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Abstract Multivariable 5 x 5 distillation control provides opportuinities to improve the control performance as compared to
decentralized control. The main advantageis automatic constrainthandling which can not be realized by a fixed linear controller,
but requires a solution based on on-line optimization, for example, using a Model Predictive Control (MPC) strategy. In this
paper this approach is combined the with the H ., /u framework in order to get a robust design.
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Fig. 1: One-feed two-product distillation column.

1 Introduction

A one-feed two-product distillation column, as
shown in Fig.1, may be viewed as a 5 x 5 dynamic
system. This means that for a fixed design and a
given feed the column has 5 (dynamic) degrees of free-
dom, or in control terms, there are 5 manipulated in-
puts which may be used to control 5 controlled out-
puts. The controlled variables (outputs) are the lig-
uid holdup in reboiler and condenser (Mp, Mp, here
assumed on a molar basis), pressure in the condenser
(Pp), composition of light component in the top prod-
uct (distillate) (x p) and composition of light compo-
nent in the bottom product (bottoms) (xp). In this
paper all controlled outputs are measured, but mea-
surement error is included in the analysis. The ma-
nipulated variables (inputs) are the flows of reflux,
distillate and bottoms (L, D and B, here assumed
on a molar basis), and the heat duty in reboiler and
condenser (Q g, @Q¢)- The feed rate (F'), composition
(zr) and energy content (defined in terms of the bub-
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ble point pressure of a liquid feed, P5') all act as dis-
turbances.

In industry most columns are operated by single-
input-single-output (SISO) controllers and manual ad-
justments. Such a decentralized (multiloop) control
structure has the advantage of being easy to retune and
to understand. However, fixed pairing of outputs and
inputs may limit the performance of the overall sys-
tem, since the SISO controllers do not utilize informa-
tion from the other loops. Another disadvantage with
decentralized control is that the control structure may
have to be reconfigured and retuned if the system hits
some constraint.

From a theoretical point of view it is obvious that
the ‘optimal’ controller should use all available infor-
mation (measurements, plant model, expected model
uncertainty, expected disturbances, known future set-
point changes, known constraints, etc.) to manipulate
all 5 inputs in order to keep all 5 outputs at their op-
timal values (5 x S control) (Skogestad 1989). It is
also clear that constraint handling is a very important
issue for this ‘optimal’ control scheme, since, in gen-
eral, optimality is obtained at some constraint, for ex-
ample, maximum throughput.

A fundamental difficulty with any optimizing
scheme is to define an objective function which yields
a mathematically optimal solution in agreement with
what is actually desired. Another problem is to obtain
sufficiently certain information (measurements, plant
model, uncertainty bounds, etc.) to make the opti-
mization worthwhile.

The purpose of this paper is to evaluate the op-
portunities and difficulties with applying 5 x 5 con-
trol to a distillation column. The paper is organized
as follows. In section 2 we present a fairly rigorous
non-linear 5 x 5 model, which, contrary to most other
distillation models, does not assume constant pressure
(which would yield a4 x 4 model). In section 3 we per-
form a controllability study using a linearized model.
We also consider decentralized control which leads
to rather poor performance for the example column
in question. In section 4 we study the unconstrained
multivariable problem, using the 7 ,-norm to mea-
sure control performance. This norm makes it pos-
sible to specity desired responses in terms of closed-



Table 1: Column data
F —_

Feed (d): = 1.0 [kmol/min]
zr(l) = 0.5 [kmol/kmol]
ppet = 0.11 [MPa]

Controlled

outputs (y): zp(1) = 0.99 [kmol/kmol]
zp(l) = 0.01 [kmol/kmol]

Pp = 0.1 [MPa]
Mp = 32.1 [kmol]
Mp = 11.0 [kmol]
Manipulated
inputs (u): Ly = 2.725 [kmol/min]
Qr = 129.09 [MJ/min]
Qc = -129.02 [MJ/min]
D = 0.5 [kmol/min]
B = 0.5 [kmol/min]
Key hydraulic
parameters: TL ~ 2.4 [sec]
Sor = 93 [sec]
Kyropy = 05
Kygoy = 08

loop time constants, allowable steady state offset and
acceptable overshoot, and also allows us to address ro-
bustness using the structured singular value, i (Doyle
1982). In section 5 we consider model predictive con-
trol consider using a state observer based MPC algo-
rithm (Morari et al. 1991). We first attempt to tune
the unconstrained MPC controller to mimic the per-
formance of the robust M, /. controller by using -
analysis and the weights obtained from the H ., -case.
Of course, this may not be done directly as an MPC
controller behaves similar to an H5 controller, which is
not quite the same as an H o, -controller (the norms are
somewhat different). When the unconstrained perfor-
mance has been assessed, we use simulations to eval-
uate the performance for the constrained case.

