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As recently recognized, distillation columns, operating with reflux and boilup as 
independent inputs, may have multiple steady-state solutions, even in the ideal binary 
case. Two fundamentally different sources may cause the multiplicity, and in both 
cases some operating points are found to be unstable. This article provides evidence 
for  the instability and discusses the effect of operating conditions on stability. 
Increasing the internal flow rates increases the probability of instability; when f lo ws 
other than reflux and boilup are used as independent inputs, an operating point 
may become unstable if the level control is not sufficiently tight. In this case, a limit 
cycle, usually stable, appears as the steady state goes unstable. 

Introduction 
The dynamic behavior of distillation columns has been stud- 

ied quite extensively over the past decades and several general 
qualitative properties have been proposed. One suggested 
property is that the operating points of distillation columns, 
at least in the binary case, always are globally asymptotically 
stable (with level and pressure control). This conjecture is based 
on results published over the years on the uniqueness and 
stability of distillation columns (for example, Acrivos and 
Amundson, 1955; Rosenbrock, 1960, 1962; Doherty and Per- 
kins, 1982; Sridhar and Lucia,. 1989). Doherty and Perkins 
(1982) provide a review of results published on this subject 
and conclude that multiplicity and instability is impossible in 
any binary distillation column. However, it is important to 
realize that all these studies include restrictive assumptions. 
First, all the studies assume that the flows, for example, reflux 
L and boilup V ,  are fixed on a molar rate basis. As Jacobsen 
and Skogestad (1991) argue, this is rarely the case in operating 
columns, especially for liquid flows. For instance, fixing the 
valve position will normally correspond closely to fixing the 
geometric average of mass and volumetric flow rate. 

Secondly, most studies include the assumption of constant 
molar flows (neglected energy balance). Sridhar and Lucia 
(1989) include the energy balance in their study, but conclude 
that also in this case the operating points of binary distillation 
columns will be unique. They do, however, only study a limited 
number of configurations (sets of specifications), namely the 
Q D Q D  and LB configurations. (The term “configuration” is 
used in distillation control to denote the two independent vari- 
ables which remain for composition control.) 
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In a recent article, Jacobsen and Skogestad (1991) analyze 
models without the two above mentioned assumptions and 
show that distillation columns, even in the ideal binary case, 
may display multiple steady states. They identify two different 
sources that may cause the multiplicity: 

Most operating columns will have the flows fixed on a 
mass or volume basis, while the separation is determined by 
the size of the molar flows. The transformation from mass or 
volume flows to molar flows is nonlinear due to the compo- 
sition dependence and may in some cases become singular. A 
singularity in the input transformation will imply that several 
solutions exist in terms of the outputs (for example, compo- 
sitions) for a given specification of inputs (flows). 

When the energy balance is included in the model, even 
molar inputs may yield multiple solutions. The multiplicity is 
caused by interactions between flows and compositions through 
the material and energy balances. 

Jacobsen and Skogestad (1991) treat the multiplicity from 
a steady-state point of view only. In this article we study the 
dynamics of columns with multiple solutions and provide proof 
of instability for some configurations (specifications). 

It is well known that for the simple distillation columns 
studied in this article, with given feed stream, two products, 
and no intermediate heaters or coolers (see Figure l), there are 
only two degrees of freedom at steady state, that is, only two 
independent specifications are possible. A large number of 
specifications (configurations) are possible for distillation col- 
umns. One typical specification is L and D (LD configuration), 
and others are Q D Q B ,  LV,  LQ,, yDxB and so on. Note from 
the last specifications that one may at steady state also specify 
dependent variables (in this case product compositions). How- 
ever, in terms of dynamics and control there is a fundamental 
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Figure 1. Two product distillation column. 

