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Abstract

Several researchers have considered the analysis
of control system reliability for systems without
plant/model mismatch [1, 2, 3,4, 5,6, 7, 8, 9]. In
this manuscript we review several of the strongest
and/or most recent of these proposed analysis
tools, and show that the results are either conser-
vative, computationally expensive, or incorrect.
We then develop necessary and sufficient condi-
tions for many forms of reliability defined in the
literature, and since the model is always an imper-
fect representation for the true process, we extend
the resulting analysis tools to uncertain systems.

1. Mathematical Background

Norm-bounded real or complex perturbations are
collected in the block-diagonal matrix Ay =
diag {A;}, as in Fig. 1. Frequency domain per-
formance specifications can be treated as com-
plex uncertainty (the block Ap). The generalized
plant G in Fig. 1 is determined by the nominal
model P, the size and nature of the uncertainty,
and the performance specifications. The general-
ized plant G and the controller K can be com-
bined to get the overall system matrix M. If we
partition G to be compatible with K, then M
is given by the linear fractional transformation
M = F{(G, I() =G+ Glg.K(I — GQQI{)_]'GZ]_.
The LFT Fi(G, K) is well-defined if and only if
the inverse of I — (G95K exists.

The structured singular value p [10, 11, 12] pro-
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Figure 1: Robust performance and the G— K — A
and M — A block structures.

vides the necessary and sufficient test for robust-
ness to linear time invariant perturbations

system robustness <= p < 1,Vw (1)

where p is a function of M (which depends on
G and K) and the structure of the uncertainty
A. For example, the test for robust stabilily is
tay (M) < 1 and the test for robust perfor-
manceis pa(M) < 1. Upper and lower bounds for
jt can be calculated in polynomial time and are
usually close [13, 14]. The pitfalls in attempting
to calculate p exactly in the presence of real As
are discussed by Braatz et al. [15]. Similar neces-
sary and sufficient tests exist for systems with ar-
bitrary nonlinear (NL) [16], arbitrarily fast linear
time varying (FLTV) [16], or arbitrarily slow lin-
ear time varying perturbations (SLTV) [17]. The
necessary and sufficient tests for systems with NL,
FLTV, or SLTV perturbations can be calculated
in polynomial time.

2. Definitions of Reliability

Several strong forms of reliability to failure of ac-
tuators or sensors are defined in the open litera-
ture for systems without plant/model mismatch.



Below we review these forms of reliability and ex-
tend these definitions to uncertain systems. We
will primarily discuss reliability to actuator faults
or failures, since very similar definitions/results
hold for other process equipment.

Integrity is defined as follows [18, 1, 2, 6, 7, 19].

Definition 2.1 The closed loop system demon-
strates integrity if K(s) = EK(s) stabilizes P(s)
for all E € & o where

&1j0 = {diag(e;) | e € {0,1},i=1,...,n}. (2)

A closed loop system which demonstrates in-
tegrity remains stable as subsystem controllers
are arbitrarily brought in and out of service. For
a system to demounstrate integrity, the plant P(s)
must be stable. To have sensor or actuator failure
tolerance when the controlleris unstable, the fail-
ure must be recognized and the affected control
loop taken out of service. It is clear that whether
a system demonstrates integrity can be tested
through 2" stability (eigenvalue) determinations.
The following definition extends integrity to un-
certain systems.

Definition 2.2 The closed loop system demon-
strates robust integrity if the system is stable
with K(s) = EK(s) for all E € & o and all
A[leo < 1.

An uncertain system demonstrates robust in-
tegrity if it remains stabilized for any plant given
by the uncertainty description, as subsystem con-
trollers are arbitrarily brought in and out of ser-
vice. For a system to demonstrate robust in-
tegrity, the plant must be stable under all allowed
perturbations. To have failure tolerance when the
controller is unstable, the failure must be rec-
ognized and the affected control loop taken out
of service. Note that robust integrity implies in-
tegrity. It is clear that whether a system demon-
strates robust integrity can be tested through 2"
nominal stability (eigenvalue) and 2" robust sta-
bility (p) calculations.

