a slightly higher bandwidth
than given by these two bounds, but only at the ex-
pense of a very oscillatory response (corresponding
to a large peak in 7" and S).

5. The above derivation applies when the delay or RHP
zero is in the plant itself (between the input  and the
output y). However, with feedback control a delay
or RHP zero in the measurement of y yields similar
limitations, and the above bounds still apply.

6. The bound (19) for RHP-zeros assumes that we want
to use » for “slow control” of control y for frequen-
cies lower than z/2. However, if this is not the case,
then one may instead use v for fast (transient) con-
trol of y for frequencies higher than z (with the sign
of the controller gain reversed compared to the “nor-
mal” case®). This assumes that we are not concerned
with the long-term behavior of the output®, or that we
have a “parallell” control system where another input
may be used for long-term control of the output. For
example, consider a case where g(s) contains a term g
in the numerator (i.e., a zero at the origin). In case the
steady-state gain is zero, and this input can be used
only for transient control of the output.

7. Zeros in the left half plane, corresponding to “over-
shoots” in the time response, do not present a funda-
mental limitation on control, but in practice a LHP-
zero located close to the origin may cause problems.
First, one may encounter problems with input con-
straints at low frequency (because the steady-state
gain is often low). Second, a simple controller can
probably not be used. Specifically, a simple PID con-
troller contains no poles that can be used to counteract
the effect of a LHP zero.

8. Similar bounds apply also to feedforward control.
This follows since the the ideal T in (15) corresponds
to the input « that minimized the ISE of the output ir-
respective of the control implementation.

3.4 Instability

Consider an unstable plant, that is, g(s) contains
aterm 1/(s — p) corresponding to a RHP pole at p.
Pure feedforward control can not be used, since even
with a feedforward controller with a RHP-zero at p
which exactly cancels the RHP-pole, we will have in-
stability because of disturbances entering between the
controller and the plant. Thus, the main “limitation”
caused by the instability is that feedback control is te-
quired for stabilization.

To quantify this consider a plant g(s) = 1/(s — p)
which is stabilized by a proportional controller, ¢(s) =

3To see that the controller gain must be reversed consider the
formulas in Morari and Zafiriou (1989, p. 63) where we see that the
sign of ¢ and thus of the feedback controller ¢ is zero if the desired
response time 7 is such that 7 = 1/2.

“4In process control we are usually concerned with the long-time
behavior and often require perfect control at steady-state, but there
are cases where the control objective is to reject transient distur-
bances and the steady-state does not matter. One example is the use
of a buffer tank to eliminate high-frequency flowrate disturbances.

K.. The closed-loop pole is at s = p — K, so we
need K, > p to stabilize the system. For K. > p the
asymptote of the loop transfer function |L| crosses 1
at frequency 1/K .. Combining these two pieces of in-
formation we conclude that the approximate minimum
bandwidth needed for stabilization is

wp >p (20)
Remarks.

1. In words we have found that there is a minimum
bandwidth p needed to stabilize the system (“we must
respond quicker than the time constant of the instabil-
ity”).

2. Fora plant with a time delay we obtained the require-
mentwg < 1/6. Combining this with (20) yields the
requirement p < 1/6 or equivalently § < 1/p.

3. Similarly, for a plant with a RHP-zero we must re-
quire p < z/2.

4. In theory, any linear rational plant (without time de-
lay) can be stabilized, provided the controller is al-
lowed to be unstable and contain RHP-zeros. Thus,
even a plant with a RHP-pole p located to the left of
a RHP-zero z (i.e. p > z) can be stabilized. This
seems to be inconsistent with the above result. It is
not, since these results required performance and not
only stability. Thus, the requirement p < z/2 is in-
deed needed for obtaining acceptable control perfor-
mance (at least at low frequencies).

3.5 Phaselag

Consider a minimum-phase process of the form

k k
96)= (A+ms)(1+m8) - [[ig(1+78) )

where n is two or larger. At high frequencies the gain
drops sharply with frequency (|g(jw)| &~ k/w™ [ 7)
and one may therefore, depending on the value of
k, encounter problems with input constraints. Other-
wise, the presence of high-order lags does not present
any fundamental problem.