difference between independent variables (“inputs” in control) 
and dependent variables (“outputs” in control). In an oper- 
ating column only the former may be specified directly, while 
the latter only may be specified indirectly through the manip- 
ulation of the former, for example, through feedback control. 
Mathematically, we require any dynamic model to be causal 
and this is satisfied only when independent variables are spec- 
ified. Also, in the dynamic case we usually have at least three 
additional degrees of freedom because the pressure (vapor 
holdup) and the reboiler and condenser levels (liquid holdups) 
may vary dynamically. When studying the dynamic behavior 
of distillation columns in this article, we assume that the pres- 
sure and the two levels are controlled, that is, we are studying 
a partly controlled system. This is reasonable since otherwise 
all distillation columns are unstable because the two levels 
behave as pure integrators. In any case, usually the levels and 
pressure are tightly controlled so that we practically are left 
with two degrees of freedom also in the dynamic case. 

We will assume that the cooling Qo always is used for pres- 
sure control and restrict ourselves to consider as independent 
variables the flows L ,  V, D, and B (note that boilup rate V is 
closely related to heat input Qs) . These flows may be specified 
on a molar basis (in which case we use no subscript) or on a 
mass basis (in which case we use subscript w). Typically, the 
product flows D and B are used to control the levels, which 
leaves L and V as independent variables and we get the LV 
configuration. This is the most widespread configuration in 
industry and in this article we mainly discuss this configuration. 
However, there are also other possibilities for controlling the 
levels and therefore many possible configurations (see, for 
example, Skogestad and Morari, 1987). 

We review the results presented in Jacobsen and Skogestad 
(1991) on steady-state multiplicity caused by singularities in 
the input transformations. We provide evidence for the insta- 
bility of some of the operating points for this case and discuss 
the effect of operating conditions on the stability of distillation 
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columns. The multiplicity and instability caused by singular- 
ities in the input transformations is independent of the energy 
balance and, for simplicity, we therefore assume constant mo- 
lar flows. We then include the energy balance in the model 
and provide evidence for the instability that may result from 
interactions between flows and compositions through the ma- 
terial and energy balances. The effect of operating conditions 
on this type of instability is then discussed. 

At the end of the article we consider the D,  V and L J ,  
configurations. We show that while steady-state multiplicity 
is unlikely, they may have unstable operating points if level 
control is slow. It is shown that the instability in this case 
results from a Hopf bifurcation and that a limit cycle hence 
appears as the steady state goes unstable. 

In this article we concentrate on the theoretical aspects of 
the dynamic behavior of distillation columns. In a separate 
article (Jacobsen and Skogestad, 1991b) we study the practical 
implications of the observed instability on operation and con- 
trol. 

Steadystate Multiplicity in Ideal Distillation with 
L,V Configuration 

We give here a brief review of the results on multiplicity 
caused by singularities in the input transformation presented 
in Jacobsen and Skogestad (1991). By “ideal” we mean that 
the thermodynamic behavior is ideal and that we have constant 
molar flows. Specifically, we assume that the vapor-liquid 
equilibrium (VLE) is described by constant relative volatility 
ff: 

a i  

yi=l+(f f - l )x ,  

and that at steady state we have for all stages (except at feed 
locations): 

v,= v,,,; L ; = L , + ,  

where the subscript denotes the stage number. With assumption 
2 the energy balance is not needed. Note that in order to make 
our dynamic model more realistic we have included liquid flow 
dynamics (Table 1) so that dynamically L, # L,+ ,. However, 
the flow dynamics do not affect the stability and all analytical 
results we present are therefore valid also if the flow dynamics 
are neglected. Throughout the article we also assume negligible 
vapor holdup and constant pressure. 

Jacobsen and Skogestad (1991) provide an example of steady- 
state multiplicity in a column separating a mixture of methanol 
and n-propanol. The column has mass reflux L ,  and molar 
boilup V as independent variables, that is, L,V-configuration. 
Data for the column are given in Table 1. Some steady-state 
solutions are given in Table 2, and we see that for a specification 
of mass reflux L,= 50.0 kg/min and molar boilup V =  2.0 
kmol/min there are three possible solutions 11, 111 and IV in 
terms of compositions. The multiplicity is graphically illus- 
trated in Figure 2. 