A very strong notion of reliability was defined
by Campo and Morari [1] for decentralized con-
trollers. The requirement is that the nominal
closed loop system remains stable under arbitrary
independent detuning of the controller gains. For
decentralized control systems, this is equivalent

to arbitrary detuning of the actuator/sensor gains
to zero. Having stability with detuning is useful
because it allows the operators to safely vary the
closed loop speed of response depending on pro-
cess operating conditions.

Definition 2.3 The closed loop system is decen-
tralized unconditionally stable (DUS) if K(s) =
EK(s) stabilizes P(s) for all E € Ep where

Ep = {diag(e;) | €, €(0,1),e=1,...,n}. (3)

The closed loop system will not be DUS if either
the plant P(s) or controller K(s) have poles in the
open right half plane. To see this, let us consider
the multivariable root locus [20] with equal de-
tuning, ¢; = €. For small ¢, the closed loop poles
approach the open loop poles. Since the closed
loop poles are a continuous function of the con-
troller gains [20], if any of the open loop poles are
in the LHP then some of the closed loop poles will
be unstable for sufficiently small €. The following
is the generalization to uncertain systems.

Definition 2.4 The closed loop system is robust
decentralized unconditionally stable (RDUS) if
the system is stable with K(s) = EK(s) for all
E€ép and all ||Al|co < 1.

By a similar argument as was used for DUS,
the closed loop system will not by RDUS if any
poles of the controller K(s) or any plant given by
the uncertainty description are in the open right
half plane. For open loop unstable controllers or
plants, some minimum amount of feedback is re-
quired for closed loop stability.

Actually, the definition of DUS given by Campo
and Morari [1] requires that the closed loop sys-
tem be stable for all ¢ € [0,1]—we will refer
to this version as closed decentralized uncondi-
tional stability (CDUS). Closed decentralized ro-
bust unconditional stability (CRDUS) is defined
similarly.

3. Review of Previous Research

Here we show that much of the existing tools for
analyzing controller reliability are conservative,
computationally expensive, or incorrect.



3.1. Integrity

Most research on the analyzing reliability consid-
ers only system integrity [18, 2, 3, 5, 6, 7, 19, 9].
Fujita and Shimemura [3] state that a necessary
and sufficient condition for integrity with sta-
ble controllers is that all the principal minors of
I+PK are minimum phase. This condition is the-
oretically interesting, because this test does not
require the calculation of matrix inverses. How-
ever, since there are 2" principal minors, the cal-
culation required by this test grows exponentially
as a function of the plant dimension.

Fujita and Shimemura [3] also provide a sufficient
condition for integrity when the controller is sta-
ble, in terms of the generalized diagonal domi-
nance of I + P(jw)K (jw). Applying the Perron-
Frobenius Thm. [21] gives the following lemma
(for details, see Delich [2]).

Lemma 3.1 Assume P(s) and K(s) are stable,
the diagonal elements of I + P(s)K(s) are min-
imum phase, and P(s) is irreducible. Then the
closed loop system demonstrates integrity if

(a6 (3G) 7)) <2ve. @

where A = I + PK, A refers to the matriz with
all offdiagonal elements of A replaced with zero,
|B| refers to the matriz with each element of B
replaced with its magnitude, and p is the spectral
radius.

The above assumption that P is irreducible can
be removed with some added complexity in the
theorem statement [5]. The spectral radius is
readily computable with polynomial growth (~
n3) as a function of the plant dimension. How-
ever, the lemma is conservative as shown by the
closed loop system with the following plant and
controller:

) é78 0 ]
. 1 ) (5)
0 T 0.014

K(s) = 755+ 1 [

As +0.01

1 —0.878  0.014 ©)
T Ths+ 1| —1.082 —0.014 |

The inequality (4) is not satisfied for this system
(p = 2.1 > 2), illustrating that the sufficient test
can be conservative, even for 2 x 2 systems.

