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Abstract

For plants where the directionality is independent of frequency, the singular value
decomposition (SVD) is used to decouple the system into nominally independent
subsystems of lower dimension. In Hz- and He-optimal control, the controller
synthesis can thereafter be performed for each of these subsystems independently,
and the resulting overall SVD controller will be optimal, In He-optimal control
the resnlting controller is also super-optimal. For robust control in terms of the
structured singular value, g, the use of the SVD decomposition can lead to signifi-
cant shinplifications in controller synthesis, but the optimality of the SVD controller
will depend on the structure of the uncertainty. The results are applied to the ill-
conditioned distillation case study of Skogestad et a. (1988), where it is shown that
an SVD controller is g-optimal for the case of unstructured input uncertainty.

1 Introduction
In this paper we study SVD controllers which we define to have the form
K(s) = VEg(s)UH (1)

Here X (s) is a diagonal matrix with real rational transfer functions on the
diagonal, and U and V are real unitary singular vector matrices which are
derived from a singular value decomposition (SVD) of the plant G(s). SVD
controllers have been studied previously by Hung and MacFarlane [13] and
Lau et al. [15]. In both these references the SVD structure is essentially used
to counteract interactions at one given frequency, as the problems consid-
ered are such that U and V change with frequency. However, in this paper
we consider some special problems for which U and V are constant at all
frequencies and can be chosen to be real, i.e.

G(s) = Usg(s)VH (2)

where U and V are constant real unitary (i.e. orthonormal) matrices, and
Y(s) is a diagonal matrix with real rational transfer functions on the diag-
onal.

Eq. (2) is the singular value decomposition of the plant G(s) with the
slight modification that the diagonal elements of Xg(s), which we refer to as
singular values, have phase, and without necessarily requiring that the singu-
lar values in Bg(s) are ordered according to their magnitudes. The diagonal
elements of T (s) will be denoted “subplants” og;(s). To simplify the pre-
sentation, we consider only SISO subplants here, but it is straightforward to
generalize the results presented here to cases where unitary transformations
decompose the plant into MIMO subplants, that is, £¢(s) is block-diagonal
(see [11, 12] for details).

The following two classes of plants are of special interest in applications:

A. Plants with scalar dynamics multiplied by a constant matrix.
Let

G(s) = k(s)A (3)

where ¢4 is a constant real matrix. One example is the simplified distillation
column model by Skogestad et al. (1988) studied in the example below. '

B. Circulant symmetric plants. Plants with symmetric circulant
transfer matrices are common in practice, and include a large number of
processes with some symmetric spatial arrangement. xamples include pa-
per machines with neglected edge effects [16, 22, dies for plastic films [19],
and multizone crystal growth furnaces [1]. In these case we can write G(s) =
RTA(s)R where R is a real matrix which is the same for all symmetric
circulant processes of a given dimension.

The objective of the paper is to show how controller design can be sim-
plified for plants which can be diagonalized by constant unitary matrices
as shown in Eq. (2). The basis for the simplification is that the Hz- and
Hoo-norms
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are invariant to unitary scalings. To make use of this property, we will need
that not only the plant, but the control problem as a whole (including the
weights) can be “diagonalized” by unitary matrices. For this special class of
problems we find that an SVD controller is optimal, and can be calculated
by performing controller synthesis on the n independent subsystems defined
by Zg(s) and Tk (s). We show that in the Hy, case the resulting controller
is super-optimal, as the norm is minimized in the worst direction for each of
these subsystems.

We also study conditions for which an SVD controller is g-optimal. We
show that this depends on the structure of both the perturbations (uncer-
tainty) and the weights. Again this leads to significant simplifications in
controller synthesis, though in this case the subsystems cannot always be
considered independently.

2 SVD Control Problem

A general control problem is depicted in Fig. 1 where we have z = M(s)w.
Here w represents some external input signals (e.g. disturbances, noise, refer-
ences), and z tepresents the external output signals (e.g. control error, input
signals) which we want to keep small. In this paper we consider control prob-
lems where M (s) may be written as a linear fractional transformation (LFT)
of the controller K(s) using the interconnection matrix N as shown in Fig. 1.
We now define the general class of SVD problems which are covered by the
results of this paper.