The observed multiplicity is caused by the transformation 
between the actual flow rates (mass) and the molar flow rates 
which determine separation. For a binary mixture the trans- 
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Table 1. Data for Methanol-Propanol Column 

ZF F (Y N N,= Mi M2 
0.50 1 3.55 8 4 32.0 60.1 

Feed is saturated liquid. 
Total condenser with saturated reflux. 
Liquid holdups are ML,/F= 0.5 min, including reboiler and con- 
denser except for D,V configuration where M,/F=M,, /F= 5.0 
min. 
Liquid flow dynamics: L, = L,, + (ML,  - M L , O ) / ~ L ,  T~ = ML,,/3L,, 
Negligible vapor holdup. 
Constant pressure (1 atm). 

formation between mass reflux, L,, and molar reflux, L ,  is 
given by: 

L =  L,/M, M=yDM, + (1 -yD)M> (3) 

where yD is the mole fraction of light component in the distillate 
product. Mi denotes the molecular weight of the individual 
components and M denotes the molecular weight of the reflux 
and distillate product. One might expect the molar reflux to 
increase monotonically with the mass reflux, that is, (aL/ 
aL,) ,>O. However, because M is a function of composition, 
yo, and thereby of L,, this might not be the case. Assuming 
molar boilup Vfixed and differentiating L ,  = LMon both sides 
with respect to L yields: 

0.8 i ‘. 
, 
\ 

(4) 
’4: 48 49 50 51 52 53 54 

L, Ikdminl 

Here, the steady-state value of (ay,/aL) , is usually positive 
(it may be negative when the energy balance is included as 
discussed later). For M, <M2 (the most volatile component has 
the smallest molecular weight), which is usually the case, the 
second term on the righthand side of Eq. 4 will then be negative 
and (aL,/aL) , may take either sign. The transformation from 
L,  to L will be singular when (8Lw/tJL),=0, that is, (aL/ 
aL,),=co. A singular point corresponds to a limit point, 
around which there locally exist two steady-state solutions (see, 
for example, Golubitsky and Schaeffer, 1985). Jacobsen and 
Skogestad (1991) state that solutions with (aL,/aL) ,<O (mid- 
dle branch in Figure 2)  correspond to unstable operating points, 
but they do not prove this rigorously. 

Instability with L,V-Configuration 
Methanol-propanol example 

The “maximum eigenvalue” (the eigenvalue with the largest 
real part) at selected operating points of the methanol-propanol 

Table 2. Steady-State Solutions for Methanol-Propanol 91- 
umn with V=2.0  kmol/min and L,= 48 to 53 kg/min 

kmol/min kmol/min kg/min 
I 1.064 0.936 48.00 0.534 0.00310 

I1 1.143 0.857 50.00 0.584 0.00350 
111 1.463 0.537 50.00 0.9237 0.00780 
IV 1.555 0.445 50.00 0.9969 0.104 
V 1.650 0.350 53.00 0.9984 0.233 

*Constant molar flows (no energy balance); see also Figure 2. 
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Figure 2. Methanol-propanol column with constant m o  
lar flows: multiple steadystates for L,V con- 
figuration. 
Mass reflux L ,  is varied while molar boilup Vis fixed at 2.0 kmol/ 
rnin. On upper plot, corresponding maximum eigenvalue is shown 
at some steady-state solutions. Broken line represents unstable 
solutions. 

column with constant molar flows is indicated in Figure 2 .  The 
eigenvalues were obtained by linearizing a nonlinear dynamic 
model with two states per tray (fraction of light component 
and liquid holdup). The steady-state values used for the liquid 
holdups are given in Table 1. Note that the nonlinear model 
is used in all simulations. From Figure 2 we observe that the 
maximum eigenvalue at the upper and lower branches (positive 
slope) is negative, implying stability, while the one at the in- 
termediate branch (negative slope) is positive, implying insta- 
bility of the operating points. There is only a single eigenvalue 
in the RHP at any unstable operating point. The eigenvalue 
at the singular points, which correspond to limit points, are 
zero as expected. The open-loop instability at the intermediate 
branch is illustrated by the nonlinear simulations in Figure 3 
which shows the responses in top composition yo to small 
changes in mass-reflux L ,  (keeping boilup V fixed) starting 
from equilibrium at the unstable operating point I11 (initial 
holdups are as given in Table 1). The simulations indicate that 
the two stable solutions I1 and IV have equally large regions 
of attraction as seen from the unstable solution 111. 