2 5 x 5 Distillation Model

In this section we briefly present the distillation
column which is used as an example process in the rest
of the paper. The example column separates a binary
mixture into a top and a bottom product of relatively
high purity (99%). The column closely matches “col-
umn A” studied by Skogestad and Morari (1988), but
the model is much more detailed:

1. Pressure is not assumed constant.

2. Vapor holdup is included.

3. Liquid flow rate is computed from the Fran-
cis weir formula, including a correlation be-
tween vapor flow and froth density (Bennett et
al. 1983) such that a change in vapor flow will
have an initial effect on the liquid flow (the
“Ky”- or “A-effect”, Rademaker et al., 1975).

This yields a model with 3 states (differential
equations) per control volume (the molar holdup of
each component and the internal energy), resulting in
a total of 123 states for our column with 39 stages
plus total condenser and reboiler. The nonlinear model
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Fig. 2: Open loop step responses showing the effect
of the 5 inputs (u) on the 5 outputs (). 200 min sim-
ulation time.

has been implemented in the equation oriented simula-
tion package SPEEDUP. A UV-flash, with fixed over-
all composition, internal energy and total volume on
each tray, is used for equilibrium computation.

A summary of the column data are given in Table
1. Open-loop time responses are summarized in Fig-
ure 2. Note that we assume that the heating and cool-
ing duties are adjusted directly, that is, there is no self-
regulation and ()¢ and () g are not affected by changes
in pressure and temperature in the column. This may
be the case, for example, if heat is provided by con-
densation, and cooling is provided by boiling. This
assumption yields are very long time constant for the
open-loop presure response, and it may be estimated
to be about (M, + 4My)/F =74 min !.

3 Controllability analysis

In this section simple linear tools (e.g., Wolffet al.,
1992) are used to assess the controllability properties
of the plant, that is, to evaluate any inherent perfor-
mance limitations. The results from the controllability
analysis is also used to specify realistic requirements
for control performance and thereby reduce the need
for iterative adjustments of the performance require-
ments, i.e the ‘weights’ used to tune the controller.

This formula is derived from an overall heat balance assum-
ing the temperature change is the same throughout the column. The
factor 4 for the vapor holdup is a typical value, and is due to fact
that cpy > cpy and that some energy is needed for evaporiza-
tion when pressure increases. If we have self-regulation in the con-
denser,e.g, Qc = UA(T oot — Tp), thenwe get F+UA/cpy, in
the denominatorinstead of ', and the time constant is much smaller,
typically about 2 min.



Table 2: Maximum changes for scaling. (Units and
order for vectors are given in Table 1.)

Output error: Ymaz = [0.010.010.05030.10.]
Setpoints: Tmaz = [0.010.010.0250.50.5]
Inputs: Umer = [2.71301300.50.5]

Feed disturbances:  dax [0.15 0.1 0.025]

Scaling. The RGA and the poles and zeros are in-
dependent of scaling, but most other measures depend
critically on scaling. Therefore, all results and plots in
the following are in terms of scaled variables, i.e., all
outputs, setpoints, inputs and disturbances are scaled
by a given maximum value to stay within &1. The
maximum values used for scaling are summarized in
Table 2 2. For example, the scaled reflux (input) is
uy = ALr/Lr,,,,,where Ly, is the maximum al-
lowed change in reflux. From Table 2 Ly, = 2.7
kmol/min, and since this is equal to the nominal flow,
we get that u; = —1 corresponds to zero reflux.

Relative gain array (RGA). The steady state
RGA for the linearized 5 x 5 plant is:

| Iz Qr Qc D B
TD 36.76 —64.65 28.88 0.00 0.00
zg | —35.72 63.49 —=26.76 0.00 0.00
Pp —-0.04 2.16 —1.12 0.00 0.00
Mp 0.00 0.00 0.00 1.00 0.00
Mg 0.00 0.00 0.00 0.00 1.00

The conventional “LV-configuration”, which is
considered in this paper, corresponds to pairing on
the diagonal elements. The first observation from the
steady-state RGA is that the 4,4 and 5,5 elements are
1.0 while all other elements in columns 4 and 5 and
rows 4 and 5 are zero. Following the conventional
pairing rule for decentralized control we should pair
on elements close to 1, i.e. use D to control Mp and
B to control Mp.