Definition 1 SVD problems. Consider planis which are diagonalized by
constant real unilary mairices U and V, that is, the plani s a n X n transfer
malriz of the form G(s) = UZg(s)VH. Consider a conirol problem where
the objective is to minimize some norm of

M(s) = Wo(s)Mo(s)Wi(s),

where My(s) depends on G(s) and K(s) only and Mo(s) may be writlen as an
LFT in terms of the controller K(s). The mairices Wo(s) = diag{Woi(s)}
and Wi(s) = diag{Wri(s)} are block-diagonal matrices with weighting ma-
trices along the diagonel with dimensions compatible with the dimensions of
the subblocks containing G(s) and K(s) in My(s). The weighting matrices
Woi(s) and Wri(s) should fulfill the following structural requiremens:

o Woi(s) = UoiZwo, (s)UH when Woi(s) premultipies G(s) in M(s);
o Woil(s) = UoiZwo, (s)VH when Woi(s) premultiplies K(s) in M(s);
o Wii(s) = VEw, . (s)VH when Wyi(s) postmultiplies G(s) in M(s);
o Wiri(s) = UEW“(S)V,}.-’ when Wii(s) postmultiplies K(s) in M(s);

where in all these cases the matrices Uo; and Vi are unitary and w,,(s)
and Zw,,(s) are diagonal, but may otherwise be chosen freely.

Remark 1. The main property of an SVD problem is that, after substi-
tuting G(s) = UZg(s)VH and K(s) = VEL(s)U¥ into My(s), the unitary
matrices U and V are cancelled by the weights when forming M(s).

Remark 2. If a weight W;(s) is a scalar transfer function times identity
matrix, then W;(s) always has the required structure.

Remark 3. The interconnection matrix N(s), obtained by expressing
M (s) as a linear fractional transformation of the controller K(s), will be
such that there exists block-diagonal unitary matrices

UW = diag{diag{Uo,-}, U}; VW = diag{diag{ V],'}, V} (4)

such that _
N(s) = UR N(s)Vw (5)

is a matrix consisting of diagonal subblocks (as illustrated in the upper part
of Fig. 2). The proper rearrangement of the inputs and outputs of N(s)
(i.e. permutations) yields a block diagonal matrix as illustrated in the bottom
of Fig. 2.

Remark 4. The unitary matrices Vi and Uw used to transform the
matrix N(s) into the matrix N(s) are independent of the controller K(s). No
assumption about the structure of the controller K(s) is therefore necessary
at this point.



2 H,- and H_-Optimal Control

In this section we consider Hy- and H-optimal control. The results also
apply to any other norm which is invariant under unitary transformations.

Motivating example. As an example consider the well-known mized
senstiivity problem for which

Wi (s)G(s)K(s)(I + G(s)K(s))~?

Wa(s)(I + G(s)K (s))! ()

M(s) = [
In terms of the notation in Definition 1,
T .

My = s i Wo =diag{W,Wy}; Wr=1

where S = (I + GK)™! is the sensitivity and T = GK(I + GK)™! is the
complementary sensitivity. To get an SVD problem, assume that the weights
are of the form .

Wi(s) = UiSw, (s)UH;  Wa(s) = UsSw, (s)UY (M

where UJ; and U, are unitary matrices but may otherwise be chosen freely.
For this example the interconnection matrix becomes

0 Wi (s)G(s)

Wa(s) —Wa(s)G(s) (8)
I —G(s)

N(s) =

Since the Ho- and H,-norms are unitary invariant, we can introduce
Uw = diag{U),Us,U} and Vi = diag{U, V}! to the output and input of
N(s), respectively, to give an equivelent optimal control problem with

) 0 Sw, (8)Ec(s)
N(s) =UEN(G)Vw = | Zu,(s) —Sw,(s)Za(s) 9)
I ~Zg(s)

The transformed interconnection matrix N(s) consists of diagonal subblocks
(sirnilar to the upper matrix in Fig. 2, with a; = 0 and ¢; = 1), and we may
rearrange (permute) the order of the inputs and outputs such that we get a
block-diagonal matrix (similar to the lower matrix in I'ig. 2). The optimal
controller f((s) must be diagonal. To see this, note that any off-diagonal
block of R’(s) will only affect the input to a subplant for whose output it
has no measurement. Therefore any off-diagonal block of the optimal K(s)
can be taken to be zero. If we refer to the optimal diagonal controller K as
Tk (s), then T (s) = UK*(s)V and the optimal controller K*(s) for the
original system N(s) will have the SVD structure of Eq. (1). To find Xk(s)
we must solve n subproblems of smaller dimension.