Below we provide evidence for the observed instability and 
discuss under which operating conditions instability is most 
likely to occur. 

Vol. 40, No. 9 AIChE Journal 



0.85 

0.8 

0.75 

0.7 

0.651 

- 
- 

- 
- 

-**-------_....-. I! ______---- 0.6 

10 20 30 40 50 60 70 80 90 100 0.550 . 
time [min] 

Figure 3. Nonlinear open-loop simulation of methanol- 
propanol column starting at unstable operat. 
ing point 111 in Figure 2. 
1) =increase in mass reflux L ,  of 0.01 kg/min; 2) =decrease in 
mass reflux L ,  of 0.01 kg/min. Boilup V =  2.0 kmol/min. Con- 
stant molar flows. 

Conditions for instability 
One-Stage Column. It is useful to study the simplest case 

for which the above-mentioned instability may occur (Jacobsen 
and Skogestad, 1991). To this end, consider the simple column 
in Figure 4 with one theoretical stage (the reboiler) and a total 
condenser (of course, such a column will never be operated in 
practice because the reflux is simply wasting energy and has 
no effect on separation). Assume binary separation, liquid 
feed, constant holdup in the reboiler ( M L )  and negligible 
holdup in the condenser. The dynamic model of the column 
becomes: 

Here D = V - L and D + B = F and with L and V as independent 
variables we get: 

V I  IL 

I '  

Figure 4. One-stage column with total condenser. 

Linearization, Laplace transformation and introduction of de- 
viation variables assuming F, zF, and V constant yields: 

where s is the Laplace variable and a superscript * shows that 
these are the nominal steady-state values (this superscript is 
deleted in the following to simplify notation). Linearizing the 
expression for the vapor-liquid equilibrium (for example, 
expression 1 for the case of constant relative volatility) yields: 

where K is the local slope on the equilibrium curve. Equation 
7 then becomes: 

(9) 

where 

As all terms in Eq. 10 are positive, the eigenvalue (pole) of 
the linearized system, - a/ML, is always negative, implying 
that all operating points are stable when molar reflux L and 
molar boilup V are used as independent variables. 

Now consider mass reflux L ,  as an input instead of molar 
reflux L=L,/M. By linearizing Eq. 3 we obtain for binary 
mixtures: 

Substituting Eq. 11 into Eq. 9 and using Eq. 8 we obtain the 
following transfer-function between liquid composition, 
dx,(s), and mass reflux dLw(s )  

where 

M2-M, KL a,=KD+B- ( yD-xB)  ___ 
M 

The operating point is unstable for a,<O. We now want to 
compare this condition for instability with the condition for 
a negative slope for (dL,/dL) given in Eq. 4. At steady-state 
we have s=O and Eqs. 8, 9, and 10 yield: 

YO-XB (2) ,(o)=D+B/K 

which inserted into Eq. 4 yields: 

(14) 
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and we find for the simple one-stage column that instability 
(a,<O) is equivalent to a negative steady-state slope for (aL,/ 
aL ) V .  

The dynamic model of a multistage 
column will in general be of relatively high order and it is 
difficult, if not impossible, to calculate the eigenvalues ana- 
lytically. In order to assess the stability of a multistage column 
we will therefore employ the Routh-Hurwitz stability criterion 
and derive a sufficient condition for instability. To do this we 
first need to derive an expression for the transfer-function 
(ay,/aL,),(s). With V constant the total differential of yD 
may be written: 

Multistage Column. 