The second observation is that the 3,3 element is
negative. From the results of Grosdidier et al. (1985)
we know that a decentralized control scheme with in-
tegral action paired on this negative RGA element
leads to 1) Overall system unstable, or 2) Pressure loop
unstable, or 3) Remaining system unstable if pressure
loop fails. In practice, this means that using Q)¢ to
control Pp and tuning for a stable pressure loop and a
stable overall system leads to instability if the pressure
loop fails, e.g. if () ¢ saturates. Thus, one must be very
careful to avoid saturation for the pressure control 3.

Another observation is that there is strong two-
way interactions in the upper left 3 x 3 subsystem,
while there is no two-way interaction in the rest of the
system. The physical explanation for the latter is that

2Note in particular that the performance requirement for the lev-
els are very lax, as the the allowed error is much larger than the al-
lowed setpoint change. This is reasonable since we have no strict
requirements for level control, but rather want to use variations in
level to avoid sudden changes in the product flows, D and B.

3Recall that we assume that the heat duties @ c and Q g may
be manipulated directly. If self regulation is included the negative
RGA-element will most likely disappear.
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Fig. 3: Relative Gain Array elements as function of
frequency (solid lines: diagonal elements).

manipulation of D affects Mp,, and B affects Mg, but
has almost no influence on the other outputs. Thus,
one of the main advantage with the LV-configuration
is that composition control is insensitive to the tuning
of the level loops.

The 3 x 3 interaction for the composition and pres-
sure subsystem could in principle be corrected for by
a multivariable confroller, for example a decoupler.
However, the large RGA elements signal high sen-
sitivity to diagonal input uncertainty (e.g., Skogestad
and Morari, 1987) and thereby prevent the use of a de-
coupler. Thus, we may already at this stage conclude
that it is essential to consider input uncertainty when
tuning a multivariable controller.

RHP-zeros.  The model has no multivariable
right half plane (RHP) zeros. However, there are RHP
zeros in several elements, as shown from the inverse
responses in Fig.2. Specifically, a change in cooling
duty (). yields an inverse response for all outputs, ex-
cept for the pressure. The main reason behind this is
that a change in (), yields an inverse response for the
vapor flow Vp entering the condenser: Initially, an in-
crease in cooling yield a fast increase in V. How-
ever, because pressure starts decreasing, the column
temperature also decreases, and the heat of vaporiza-
tion increases leading to a decease in Vp = )./ HV .
The inverse responses are very slow (zero location
213 = 0.0367; 223 = 0.0264; Z43 = 0.0204; 253 =
0.0580min "), so for single-loop control the cooling
duty should be used to control pressure, that is, pairing
on a negative RGA-element. Since there is no RHP
zero for the pressure (3,3-element) and since the 5 x 5
system has no RHP transmission zeros, the negative
RGA (3,3-element) must imply that there is a RHP
transmission zero in the remaining subsystem (Hovd
and Skogestad, 1992). Indeed, we find that the up-
per 2 x 2 system (from Ly and Qg to xp and )
has a RHP transmission zero at 0.0129 min~—! (the
lower 2 x 2 system is decoupled and does not influ-
ence this value). This RHP zero may cause instability
if the pressure control fails when using decentralized
control (see below).

Input saturation. Input saturation imposes a fun-
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Fig. 4: Closed Loop Disturbance Gain for decentral-
ized control.

damental limitation on the control performance. The
inputs required for perfect control are u = G~ !r +
G~1G4d. Thus, in terms of scaled variables the el-
ements in the matrices G~ and G~'G4 should be
less than 1 in the frequency range where control is
needed. For our example, with the allowed varia-
tions in the inputs as given by 4, in Table 2, we
find from frequency-dependent plots of the elements
of these matrices (not shown) that input saturation is
not a serious problem, even at relatively high frequen-
cies.

Decentralized control. From the frequency-
dependent RGA-plot in Fig.3 we note that the diag-
onal elements are fairly large (about 3) also in the
frequency-region important for control. Thus, we can
expect interactions at high frequencies. To evalu-
ate performance for setpoint changes the Performance
RGA, which is scaling dependent, is the appropriate
tool. This is not shown here, but one main finding is
that the worst setpoint change is for top composition,
Zps, and in particular that a strong interaction is ex-
pected for the pressure.