3.2. Robust Integrity
Robust integrity seems to have only been consid-
ered by Laughlin et al. [22], which provide compu-

tationally simple tests which are useful for cross-
directional processes (e.g. paper machines, adhe-
sive coaters [23], polymer extruders [24]). Their
results do not extend to general plants; hence we
will not discuss these tests further here.

3.3. Decentralized Unconditional Stability
Morari [8] considers stability with detuning of all
loops simultaneously. This leads to a number of
computationally simple necessary conditions for
DUS, which are surveyed in the monograph by
Morari and Zafiriou [25]. However, all of these
conditions can be conservative for testing DUS,
as 1llustrated by numerous examples in the mono-
graph.

3.4. CDUS

Nwokah et al. have considered conditions under
which a system with controller K(s) = (1/s)I is
CDUS. They claim (Thm. 3 of [26, 27], Thm. 1
of [28], Thm. 5.1 of [29], and Thm. 7 of [30]) that
a necessary condition for K(s) = (1/s)I to pro-
vide CDUS is that P(0) is all gain positive sta-
ble. A matrix P is all gain positive stable if P,
P~1, and all their corresponding principal sub-
matrices are D-stable. A matrix P is D-stable if
Re{\;(PD)} > 0, Vi, VD > 0, where D is real

and diagonal.

The following plant (from [1]) illustrates that the
condition by Nwokah et al. is nol necessary:

10 2
Pe)=| 77 1 7 |- (7)
0 4 1

It can be shown via the Routh-Hurwitz stability
criteria that the closed loop system for the above
plant is stable for K(s) = (1/s)! and remains
stable with arbitrary detuning of the SISO loop
gains. The cigenvalues of P(0) are {+iv/3,3}, so
P(0) is not D-stable, and P(0) is not all gain posi-
tive stable. We note here without details that the
above plant also shows that all theorems in the
above papers by Nwokah et al. regarding decen-
tralized integral controllability are also not neces-
sary.

3.5. RDUS and RCDUS
It seems that these forms of integrity have not
been considered in the open literature.



4. Modeling Faults using p

Braatz [31] describes in some detail the modeling
of faults with either uncertainty and/or perfor-
mance descriptions. These can be included with
requirements on the stability or performance dur-
ing faulty operation to give a p condition. This
4 condition provides a test for system reliability.
In what follows we will illustrate how to model
actuator gain variation for two cases: 1) without
additional uncertainty, and 2) with additional un-
certainty.

The nominal controller is defined to be K(s).
Then the controller with gain variation can be de-
scribed by K(s) = EK(s), where E = diag{¢;},
and €100 < € < € nigh. We can write the set
of £ described by the gain variation as F =
E + W, A", where F = diag{¢}, W = diag{w;},

& = €i high ;— €5 low wp = €i,hz'gh2— € low . (8)
and A" is a diagonal A-block with real indepen-
dent uncertainties. Standard block diagram ma-
nipulations are used to arrive at the G — K — A
block structure in Fig. 1, where A = A" and

0 I

GE) =| _pywm -ps)E |- O

The corresponding M matrix is
M(s) = —(I+ K(s)P(s)E) ' K(s)P(s)W,. (10)

Stability is obtained for all variations in gain if
and only if par (M (jw)) < 1, Yw.

If we are interested in maintaining stability or
performance with respect to both actuator gain
variation and other perturbations, then the ex-
pressions for M and G are somewhat more com-
plicated. Let the system without gain variation
be described by G/(s) with uncertainty A. Then
the G and A which includes gain variation are

G GuW, GnE
G= 0 0 I
G211 GaaW, GaE
(11)
The corresponding M matrix is
M [ G114+ G12EK(I — G EK) 16y
- K(I - GzzEK)_lGQ]_
Gra(I + EK(I — G EK) ™ Gon) W, (1)
K(I — GoaEK)™1GaaW, '

, A = diag{A, A"}.

5. Conditions for Reliability

The following are necessary and sufficient condi-
tions for DUS and RDUS, which can be tested
approximately in polynomial time as a function
of the plant dimension.

