INT. J. CONTROL, 1994, voL. 59, No. 3, 627-638

Representation of uncertain time delays in the H., framework

7I-QIN WANGTtE, PETTER LUNDSTROM
and SIGURD SKOGESTADY

How to represent an uncertain time delay in a form suitable for robust control
in terms of the H.-norm and the structured singular value (u) is discussed. To
use p-synthesis the uncertain delay has to be approximated to yield a proper
rational interconnection matrix M(s) and a purely complex perturbation matrix
A(s). The parametric average of the delay is usually included in the nominal
model, while the uncertain perturbation covers variation around the average
delay. It is proposed to model the nominal time delay as uncertainty, i.e. using
a larger uncertainty set. This yields a delay-free nominal model, which
simplifies the controller synthesis. For the cases studied the delay free nominal
model does not yield a more conservative design than the average delay model,
despite its larger uncertainty set.

Nomenclature

c(s) controller
g(s) nominal plant
gp(s) perturbed plant
J(w) skewed u
k gain
k. controller gain
[(w) irrational uncertainty weight
RP Robust Performance
RS Robust Stability
S(s) = (I + g(s)c(s))"! nominal sensitivity function
Sp(s) =+ gp(s)c(s))_1 perturbed sensitivity function
w(s) rational uncertainty weight
wp(s) performance weight
A perturbation matrix
d¢ time delay uncertainty (min)
# nominal time delay (min)
structured singular value
maximum singular value
time constant (min)
frequency (rad min™!)

€ a1 QA=

1. Introduction

H,, control theory has gained a lot of attention and progress in the past
decade. With the introduction of the structured singular value, u (Doyle 1982)
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structured uncertainty can be handled in the H, framework, and hence the
criticized conservatism is substantially reduced. u can deal not only with robust
stability (RS) but also robust performance (RP). The standard ‘M — A’ structure
is shown in Fig. 1, where M is a stable transfer matrix, comprising plant,
controller as well as uncertainty and performance weights, and A = diag {A;}
represents the uncertainty structure. In the case of robust performance, A also
includes a performance block. u is defined as

ua (M) = min {5(A)|det (I + MA) = 0} (1)

unless no A makes (I + MA) singular, in which case un(M)=0. Robust
stability or robust performance is equivalent to

sup ua(M) <1 2

H, and p methods are now well developed, and cover both analysis and
synthesis, although the u synthesis problem is still not fully solved. (The present
u synthesis algorithm, called DK iteration, is a combination of H., synthesis and
optimal D-scaling. It only allows for complex uncertainty and does not guaran-
tee global convergence.) However, more work on practical applications is
needed. In particular, this applies to the selection of performance weights and
uncertainty weights (Laughlin et al. 1986, 1987, Postlethwaite et al. 1990,
Lundstrém et al. 1991 a, b).

In the H, framework, we generally need to transform (approximate) the
original uncertainty description to obtain the required linear fractional form, i.e.
a form that fits the M — A structure of Fig. 1. The set of possible plants is
modelled by two blocks: an interconnection matrix M which includes the
nominal model and uncertainty weights, and a norm-bounded normalized
uncertainty block A. If u is used the uncertainty can be ‘structured’ in the sense
that the perturbation A is block-diagonal. Parametric uncertainty can, in
general, be directly rearranged into a linear fractional (M — A) structure, using
real valued perturbations; however, this is not the case for time-delay uncer-
tainty., Moreover, real perturbations cannot be used with the present u synthesis
algorithm (DK -iteration), which can be applied to complex perturbations only.
Promising algorithms for u analysis with mixed real/complex perturbations are
being developed (Fan et al. 1991, Young er al. 1991). An important advantage
of the H,/u-framework is that the model uncertainty in non-parametric form,
including unknown model order, may be handled. Thus, in this paper we also
use the non-parametric framework when the original description for model

Figure 1. Standard ‘M — A’ structure.
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uncertainty is in parametric form. In particular, we consider a set of linear time
invariant plants with different time delays defined by

_k_ e_(0+69A)s

=g(s)e %M, —1<sA<1 (3)
s+ 1

plant set: gp(s) =

nominal model: g(s) = e 4

s +1

and study how to obtain a model suitable for yu synthesis.