However, in practice the large phase lag at high
frequencies (/g(jw) — —n90°) will usually pose a
problem independent of the value of &, because we
need the phase of L = ge to be less than —180° at
frequencies lower than the bandwidth w g to avoid in-
stability (assuming that g(s) is stable). Thus, zeros
in the controller (e.g., derivative action) are needed
to counteract the negative phase in the plant. Define
the frequency w130 as the frequency where the phase
lag in the process itself is —180°, With a simple PID
controller where the derivative action is active over
one decade the maximum phase lead is 54.9°. This is
also a reasonable value for the phase margin, and we
therefore conclude that with a simple PID controller
we must require approximately

Practical bound : wp < wy1s0 (22)

Balchen and Mumme (1989, p.17) state that a viola-
tion of this bound implies that “feedback control alone
will not be satisfactory”. This is not strictly correct,
as the bound does not pose a fundamental limitations
if a more complex controller is used. However, in



most practical cases the bound in (22) applies since
one wants to use simple controllers, and since the plant
model is not known sufficiently well to place zeros in
the controller to counteract the poles at high frequency.

4 NEUTRALIZATION PROCESS

The above controllability results are applied to a
neutralization process, and we find that more or less
heuristic design rules given in the literature follow di-
rectly. The key point is to consider disturbances and
scale the variables properly.

Consider a process in which an acid stream (pH=
—1) is neutralized by a base (pH=15) to get a final pH
of 7 & 1. Let the output be the excess of acid

Y=CH — COH (23)

and u= Flowyase, d= Flowesia (24)

The appropriately scaled model is

kq
1+7s
where 7 = V/q = 1000s. The output is extremely sen-
sitive to both v and d, and the frequency up to which
feedback is needed is

wa & kq/T=2500rad/s (26)

This requires a response time of 0.4 millisecond.
However, there is a delay § = 10s so the bandwidth
must be less than wp < 1/ = 0.1rad/s. From
the controllability analysis we therefore conclude that
acceptable control using a single tank is impossible.
Note that the fundamental reason is that the process
is extremely sensitive to disturbances. For feedback
control this is the real control problem, and not that the
required precision for the input u is so large (which is
the argument usually given in the literature, but which
only applies to feedforward control).

The only way to improve the controllability is by
design changes. The most obvious change in this case
is to do the neutralization in several steps. For n equal
tanks in series we have

y= (u—d); kg=0.25-10" (25)

kg

rror @)

ga(s) =
and we find wy = k;/ " /7 (using the asymptote). As-
sume that the delay is 10 s and that the total flow is 10
I/s. Then we find that the following designs have the
same controllability (with wy = 1/6 = 0.1 rad/s):

3 tanks of about 13500 1 each

4 tanks of about 4000 ] each

5 tanks of about 1900 1 each

6 tanks of about 1160 1 each

The minimum total volume is obtained with 16

tanks of about 251 1 each - giving 40200 ! total vol-
ume. However, taking into the account the additional
cost for extra equipment, piping, control equipment
(each tank must have a pH> controller), etc. , we would
probably select a design with 5 neutralization tanks for
this example.
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APPENDIX. Scaling procedure

Let the unscaled variables (in their original units) be
identified by a prime (‘). The model in terms of unscaled
variables is

y' =g ()’ +gy(s)d’ (28)

e'=y —7' 29)

where g'(s) and g/;(s) denote the unscaled (“original”) trans-
fer functions.

The normalized or scaled variables (in the interval -1 to

1) are obtained by normalizing each variable by its maxi-
mum allowed value.

dl _ TI ul _ eI _ yl
d=dmaa:’r_ maw’u= maa:’e_ maz’y— maz
T u [ €
Here (30)

o ™% -largest allowed changein u (typically because
of saturation constraints)

o d™%" - largest expected disturbance

o 7% - largest expected change in setpoint

e %7 - largest allowed control error for output
The maximum control error should typically be chosen by
thinking of the largest deviation one can allow as a function
of time, and not as the steady-state error. The same applies
to the other maximum errors.

Introducing (30) into (28) yields

Define the scaled transfer function models as
uma.r mazx

9@ =g'G)—s ga) =gad—z  GD
We then get the “new” model in terms of only scaled vari-

ables and scaled transfer functions
y = g(8)u + ga(s)d (32)

max
'

e=y——— (33)
In this paper we select 7% ="¢™%% suchthate =y — r.
In this paper we use the frequency domain, and use
the same maximum value at all frequencies, although one
may in some cases use frequency-dependent values. For
example, we assume that g4(s) is scaled such that at each
frequency the worst (largest) disturbance corresponds to
|[d(Gw)| = 1 (that is, in the time domain we consider a per-
sistent disturbance of magnitude 1, d(t) = 1 - sin(wt)).