Theorem 5.1 (DUS) Assume K(s) is decen-
tralized. Define X 1o be a diagonal A-block with
independent real uncertainties. Then the closed
loop system is DUS if and only if M(s) is inter-
nally stable and

:uAr(M(Jw)) <1, Vw, (13)

where M(s) = —L (I+ LK (s)P(s)) " K(s)P(s).

Proof: Let £ =W, = (1/2)I in (10). QED.

Theorem 5.2 (RDUS) Assume K(s) is decen-
tralized, and that the uncertain system is de-
scribed by G(s) and A. Define A" to be a diag-
onal A-block with independent real uncertainiies.
Then the closed loop system ts RDUS if and only
if M(s) is internally stable and

pa(M(jw)) <1, Vw, (14)
where A = diag{A, A"}, and

M(s) = G+ %GAIZI{({ — %Gzz{f)_lézl
I{(I — %Gzz]{)_1G21

L1G1a(I 4 LK(I — 1G22 K)"1Ga)
1 LA -1 A . (15)
LK(I - 3G90 K)~1Glag

Proof: Let £ =W, = (1/2)I in (12). QED.

CDUS When K(s) is stable, a necessary and
sufficient test for CDUS is given by Thm. 5.1 ex-
cept with the condition p < 1 replacing ¢ < 1 in
(13). When K(s) is integral, g in (13) will equal
1 at w = 0, because setting the proportional gain
to zero in a controller with integral action will re-
move the feedback around the integrator, which
will then be a limit of instability. Thus g < 1 in
(13) will be a tight necessary condition for CDUS,
but not sufficient. The following simple example
shows that p < 1 is not sufficient for CDUS:

P(s) = — (i _11>,K(s):§1'. (16)



It can be shown by using the Routh criterion that
the above system is DUS and g < 1. Loop #1
is not stable (for any €;) when Loop #2 is open
(due to a pole-zero cancellation at s = 0), and
so the system does not possess integrity and is
not CDUS. The following more involved example

illustrates that a system can possess integrity and
be DUS without being CDUS.

_ L yeelo 1) _!
P(S)_s+4< 1-I- ) ,K(s)_SI.

(17)
where v = (404/55 — 256)/9 and o = (62 —
8v/55)/9. It can be shown via the Routh criterion
that the above system is DUS and has integrity,
and g < 1. Tt can also be shown that the first
loop is not stable for ¢ = 1/2 and ¢ = 0 though
it is stable for all other ¢; € [0, 1].

CDUS can be checked through a finite number of
stability and p tests, by using Thm. 5.1 to check
the interior of the e-hypercube, and testing the
boundary (the points, edges, faces, etc.) through
additional p tests. The number of y tests required
grows rapidly with the size of the system. Though
the above examples show that CDUS is not equiv-
alent to DUS, the set of plant which are DUS but
not CDUS is nongeneric, i.e. any perturbation in
such a plant will likely cause the plant to either
become DUS or not be DUS. Since Thm. 5.1 pro-
vides an exact condition for DUS, finding com-
putable exact conditions for CDUS is of dimin-
ished importance.

CRDUS can be defined similarly, and a similar
discussion applies as for CDUS.

6. Conclusions

We review several of the strongest and/or most
recent of proposed tools for analysis of system
reliability, and show that these tools are either
conservative, computationally expensive, or in-
correct. In particular, it was observed that ex-
isting tools for testing integrity require an expo-
nential growth in computation as a function of
plant dimension. It was shown that the most well-
known sufficient condition for integrity when the
controller is stable (Lemma 3.1) can be conserva-
tive even for 2 x 2 systems. It was shown that
conditions given by Nwokah and co-workers for
closed decentralized unconditional stability are
incorrect.

We then develop necessary and sufficient condi-
tions for decentralized unconditional stability and
its generalization to uncertain systems. Stability
with arbitrary detuning (but not including zero)
can tested in polynomial time for arbitrary non-
linear operator, arbitrary linear time varying, and
arbitrarily-slow linear time varying uncertainty
descriptions, and be approximated in polynomial
time for either complex or real linear time in-
variant uncertainty descriptions. Braatz has used
these conditions for the design of robust reliable
decentralized controllers [31].
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