We study (1) how to approximate the time delay uncertainty using simple
analytical approximations resulting in a linear fractional form (§2); (2) how to
choose a multiplicative uncertainty weight which covers the time delay uncer-
tainty using a complex perturbation (§3); and (3) how to choose the nominal
model (§4). In § 5, we make some final remarks.

2. Analytical approximations of a delay uncertainty

In this section we study how well the delay uncertainty is described by
commonly used delay approximations. The different approximations are com-
pared based on how well they predict the smallest delay required to destabilize a
certain closed-loop system.

The delay uncertainty

e %M, 1< A<l 5)

has to be approximated into linear fractional uncertainty before u methods can
be applied to the uncertain system in (3). With linear fractional uncertainty we
mean an uncertainty description which allows the perturbation matrix A to be
‘pulled’ out from the rest of the system such that the M — A form of Fig. 1 is
obtained.

We consider the following five approximations of (5).

Zero—Power series expansion of numerator:

e =1 — §psA; —1<A<1 (6)
Pole —Power series expansion of denominator:

1

e—égAs ~ :
1+ dgpsA

—-1=sA=1 (7

Padé —Combination of the two approximations above:

)
] — — 2 5A
g0 =~ 52 =1- 592” , -lsA<1 (8)
1+ 2B 1+ 28A
2 2

Complex0 —Same as Zero but with A complex:

e 00 = 1 — SpusA = 1+ wo(s)A, Al =1 ®
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Complex1 —Similar to Padé but with A complex:

6656‘

e—00hs 1 _ A =14+ wi(s)A, |Al=<1 (10)

1e)
1+£s
2

The three first approximations are derived for real valued perturbations and
correspond to the z-transform approximations presented by Astréom and Witten-
mark (1984, p. 176), who denote the approximations ‘Euler’, ‘Backward’ and
‘Trapezoidal’, respectively. Complex0 is obtained by using a complex perturba-
tion in Zero. Pole and Padé cannot be used with complex perturbations, since
that would allow for infinite uncertainty for frequencies above 1/84, and 2/8y3,
respectively. However, by setting the A in the denominator of Padé equal to 1,
we may let the remaining A become complex and obtain approximation
Complex1. This approximation is commonly used in robust design (Laughlin et
al. 1987, Skogestad and Lundstrom 1990). Both Complex0 and Complex1 yield
multiplicative uncertainties; we can think that weight wy(s) is obtained by setting
A in the denominator of Padé equal to 0, so it is always larger that weight w;(s)
in Complex1.

To study the accuracy of these approximations we shall consider the smallest
delay &y which destabilizes a closed loop system. We use the following PI
controller

ﬁrs+1

§

c(s) = (11)

where k, T are the same as in the nominal plant model (3). The exact value of
the destabilizing delay is easy to find from the open loop transfer function

ke
gp(s)c(s) = Te‘“’*m”, —_1<As<1 (12)

The magnitude of this transfer function equals 1 at frequency @ = k. and the
delay free part of the transfer function yields a phase equal to —/2, so the
smallest &y required to destabilize the closed loop system is

m

6 =
° 2k,

-0 (13)

Using the approximations above we can arrange the overall system into the
desired M — A structure. The condition for robust stability (RS) for a real-
valued A is

|M(ja)p)| <1, ‘v’{wp|Im(M(ja)p)) =0} (14)

and for a complex valued A
sup|M(jw)| <1 (15)
The exact &4 and its various estimated values from the five different approxima-

tions are shown in Table 1 for a constant nominal delay (6 = 1) and different k.
values.
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Exact, Zero, Pole, Padé, Complex0, Complex1,
ke S da1 T 863 o dos
0-1 14-71 9-496 o 18-09 9143 17-89
0-2 6-854 4-491 0 8-176 4-187 7-774
0-5 2:142 1-476 o 2:373 1-257 1-646
1-0 0-571 0-441 00 0-587 0-319 0-328
1-5 0-047 0-045 0-050 0-047 0-025 0-025

Table 1. Destabilizing delays estimated using different approximations for time delay uncer-
tainty (nominal 6 = 1).