Theorem 1 (Hz- and Heo-Optimality) For SVD problems, an SVD con-
troller is Hy- or Hoo- optimal. This coniroller can be obtained by designing n
indcpendent SISO Ha- or He,-optimal conirollers, one for each of the SISO
subplants of the plant.

Proof:

1. Express the matrix whose Hj- or Heo-norm we want to minimize as
ar Linear Fractional Transformation (LFT) of the controller K(s) to
obtain the interconnection matrix N(s) (see Fig. 1).

2. Tor an SVD problem, form the matrix N(s) = U} N(s)Vw consisting
of diagonal blocks (see Remark 3 to Definition 1).

3. The control problem in terms of N(s) is the same as the original one.
This follows since the Hy- and Ho-norms are invariant to pre- and
postmultiplication with unitary matrices.

4. The structure of N(s) means that the controller synthesis problem is
decomposed into n independent subproblems, as can be seen by rear-
ranging the order of the inputs and the outputs of N(s) (see Fig. 2).
Mathematically, the rearrangement of inputs and outputs corresponds
to post- and premultiplication with permutation matrices. All permu-
tation matrices are unitary.

5. Any off-diagonal block of the controller K(s) will only affect the input
to a subplant for whose output it has no measurement. Therefore any
off-diagonal block of the optimal K(s) can be taken to be zero. To
recover the corresponding controller K (s) for the original problem, we
note that in general Nas(s) = G(s) so the unitary transformation which

1T see the connection with Viy in Eq.(4), note that Wy = T =UIUH so that V; = U.

was used above to diagonalize Nag(s) is given by Naa(s) = Se(s) =
UHG(s)V. If we refer to the optimal controller /(s) as Tk(¢), then
Sk (s) = UK(s)V and the optimal controller for the original system
is K(s) = VEg(s)UH, which is an SVD controller.

6. For diagonal K(s) the control problem in terms of N(s) consists of n
independent synthesis problems of lower dimension, and the controller
is obtained by minimizing the appropriate norm for each separate sub-
problem. This follows since the norm of a block-diagonal matrix is
minimized by minimizing each block (for the H2-norm each block must
be minimized, whereas for the He-norm we strictly need only minimize
the norm of the block with the largest norm). O

Remark 1. In general, the solution to the Ho, controller synthesis prob-
lem is non-unique [7], since many controllers will achieve the optimum He,
norm in the worst direction, while doing equally well or better in the other
directions. However, using the above approach to obtain the He-optimal
controller for each subproblem yields super-optimality [14, 10, 21], where the
H.,-norm is optimized not only in the worst direction, but in n directions.

Remark 2. In general we solve n independent synthesis subproblems of
low dimension. In some cases the problem is even further reduced in size
since some of these subproblems are identical. For example, for the case of
syminetric circulant systems we need only solve (n+1)/2 SISO problems for
odd n and n/2+ 1 problem for even n. Tor the case of parallel processes we
need only solve two independent subproblems (since n — 1 subproblems are
identical). For details see [12].

4 p-Optimal Control

In this section we shall generalize the Hoo-problem studied above to the
design of robust optimal controllers. This control problem results when we
introduce model uncertainty and want to minimize the H-norm for robust
performance, or alternatively want to optimize robust stability.

4.1 The Structured Singular Value

The structured singular value, g, is used as a means of taking uncertainty in
a feedback system explicitly into account. Consider

A = diag{A;}, || A [Jeo< 1 (10)

These subblocks A; may represent different sources of uncertainty in the,
system. The most common (and useful) structures for the subblocks A; are:

o Full block uncertainty: A; is a full matrix of the same dimension as the
plant G(s).

o Independent diagonal uncertainty: A; = diag{6;} is a diagonal matrix
with the same dimension as the plant G(s).

o Repeated diagonal uncertainty: A; = 61, i.e., a scalar multiplied with
an identity matrix of the same dimension as the plant G(s).