The closed-loop disturbance gains (CLDG) yield
the effect of disturbances under decentralized control.
For all outputs the worst disturbance is the feed rate
F', and the effect of this disturbance is given in Fig.4.
The bandwidth requirement for rejecting a 15% distur-
bance in F' is about 14 min for top composition (z p),
7 min for bottom composition (z g) and 6 min for top
pressure (Pp).

The controllability analysis for decentralized con-
trol indicates that zp , is the most difficult setpoint
to track and F' is the most difficult disturbance to re-
ject (for this system and with the scalings used here).
This has also been confirmed by simulations. All sim-
ulations presented in the paper will therefore show re-
sponses to changes of zp , (+0.01 i.e. +1 in scaled
variables, and F' (+30%).

The conclusion from the controllability analysis is
that decentralized control is difficult for this system,
and this is confirmed from the simulations in Fig.5.
The pressure control loop has a time constant of 3 min,
and the composition loops of about 15 min. (individu-

ally, i.e., without considering interactions). The level
loops, which have essentially no effect of the rest of
the system, were very loosely tuned (30 min).
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Fig. 5: Simulated decentralized control performance
for change in setpoint for zp at ¢ = 0 and 30% feed
disturbance at £ = 100 min. Upper plot: Outputs.
Lower plot: Inputs.

4 Hoo /e control

In this section we study the unconstrained control
problem using the H, /p framework. The H,-norm
is used because it is rather straightforward to specify
the desired responses in terms of ‘classical’ measures
such as closed-loop time constants, allowable steady
state offset and acceptable overshoot. For readers who
are not familar with the H ., -norm it suffices to say
thatl it is an upper bound on the frequency magnitude
of the closed-loop transfer function. As is seen in
this paper the results using this norm are often notl
too different from the conventional quadratic perfor-
mance criterion (denoted] the H,-norm in mathemati-
cal terms) for the output, but the weights for thel prob-
lem (the “knobs” or tuning parameters) may have to be
somewhat changed.I However, one significant advan-
tage with the H.-norm is that is allowsI worst-case
model uncertainty to be included explicitly (using the
structuredi singular value, denoted SSV or y).

The block diagram in Fig.6 defines the problem
studied in this section. K is the controller to be de-
signed. It may be a two-degree-of-freedom (TDF)
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Fig. 6: Block diagram for robust H ,,-problem.

controller with separated inputs r (setpoint) and y,,
(measured outputs) as in the figure, or with a one-
degree-of-freedom controller (ODF) with input r —
Ym.-

(G is the normalized (scaled) plant model with 8
inputs (5 manipulated inputs u and 3 unmeasured dis-
turbances d) and 5 outputs y. The scalings are given
in Table 2. W,, W4 and W,, are weight matrices for
setpoints r, disturbances d and measurement noise n,
respectively. W, and W, are weights on deviation
from desired setpoint, e, and manipulated inputs u, re-
spectively. The weighting matrices are diagonal with
elements [W,] = T'maa:/ymaa:; Wal = 1,[W,,] =
0.01,[W,]1=1and

1 T615+M.

[Wel(s) = Mrast A M=2,A=0.0001 (1)

with 7,; = [303030 60 60] min. For the compositions,
for which the setpoints  and controlled outputs y have
identical scalings, M is the maximum allowed peak of
the sensitivity function and 7.; is the required closed-
loop response time for that output. Note that A is very
small so that integral action is in practice required for
all outputs.

The model uncertainty is also represented within
the H o, -framework, that is, A; and A, are any di-
agonal matrices with H,-norm less than one. 10%
relative input gain uncertainty is allowed in each in-
put, that is, W; = 0.1 % Is. The output uncertainty has
the form w,(s) = (0/62% which allows for a delay of
approximately # = 1 min in each measurement.

We arrived at this problem formulation and these
weight through several steps, starting with a pure H o -
problem with only setpoints and no uncertainty and
ending up with the overall u-problem as defined by
Fig.6. We shall go through some of these steps be-
cause it yields some insight.

Setpoint tracking with no uncertainty. This cor-
responds to the case with d = 0,4, = 0,4, =
0 and yields a pure H ., -problem for which synthe-
sis software is readily available (Balas et.al 1991,
Chiang and Safonov, 1992). The optimal controller
yields a closed-loop H,-norm equal to 0.83. Since
thisf is less than 1 the performance requirement for
the worst case direction is achieved with some mar-
gin. The obtained controller uses rather high gains at
high frequencies; the ‘roll-off’ frequency is about 10
[rad/min]. This is typical for all the cases we stud-
ied and it may be avoided using a slightly sub-optimal
controller with higher H.,-norm. This sub-optimal
controller yields 1) a blend of ‘H, and H, optimal-
ity (which is desirable since our ultimate objective is

to use model predictive control which uses the H,-
norm), and 2) a "roll-off” at lower frequency resulting
in better robustness with respect to high frequency un-
certainty. For this case a sub-optimal controller with
‘Hoo-norm equal to 1.0 (rather than 0.83) gave approx-
imately the same low-frequency behavior as the opti-
mal controller, but a ‘roll-off” frequency of about 0.2
[rad/min].