We see from Table 1:

(1) Zero is always conservative.
(2) Pole is always optimistic (overestimating the stability margin).
(3) Padé is the best approximation, in the sense that 83 obtained from Padé

is close to the exact 8g. However, Padé is always a bit optimistic, which
shows that it does not include all plants in the set (3).

(4) Complex0 is even more conservative than Zero, since A is relaxed to be
complex.

(5) Complex1 is optimistic when k. is small (detuned), and conservative
when k. is large (overtuned). However, it is good in the range for k.
where robust stability is a more reasonable concern. Thus, Complexl
may be a practically good approximation. Also note that ys is always
larger than &gy as expected.

Theoretically, we can get arbitrary high accuracy by using multiple real
perturbations. For example, we may divide the delay uncertainty e %% into n
parts (e"©@d/MAs)m and then use any approximation for each of the smaller
uncertainties e~ (%¢/MA5  Another alternative (Lundstrom et al. 1993, Postleth-
waite ef al. 1991) is to include the nominal delay in the approximation

0 (S@A n
l——s — —
e‘(0+6gA)S ~ 2n 62’; (16)
1+ is +
2n 2n

In both cases we get n repeated real perturbations, which makes the pu
computation much harder than for a complex perturbation. The latter alterna-
tive (16) has the advantage of avoiding additional approximations for the
nominal delay and yielding a minimal state-space representation.

The conclusions of this subsection are that Padé and Complex]l approxima-
tions seem reasonably good. However, they cannot be used to guarantee
robustness, since they may be ‘optimistic’, i.e. do not cover the original set.
Another drawback with Padé is that it requires a real-valued A, which makes it
unsuitable for DK-iteration. This motivates us to study refined versions of
Complex1, which cover the original set and are suitable for u synthesis. That is
the topic of the next section.
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3. Complex perturbations that cover the time delay

In robust design it is preferable to use a norm-bounded ‘upper-bound’
uncertainty set which covers all possible plants of the original set. One reason
for this is that p-optimal controllers seem to be sensitive to unconsidered
uncertainty (as we will show later in this paper).

We approximate the set of delay uncertain plants (3) using the following
model

gp(s) = g(s)(1 + Uw)A(s)), [A] =<1 (17)

Here, the delay uncertainty is approximated by complex multiplicative uncer-
tainty, i.e. A is a complex perturbation and /(w) is a multiplicative uncertainty
weight. The tightest bound /(w) that covers a delay is (Owens and Raya 1982)

—jbew _
l(w)_ﬂze w1, Y o<n/d,

2, YV w =7/ (18)

This bound is irrational, it may be used for analysis but not for synthesis. For
synthesis the first-order weight wy(s), derived for approximation Complex 1 in
the previous section is commonly used

(SQS

wi(s) = m (19)

It is possible to derive an even tighter description (smaller uncertainty set) of
the set in (3) if the nominal model with A =0 is not restricted to be equal to
g(s) (Lundstrom et al. 1991 b, 1993). However, this tightest description yields an
irrational nominal model and will not be considered in this paper.

From Fig. 2 we can see that wy(s) approximates the tightest bound /(w) very
well at both low and high frequencies, but at intermediate frequencies it is a
little smaller than the tightest bound and thus does not cover all possible plants.