The structured singular value with respect to the uncertainty structure A is
defined as

0 if there does not exist A such that det(I + MA) =0

M)= -1 11
HM) [mAin{&(A) |[det(I+ MA) = 0}] otherwise (11)
Currently no simple computational method exists for exactly calculating p
in general, but a tight upper bound is

p(M) < igf&(DMD"l) (12)

where D is an invertible matrix with a structure such that D"1AD = A. For
example, D = dI if A is a full matrix, and D is a full matrix if A is repeated
scalar (A = 6I). For complex uncertainties the upper bound (12) is equal
to p for three or fewer full blocks [5], and usually within 1-2% for other cases
[2].

The standard D-K iteration procedure [6] attempts to find the DM D™1-
optimal controller. Although convergence to the global optimum is not guar-
anteed, D-K iteration appears to work well [6]. D-K iteration involves two
steps:

D Step: Find D(s) to minimize frequency-by-frequency the upper bound on
g in (12).

K Step: Scale the controller design problem with D(s), and design an Heo-
optimal controlier for the scaled design problem DM D™!.



4.%2 Robust SVD Problem

In Scction 3 we showed that an SVD controller was optimal for SVD problems
involving the Ha- or He-norm. Additional conditions on the uncertainty
weights have to be imposed to ensure that the structures of A and D remain
unchanged when M is scaled by unitary matrices.

Deofinition 2 Robust SVD Problems. Consider an SVD problem with
M(s) = Wo(s)Mo(s)Wi(s) as in Definition 1, and multiple sources of un-
cerfainty A = diag{A;}, as illustrated in Fig. 3. In addition to the require-
ments of Definition 1, the weights Wo; = Uo,'EWO.(S)V(yi(S) and Wy; =
UriSw,. (8)VF (s) related to each A; should fulfill the following:

1. Upi = Vy; for all repeated scalar A
2. Ugi = Vy; = I for all independent diagonal A

For a full A; no additional assumption is necessary.

Now we show tRat for this class of problems the interconnection matrix N
can be pre- and postmultiplied by block-diagonal unitary matrices to arrive at
an equivalent interconnection matrix N which consists of diagonal subblocks
(as in Fig. 2).

Lemma 1 Let N be defined as in Egs. (4) and (5). For p-optimalily
and DM D~ !-optimality of Robust SVD problems, the “diagonalized” con-
trol problem is equivalent 1o the original problem, in the sense that

min i (Fi(N, K)) = mins (F,(N, 1'()) (13)

. . _l — . - T o _1
mininf (DR(N, K)D™") = minipf (pR(&, YD ) (14)

where both p problems are with respect Lo the uncertainty in the original con-
trol problem, and the structure of the D matrices in both DM D '-problems
is compatible with this uncerlainty.

Proof: In the block diagram for the system, replace G with Uxa(s)VH,
and substitute in the weights Wy;(s) and Woi(s). Rearranging the block
diagram (see Fig. 3) gives N with diagonal subblocks (similar to the top
matrix in Tig. 2) with the subblocks of A given by A = V[I{A,-Uo,-. Note
that under the assumptions on Up; and Vi; in Definition 2

1. A; is full if and only if A; is full;
9. A, is repeated scalar if and only if A; repeated scalar;
3. A; is independent diagonal if and only if A; independent diagonal.

Thus in Fig. 3 the middle block diagram is equivalent to the rightmost block
diagram.

A similar argument holds with regard to the upper bound of p. Under
the assumptions on Uy; and Vo;, for each diagonal or full block A; the corre-
sponding D; and its inverse cornmute with Uy; and Vo;. For repeated scalar
blocks the Uy; and Vp; can be absorbed into the D;. O

Remark 1. Requirement 1 in Definition 2 holds regardless of the uncer-
tainty’s location when the plant is described by a normal transfer function
matrix (e.g., symmetric circulant plants).

Remark 2. Requirement 1 also always holds for multiplicative or inverse
multiplicative repeated scalar uncertainty with repeated scalar weights.