The obtained controller is a ‘full’ 5 x 5 controller,
however, a more careful analysis of the controller re-
veals the following two interesting properties: 1) The
controller may be decomposed into a 3 x 3 controller
and two single-loop controllers for the levels, corre-
sponding to a multivariable LV-configuration. 2) The
remaining 3 x 3 controller is essentially a decoupler.
This may be seen by evaluating the condition number
of GK. These two statements are not true when distur-
bances and/or uncertainty is considered, as discussed
below.

Including model uncertainty. To analyze a sys-
tem with model uncertainty we “pull out” the A-
blocks from the block diagram and get instead of the
block diagram in Fig.6 a M A-structure where M con-
tains some additional inputs and outputs representing
the “disturbances” caused by the uncertainty. To an-
alyze such a system we must use the structured sin-
gular value, p, instead of the H ,,-norm. In this pa-
per we use as a tight approximation for y the scaled
Heo-norm, minp ||DM D~!||o,. The structure of the
D-scales depend on the model uncertainty. In our case
with diagonal uncertainty at the input and the output
we get D = diag{D;, D,, Is} where D; and D, are
diagonal matrices each with 5 parameters (which are
“adjusted” to represent the worst-case uncertainty).
The p-optimal controller is then obtained by D — K-
iteration (Doyle, 1983). Usually one only does a few
iterations such that a sub-optimal z-controller is ob-
tained.

Setpoint tracking with input uncertainty. To
consider the effect of model uncertainty we added in-
put uncertainty (i.e., no disturbances or output uncer-
tainty) and obtained an optimal controller by DK-
iteration. We found that this H., controller can be
reasonably well approximated by a decentralized L/D
V/B - configuration (compare with Eq.11 in Skoges-
tad and Morari, 1987). In this scheme D is computed
from Mp, B is computed from Mg, but Ly is com-
puted from both # p and Mp and V is computed from
both xg and Mpg. These results are consistent with
earlier findings which found that this configuration has
much lower RGA-values and is preferable when there
is input uncertainty.

With disturbances and input uncertainty. The
results in this case with respect to the controller struc-
ture are qualitatively the same as found above, and the
p-value for the overall problem was about 1.2. The re-
sponse of this controller is shown by the dotted lines
in Fig.7.

Final remarks. Some final remarks seem in or-
der. Most of these are in accordance with previous



findings.

1) With the scalings used for the plant, the optimal
input uncertainty D-scales are close to 1 for all cases.
The optimal D-scales for the output uncertainty are
about 5.

2) The weights were chosen to yield y & 14-0.2
for all problems. The reason is that interpretation of 4
is difficult if it is too different from 1.

3) A controller designed for setpoint changes only,
does not perform well if disturbances are considered.

4) A controller designed without considering input
uncertainty performs poorly with input uncertainty.

5) A controller designed without considering out-
put uncertainty performs well if the controller is
slightly H ., sub optimal.

5 Model Predictive 5 x 5 control

In this section we use a Model Predictive Con-
trol algorithm which involves constrained on-line op-
timization over a finite receding horizon to explicitly
address input constraints. There are numerous imple-
mentations of these schemes, and they differ mainly in
the way future outputs are predicted. The commonly
used DMC implementation makes the crude assump-
tion that all disturbances act as steps on the outputs,
but as shown by Lundstrom et al. (1991) this may lead
to poor results when both compositions are controlled.
Therefore, we use a state observer with the steady state
Kalman filter gain®. The tuning parameters for this
MPC controller are: H,, the output prediction horizon,
H the control horizon, A, output weight, A, input
weight and Ky the Kalman filter gain. The filter gain
is a function of the disturbance model and the distur-
bance and noise covariance matrices.

Resently Lee and Yo (1994) presented tuning rules
for obtaining robust MPC performance. For the case
of diagonal input uncertainty they penalize the input
moves using A, in order to obtain robustness. Apply-
ing this method to the distillation problem from Sko-
gestad et al (1988) gave ugrp = 2.23, whereas the op-
timal value is known to be less than 0.978 (Lundstrom
et. al (1991). This is not satisfactory, therefore, in this
paper we use the observer parameters to obtain robust-
ness with respect to input uncertainty.