In the following we consider five multiplicative uncertainty weights for the
time-delay uncertainty which are all upper bounds on /(w), i.e. they do contain
all possible plants.

wo(s) = Ogs (20)
695‘

wi(s) = ——— 21

1ns) 1+ 8g5/3-465 @)
W a S I e——
! 1+ 8g5/2

Ogs(2 X 0-2152%84s + 1
wls) = 22 G 23)

(0-215284s + 1)°

Sgs sfwg)? + 1-676(s/wp) + 1
wi(s) = ——0 (s/0) (s/ay) . Wy = 2-363/8, (24)

1+ (SgS/Z (S/COO)Z + 1370(S/600) +1
All these weights (except wy(s)) are proper rational transfer functions and may
be used for DK-iteration. The weights are plotted in Fig. 2. wy(s) is the weight
obtained from approximation Complex0 in the previous section. It approximates
the tightest bound /(w) very well at low frequencies but is much larger at high
frequencies. The next two weights are derived based on w;(s) (from Complex1)
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Figure 2. Different multiplicative weights for time delay uncertainty. Solid curve: I(w) from
Equation (18).

which is not an upper bound on /(w). To modify it and make it an upper bound,
but still restrict it to be of first-order, we have three choices. (1) Increase w;(s)
at high frequencies without changing the value at low frequencies. This yields
wis(s). (2) Conversely, increase wi(s) at low frequencies without changing the
value at high frequencies. However, this is not possible since /(w) =2 at finite
frequencies w = m/84. (3) Increase w(s) at all frequencies to cover /(w). This
gives weight wy,(s). The second-order weight w;(s) is a refinement of wy(s).
The third-order weight ws(s) is obtained by covering the mismatch between I/(w)
and w;(jw) with a second-order transfer function (Lundstrém et al. 1993).

We now want to compare these alternative weights by computing the value
of u for robust stability, ugrs, using the same PI controller and values of k. as in
the last section. In each case, the time-delay uncertainty dy is set to equal to the
largest delay the system can tolerate without getting unstable, so the ‘exact’ u
value for robust stability ‘frsexacc’ 18 €qual to 1 for all cases.

The prs computed for the complex uncertainty description (17) with the
irrational weight /(w) (18) and the five rational uncertainty weights (20)-(24)
are shown in Table 2. We see from Table 2

(1) prsi computed with /(w) is the best obtainable result using complex
multiplicative uncertainty to cover the time-delay uncertainty. The differ-
ence between pgg; and piggewer iS the conservatism introduced by the
complex multiplicative uncertainty assumption;

(2) the differences between ursin, Urs2 and prss are minor, so increasing the
weight order does not have a large effect on urg. This is because piggyj, is



634 Zi-Qin Wang et al.

Weight
Exact, l(w), wo(s),  win(s),  wie(s),  wals), ws(s),
ke o) URSexact URsI HRSO URS1h URS1a URs2 URS3
0-1 14-708 1-0694 1-6086 1-1148 1-0972 1-0983 1-0882
0-2 6-8540 1-1146 1:6370 1-1660 1-1392 1-1474 1-1333

1-0 0-5708 1-7403  1.7862 17417  2-0214  1-7409  1-7460

1
1

0-5 2-1416 1 1-3808 17031  1-4254 14175  1-4102  1-4064
1

1-5 0-0472 1 1-8530  1-8534  1-8530  2-2522  1-8530  1-8530

Table 2. Robust stability ugs for different complex multiplicative uncertainty approximations
of the delay uncertainty.

already quite close to ugg;. The remaining conservativeness comes from
the complex multiplicative uncertainty assumption. The differences
between the different approximations are most easily understood by
considering at what phase-angle (dsw) the peak value of u (i.e. ugs) is
obtained. For small k. values the u peak will occur at a relatively high
phase-angle, while for large k. values it will be at a low phase-angle.
Hence, Table 2 demonstrates that wq is a poor approximation at high
phase-angles and wy, is poor at low phase-angles. This is also seen from
Fig. 2.