Remark 3. Requirement 2 puls strong restrictions on the chdice of
weights for independent. diagonal A;. This choice of weights will usually only
make sense for plants which have either U or V equal to identity (that is, the
inputs or outputs to the plant are naturally aligned in the direction of the
singular values). One example of a plant with V = I is the DV configuration
for composition control of distillation columns studied by Skogestad et al.
[20].

4.3 Optimality of SVD controller
Here we study the optimality if SVD-controllers for Robust SVD Problems.

Theorem 2 (y-Optimality) Consider a Robust SVD problem where the
objective is to minimize sup,, p(M). Assume that oll uncertainty blocks A;
are diagonal excepl possibly one full block. Then an SVD controller is opli-
mal. When all the uncertainty blocks are diagonal, then the p-optimal control
problem decouples into n independent SISO p-optimal control problems, one
for each of the SISO subplants of the plant.

Proof: If all uncertainty blocks A; are diagonal (including repeated scalar
uncertainty), then the system consists of independent subsystems. If one
uncertainty block is full, then the diagonal blocks can be absorbed into the

interconnection matrix to get a “reduced” N which still consist of diagonal
subblocks after absorbing the diagonal uncertainty blocks. Whatever the
values of the diagonal blocks, we know from Thm. 1 that an SVD controller
is optimal for this “reduced” control problem. Thus an SVD controller is
optimal for the original 4 problem. O

Theorem 3 (DM D™1-Optimality) Consider a Robust SVD control prob-
lem where the objective is to minimize sup, minp || DMD™! ||o. Assume
that all uncertainly blocks A; are full blocks. Then an SVD controller is
optimal.

Furthermore, for D-K ileration the K step (with fized D) consists of n
independent SISO Ho,-optimal control problems, one for each of the SISO
subplants of the plant.

Proof: If all uncertainty blocks A; are full, then all D; are of the form
D; = d;I;. Since the structure of the interconnection matrix is maintained
for all values of D(s), Theorem 1 can be applied to give the result. 0O
The above theorems complement each other in that Theorem 2 handles
one form of uncertainty (diagonal) and Theorem 3 handles another (full).

By assuming p is equal to its upper bound we can handle both types of
uncertainty.

Theorem 4 (y- and DM D~!-Optimality) Consider a Robust SVD con-
trol problem, and assume that yt is equal lo its upper bound (12). Then

1. An SVD conlroller is p-optimal.

2. For the D-K-ileration procedure the K step consisis of n independent

SIS0 H o -oplimal conirol problems, one for each of the SISO subplants
of the plant.

3. For repeated diagonal uncertainty: D; can be taken to be diagonal rather
than full in the D step.

Proof:

1. All diagonal blocks (repeated or independent) can be absorbed into the
interconnection matrix N without changing its structure. By Thm. 3
an SVD controller is optimal for this “reduced” control problem for all
values of the diagonal blocks. Thus an SVD controller is optimal for
the original g problem.

2. For independent diagonal and full block A;, D; is diagonal and cannot
induce interaction between individual subproblems. This also holds for
D; corresponding to repeated scalar A;. To see this, again consider the
“reduced” control problem. If the D corresponding to the repeated
scalar blocks introduced interaction between subproblems, they would
effectively allow for a larger class of uncertainty than the original un-
certainty description. ~

3. Scalings D; which do not cause interactions between subproblems are
parametrized by unitary times diagonal matrices. The unitary matrices
do not affect the value of the Ho,-norm, so can be ignored. D

Remark 1. The assumption that g is equal to its upper bound is not
restrictive. This equality always holds when all uncertainty subblocks A; are
full and three or less, or when one block is full and one is repeated scalar,
and has been found to approximately hold (within 1-2%) for all problems of
practical interest [2].

Remark 2. Theorem 4 includes another interesting structural condition:
for interconnection matrices with diagonal subblocks all repeated diagonal
uncertainty can be treated as independent diagonal uncertainty (even in the
presence of full blocks).

D-K Iteration: Reduction of Computational Effort

The above results can be used to reduce the computational effort involved
in the K step of the D-K iteration procedure in two ways. First, instead
of solving one large Hoo-synthesis problem, one may solve n smaller Hoo-
synthesis subproblems. Second, some of these n subproblems may be repeated
(identical), for example, this occurs for the important case when both the
plant and weights are symmetric circulant (or parallel).