Our main objective is to use the weights obtained
from the rigorous robustness analysis in the previous
section as a starting points for weight selection for the
MPC controller. There are several difficulties here.
First, the MPC scheme uses the ,-norm rather than
the Ho.-norm. Second, the MPC controlier is a fi-
nite horizon controller which contains additional tun-
ing parameters. Third, uncertainty can not be included
explicitly. In spite of these difficulties, we were able
to tune the MPC controller to mimic the p-controller
very closely. The final tuning of the response time was

4The MPC controller we use here is from the program “scmpc”
in the the MPC-toolbox for MATLAB (Morari et al. 1991) and is
due to Ricker and coworkers at the University of Washington.

done by adjusting a single parameter « in the output
weight to minimize g in the robustness problem de-
fined in the previous section. The input uncertainty
was represented as disturbances, while output uncer-
tainty was not included since the robustness analysis
found that this uncertainty was not crucial. The tuning
parameters are summarized next.

Optimization part of MPC controller. Sampling
time: 1 min, horizons H,=60and H, =3.

Ay =aWe; Ay = |Wy|+|W;D;| )
(where W, and W, are the H.,-weights and D; the
D-scale representing the input uncertainty).

Kalman filter part of MPC controller. Augmented

disturbance model to include model uncertainty

Ga = C(sI — A~'B =G diag{W; D", Wz} (3)
This leads to the Kalman filter gain K; = P;CTV ™!
where P is obtained by solving the Riccati equation
Py AT + APy — PyCTV~'CP; + BW BT =0 where
the covariance matrices for disturbance is W = I3 and
for noiseis V = W2.

For each value of « we obtained the frequency re-
sponse of the discrete controller and added hold ele-
ments at the inputs and outputs to the controller. Using
the same problem specification as in the previous sec-
tion we the minimized p and obtained a value u = 1.15
for & = 0.03. The linear robust performance was thus
in fact somewhat better than the sub-optimal controller
obtained by D K -iteration.

The solid lines in Fig.7 show the simulated per-
formance of the MPC controller when no constraints
are active, that is, when it behaves like a linear con-
troller. The response is seen to be very similar to the
p-optimal controller found previously (dotted lines).
The main difference is the speed of response of the
levels and the use of inputs D and B.

In Fig.8 is shown the MPC responses when Q)¢
is constrained to be at its nominal value. As we see,
the MPC controller preserves stability, and manages
to keep the levels and the pressure close to their de-
sired values. However, the composition control is rel-
atively poor since these can not be maintained at their
setpoints when one degree of freedom is lost.

Some final remarks.

1. In the simulations we used a 1 minute delay in
each measurement and used -20% input gain error in
all inputs except () g which has +20% uncertainty.’

2. The unconstrained simulation shows that the
controller performs well both for setpoint tracking and
disturbance rejection. No excessive input usage is re-
quired. The performance for the outputs in Fig.7 is
significantly better than for the decentralized scheme
shown in Fig.5.

3. Inthe constrained case the use of a MPC scheme
avoids the need for complicated logics including over-
rides and retuning. If the decentralized control scheme
from Section 3 is used, then the system goes unstable
when ()¢ isfixed. The multivariable u-controller does

5This input uncertainty was found to be the worst of all +£20%
combinations.
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Fig. 8: Simulated MPC performance with Q)¢ con-
stant.

not go unstable, but performs very poorly, and simu-
lations show that it goes unstable when Q) is fixed.

6 Conclusions

The results in this paper indicates that the main ad-
vantages with 5 x 5 distillation control are improved
disturbance detection by indirect use of the level and
pressure measurements, and explicit input constraint
handling. One difficulty is the tuning of the con-
troller, but in our example we were able to tune the
MPC scheme quite easily to get acceptable robustness.
The following procedure was used: 1) Define a robust
‘H »-problem with an optimal u-value close to 1. 2)
Use the weights and scaling found for this problem
to derive MPC tuning parameters. The critical uncer-
tainty, in this case at the inputs, is represented as fic-
ticious disturbances. 3) One adjustable parameter in
the MPC controller is used to minimize u. 4) Time
simulations are used to check the results and possible
adjust some weights. The resulting controller is not
‘optimal’ in any mathematical sense, but was found to
perform very well.
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