(3) The conclusion is that wy,(s) is a simple and reasonably good approxima-
tion of the time-delay uncertainty.

4, Choice of nominal model

In this section we study how to choose the nominal delay 6 in (3) such that
the resulting model is well suited for p-synthesis and 6 = 84 covers a prespeci-
fied range of possible delays. We consider the following set of SISO plants

Plant set: gp(S) = k 6_0"5, Omin < Gp < Bax (25)
s + 1

It can be modelled in two fundamentally different ways (for notational simplicity
we assume O, = 0, i.e. no prediction).

Approach 1:  Average delay in the nominal model (same as (4)).

Nominal model: g(s) = L e_((emax+6min)/2)s (26)
s + 1
Time-delay uncertainty: e Cmx O —] < A <1 (27)

Approach2: Delay free nominal model.

Nominal model: g(s) = (28)

s + 1
Time-delay uncertainty: e %A, —1 <A <1 (29)

Approach 1 covers all delays in (25) exactly, while Approach 2 allows delays
between — O, and +6;,,,, i.c. Approach 2 allows more uncertainty. The main
advantage with Approach 2 is that it leads to a simple nominal model with no
delay. For example, this simplifies controller synthesis using DK -iteration. Since
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Approach 1 uses a more complicated nominal model, one would expect it to
yield better results than Approach 2. But as we shall see, this need not be the
case.

If Approach 1 is used for synthesis, one needs to approximate the delay in
the nominal model (26) by a rational transfer function, since H,, synthesis and u
synthesis in both existing toolboxes (u-Analysis and Synthesis Toolbox (Balas et
al. 1991) and Robust Control Toolbox (Chiang and Safonov 1988)) are not
capable of dealing with time-delays in an exact manner. The approximation of
the nominal model may cause significant deterioration in robust performance
because it introduces additional uncertainty, as shown by Wang and Skogestad
(1993). Approach 2, on the other hand, does not have this problem since it uses
a delay free nominal model (28).

We now proceed to compare these two choices of nominal models by
considering Jrp, the ‘skewed w (Packard 1988) for robust performance

Jrp = Sli)p S‘ip |WpSp| (30)
where
Sp(s) = (1 + gp(s)c(s))™ @31)
With performance weight
s+ 1
wpls) = (32)
2s
and uncertainty weight wq;(s) (21) we get
_ TR |WpS|
Jrp = supsup |w,S(1 + Awq,gcS) 7 = sup ————— (33)
w A © 1= |wipgesS|

Jrp is similar to the structured singular value for robust performance, pgrp, in
the sense that Jgp <1 iff pugp <1. However, they are not equivalent since
JRP = URp for Urp = 1 and ]RP = Urp for Urp = 1. When URrp < ]., both the
performance weight and uncertainty weight can be increased by a factor 1/ugp
while still retaining robust performance, but when Jgp < 1, only the performance
weight is allowed to be increased by a factor 1/Jzp. The reason we use Jgp here
is that it measures robust performance with respect to a fixed uncertainty set
and thereby allows us to compare different uncertainty models. Another reason
is that we are able to calculate the ‘exact’ Jgp (Jrpp) for this simple case (25)
and this Jrpy provides a reference for the comparison.

R
Jrpo = supsup [w, S| = sup (jwp|sup|(1 + c(jo)———e7*%)7')  (34)
o Gp w GP jw +1

The peak values Jrp for different controllers and different modelling ap-
proaches are shown in Table 3 for the specific model parameters k=1, T =1,
Omin =0 and O, = 1. The controllers used in Table 3 are three wp-optimal
controllers and PI controllers of the form

s+ 1
s

c(s) = k. (35)

with different k.. Two of the u optimal controllers are synthesized using
Approach 1: C,; where the nominal time-delay is approximated by a first-order
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Exact, Approach 1, Approach 2,
Controller kc JRPO JRpl JRPZ
Cu 1-286 1-334 1-325
Cuas 1-034 1-036 1-113
Co 0-976 2-337 0-986
02 2:500 2-5166 2-5538
PI 0-5 1-139 1-1471 1-2200
1-0 1-938 3-5945 22325

Table 3. Comparison based on robust performance Jgp for two different modelling appro-
aches of uncertain time-delay systems.