In general, the computational effort is not reduced in the D step where
the upper bound to jt is computed, since for the case of full block uncertainty
we have D = dI and we would have to restrict d to be the same for all
subproblems. However, all repeated subproblems need only be considered
once in finding the D; (see item 3 in Theorem 4). Thus repeated subproblems
can be deleted before starting the D-K iteration design procedure, and for
a large number of subsystems the size of the D-K iteration and p-analysis
problems can be reduced dramatically.



When all uncertainty blocks are diagonal except possibly one full block,
and the weights for the dingrnal blocks satisly Definition 2 (which is quite
restrictive, recall Remark 3 [ollowing Definition 2), the subproblems can be
considered independently for the D step, since the D; corresponding to the
full block can be normalized to be the identity matrix.

Performing D-K iteration on the transformed system will converge faster
and is numerically better conditioned than on the original system. This is
both because the Hy, subproblems are smaller than the original problem,
and because the algorithm will be initialized with a controller which has the
correct (optimal) directionality. This will be illustrated in the examples in
Section 5.

5 Example: Distillation Column

Consider the robust controller design problem for the simplified distillation
column example studied by Skogestad et al. [20], which under certain as-
sumptions regarding the structure of the uncertainty can be shown to be a
Robust SVD problem according to Definition 2. The nominal plant for this
problem is of the form G(s) = k(s)A given in Eq. (3):

G(s)

1 [ 0.878 as)

B —0.864
T s+ 1| 1.082

—1.096

The plant has a condition number of 141.7 at all frequencies {20]. Although
not a good model of a real distillation column, this model is an excellent
example for demonstrating the problems with ill-conditioned plants and has
been studied by many other researchers. For example, in a somewhat altered
form this robust controller design problem has been considered by Yaniv and
Barlev [23], and was used as a benchmark for the 1991 CDC [3].

For this problem, the relative magnitude of the uncertainty in each of the
manipulated variables is given by wy(s) = 0.2(5s+1)/(0.5s + 1). The robust
performance specification is that {|waSy|le < 1 where wy(s) = 0.5(10s +
1)/10s and S,, is the worst sensitivity function possible with the given bounds
on the uncertainty in the manipulated variables. The resulting g condition
for Robust Performance (RP) becomes:

RP <= pM)<l Ww (16)

~W1KSG WiKS ,
M= . A= diag{A;, A 17
WaSG  —WaS lag{A1, A2} (D

where Aq is a diagonal 2 x 2 perturbation block, Ag is a full 2 x 2 perturbation
block, and Wy = w1, and Wy = wal,. Note that in this case with only three
perturbation blocks the upper bound in terms of the scaled singular value is
equal to the structured singular value. As stated this is not a Robust SVD
Problem according to Definition 2. However, if we allow unstructured (full
block) input uncertainty, i.w. Aj is a full rather than diagonal matrix, then
this is a Robust SVD Problem, and we know from Theorem 4 that an SVD
controller K (s) = VEg(s)U¥ will be p-optimal.

Controller Design

Skogestad et al. [20] used DK-iteration with some early Hoo-software to design
a controller with 6 states giving a value of 4 = 1.067. Lundstrém et al. [18]
assumed full block input uncertainty (for numerical convenience) and used
therlatest state-space Ho, software [2] to design a p-optimal controller with
29 states and with 2 = 0.978. As just noted we know that the u-optimal
controller for this case with full block input uncertainty should be an SVD
controller. Indeed, Engstad [8] found for Lundstrom’s [18] controller that the
diagonal elements in K(s) = VH K(s)U were more than 107 times larger than
the off-diagonal elements, and removing these off-diagonal elements did not
affect the value of j¢, which suggests that Lundstrém’s controller is nearly
j-optimal. We have made attempts to improve on the design which gave
¢ = 0.978 by considering diagonal rather than full block input uncertainty.

Somewhat surprisingly, this has not proved successful. Actually, the value
of s with Lundstrom’s [18] conttoller is not reduced by restricting the input
uncertainty to be diagonal. Thus, it seems that in this special case the
worsl-case uncertainty A; occurs when A; is diagonal. Though we have
no proof of this, it does seem reasonable since the input singular vector
matrix V corresponding to G in Eq. (15) has large off-diagonal terms, which
allows independent input uncertainty to cause strong interactions between
the nominal subplants Eg;(s).

Design of SVD controller. The optimal SVD controller may be ob-
tained by designing two SISO-controllers, ox1(s) and ox2(s), using DK-
iteration which involves sulving two independent 2 x 2 H-problems in the
K-step and considering the full 4 x 4 g-problem in the D-step to obtain the
scaling D = diag{d(s)Is, 2} .

Alternatively, one may design directly a low-order SVD-controller using
“u-K iteration”, that is, by optimizing the parameters in a given controller to
minimize p. This approach only requires software to compute the structured
singular value, as the D-K iteration involving He.-norm minimization is not
used. Freudenberg [9] used this approach. He assumed the controller to be
on the SVD form and obtained two SISO controller with 2+43=5 states giving
it = 1.054, and he also used this problem as an example in [4]. Lin [17] used
the same approach and obtained two SISO controllers with 7+4=11 states
giving p¢ = 1.038 (observed from plot).

Engstad [8] also used the same approach, but he restricted the input
uncertainty to be diagonal rather than full, and used PID controllers of the
form
14+ 7158 14+171pjs

m1j8 1+ 0.17p;s

oxj = Kj (18)
Each controller has two states and three adjustable parameters. By numerical
optimization? he obtained a value of g = 1.036 which is only slightly higher
than the optimal value of 0.978, in spite of the fact that the overall controller
only has 4 states. The optimal PID parameters for the SVD controller were:
Ky =383, 11 = 3.21, rpy = 0.50, K2 = 5.65, 712 = 1.24, 7p3 = 79.2.

6 Discussion

The results of this paper are easily generalized to cases with multivariable,
possibly nonsquare subplants.

The structure of an SVD controller may be useful also for problems that
do not fit into the problem definition in this paper. The reason is that we con-
vert a multivariable design problem into designing n single-loop controllers.
The results of this paper (see above) imply that at a fixed frequency the SVD
structure is optimal (with some restrictions on the structures of the perturba-
tion blocks given in Definition 2). This provides a theoretical justification for
a design method based on obtaining an SVD of the plant at some important
frequency, for example, the closed loop bandwidth, and use this as a basis for
design a realizable controller. Indeed this has been suggested by several au-
thors 15, 13]. One problem is that we need to obtain real approximations of
the singular vector matrices U and V. The ALIGN algorithm of MacFarlane
[13] deals with this particular issue.

D-K iteration is known for resulting in controllers with many states. We
have shown that the SVD controller is the optimal structure for a certain class
of problems, and this may be used for designing controllers with a low number
of states. Using V as a pre-compensator and UH as a post-compensator, we
are left with n SISO controllers to design for a plant of dimension nx n. This
design problem is similar to the conventional decentralized control problem.

The SVD controller structure can be used for obtaining a simple lower
bound on the achievable value for g The frequency response of the p in-
terconnection matrix can be decomposed frequency-by-frequency. At each
frequency the plant can be decomposed into its singular value decomposi-
tion G = USgVH where in this case the matrices may be complex. This
frequency-by-frequency approach will not yield a realizable controller, since
issues such as causality and phase-gain relationships are ignored. Instead,
the resulting value for p will be a lower bound on the structured singular
value obtainable by any realizable controller, and may therefore be regarded
as a controllability meagure.

7 Conclusions

For SVD Problems a plant of dimension n x n can be decomposed into n SISO
subplants which may be considered independently when designing Hz- or
Hoo-optimal controller and when performing the K step (controller synthesis)
in D-K iteration. When minimizing the Ho-norm the resulting controller is
super optimal, as the norm is minimized in the worst direction for each of
the n subproblems.
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Figure 1: Expressing M(s) as a linear fractional transformation of the con-
troller K(s).
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Figure 2: Top: N for a case with 3 x 2 main blocks. Bottom: N permuted
to have the n independent synthesis subproblems along the main diagonal.

From the bottom matrix it is apparent that the controller design problem
consists of n independent subproblems.
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Figure 3: Equivalent representations of system M with perturbation A.