Padé approximation, and C,;, where a fourth-order Padé approximation is used.
C,z is obtained using Approach 2 with the delay free nominal model.

The results in Table 3 are somewhat unanticipated. Controller synthesis using
model Approach 2 yields the lowest Jrpp value (0-976), although this modelling
approach uses a larger uncertainty set than Approach 1. We also see that Jgp, is
not much larger than Jgp; for any of the controllers, while Jgp; is much larger
than Jgp, for controller C,; and for the PI controller with gain k. = 1-0. This
indicates that we can use a delay-free approach at almost no cost in terms of
accuracy. The reason is that the H,-norm, u and Jgp are worst case measures.
It is not the size of the uncertainty set, but the worst uncertainty within the set
that matters. Although Approach 1 covers a smaller uncertainty set than
Approach 2, it may include a plant that is worse than any plant covered by
Approach 2. This is graphically shown in Fig. 3 where a worst case plant in the
shaded region yields Jrp, smaller than Jgp;.

The conclusions from Table 3 are as follows.

(1) Jrpy for Cyp is smaller than Jgp; for C,; and C 4 and also Jgpg for Cpp is
smaller than Jgpy for C,4 and C,4. This yields the surprising result that

0.5¢ i 1
O == =,
£z \]\\1' 9%
z F
0.5¢ | |
| %\9pA 1/ /;’ gpAz !’

i 05 0 0.5 | 1.5

Figure 3. The exact set g, (arc) and its disc approximations gyai (Approach 1) and gpao
(Approach 2) plotted on the complex plane.
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not only is the delay free approach (Approach 2) simpler for controller
design, it also is better.

The differences between Jgp; and Jgpp, for two of the p-optimal con-
trollers are large. This shows that the p-optimal controller can be very
sensitive to the uncertainty not considered in the controller design.

Only time delay uncertainty has been considered in this section, however,

results

for simultaneous uncertainties in gain, time-constant and time-delay of

(25) (Wang and Skogestad 1992) also support the conclusions above.

5. Conclusions

From the above results and discussions, we are ready to draw the following
conclusions.

(M

@)

©)

4)

©)

w-optimal controllers seem to be very sensitive to unconsidered (un-
covered) uncertainty. Hence, uncertainty models which do not cover the
original uncertainty (e.g. (19)) should be used with caution.

For the multiplicative complex uncertainty approximation of time-delay
uncertainty, the upper bound wq,(s) adjusted at high frequencies is a
simple and good weight.

For the modelling of uncertain time-delay systems, the approach of using
a nominal model without time delay (Approach 2) is better since it gives
comparable results but leads to a delay-free design problem for the
time-delay systems.

The transformation from original uncertainty description to the norm-
bounded complex perturbation inevitably introduces conservatism. In
order to reduce the conservatism, one usually chooses a nominal model
which minimizes the uncertainty weight. However, u is a worst case
measure. Of most importance is not the size of uncertainty but the worst
uncertainty. Consequently, the correct way to reduce conservatism is not
to minimize the uncertainty size but to minimize the worst uncertainty
introduced in transformation. Of course, minimizing the uncertainty size
is easy and direct. However, which is the worst uncertainty is generally
not obvious. Research work on identifying the worst uncertainty may be
worthwhile.

Note that all results are for SISO plants, and MIMO systems may behave
entirely differently. For example, for a SISO plant a large delay is
generally bad, while for a MIMO system a large delay in an off-diagonal
element is good since it helps to reduce interaction.
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