We have L = L,/M and for binary mixtures M is a (static) 
function of yo only. Thus, for binary separations Eq. 1 1  ap- 
plies. Combining Eqs. 16 and 1 1  yields: 

To use the Routh-Hurwitz criterion write the transfer-function 
from molar reflux L to top composition y ,  on the following 
form: 

where 

is the steady-state gain. The response is assumed to be strictly 
proper, that is, n > m. We also assume that this transfer func- 
tion is stable, that is, we have “molar” stability. This always 
holds for the case of constant molar flows (Doherty and Per- 
kins, 1982). From the Routh-Hurwitz stability criterion, which 
says that the system is stable only if all the coefficients in the 
pole polynomial (denominator of Eq. 18) have the same sign, 
we conclude that all a;s in Eq. 18 are positive. Inserting Eq. 
18 into Eq. 17 yields: 

This is exactly the same criterion as given in Eq. 4 in order to 
have a negative slope between mass and molar reflux. Thus, 
we have proven for binary mixtures that a sufficient condition 
for instability with the L,V-configuration is that at steady state: 

In conclusion, we have proved that solution branches with a 
negative slope between L, and L represent unstable solutions 
with the L,V-configuration. This result is in accordance with 
numerical results (see, for example, Figure 2). 

(1) Our derivation has assumed binary mixture 
and “molar” stability, but otherwise no assumptions about 
the energy balance or VLE has been made. 

(2) We assume perfect control of the pressure and of the 
condenser and reboiler levels. The assumption of perfect level 
control is not important for the L,V configuration since the 
composition responses are only weakly dependent on the level 
control in this case. In particular, the presence of instability 
we find will be independent of the level control. This is easily 
understood by considering the general form (Eq. 18) of (ay,/ 
aL) ,(s). Changing the tuning of the level controllers will affect 
the size of the parameters a, and b, to some extent, but will 
not affect the size of the steady-state gain k$z nor the stability 
of (ayD/aL)v(s). Since our derivation of the sufficient con- 
dition for instability (Eq. 21) is independent of the size of the 
parameters a, and b,, the level control will not affect the in- 
stability we find. Similar arguments apply to the effect of flow 
dynamics, that is, the presence of flow dynamics in the dynamic 
model does not affect the instability we find. 

(3) It is of interest to consider the instability conditions from 
a somewhat more general perspective. Write L as a total dif- 
ferential of L, and yo to get the following generalization of 
Eq. 1 1 :  

Remarks. 

Combining Eqs. 16 and 23 then yields: 

Since n > m  we know that the highest-order term in the de- 
nominator is a,$ where a, is positive. From the Routh-Hurwitz 
condition we then find that Eq. 20 is unstable if the constant 

yD 
term in the denominator is negative, and we conclude that a (24) 
sufficient criterion for instability with the L,V-configuration 
is: 
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We see that the instability condition (Eq. 21) corresponds to 
having the static term in the denominator negative: 

Note that Eq. 25 corresponds to a positive feedback loop with 
the product of the loop gains being larger than unity at steady 
state. The transfer-function from L ,  to yo in Eq. 24 may 
alternatively be written: 

and we see that provided (aL/aL,),,(O)>O (it is equal to 
1/M for binary mixtures), the instability condition (Eq. 25) is 
equivalent to: 

Effect of operating conditions on stability 
Jacobsen and Skogestad (1991) provide analytical results on 

when a negative slope between mass and molar reflux, that is, 
instability according to the analysis above, is most likely. They 
show that a negative slope is most likely with large internal 
flows (that is, large L and V) and intermediate purities in the 
top (that is, intermediate L for given V). This corresponds to 
having L and k;: large, and according to Eq. 21 this is the 
case for which instability is most likely. Note that the analytical 
treatment in Jacobsen and Skogestad (1991) was based on ideal 
separation with constant relative volatility and constant molar 
flows. 

Figure 5 shows the stable and unstable regions in terms of 
boilup V and distillate flow D for the methanol-propanol col- 

1 
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umn with the L,V-configuration. The regions were determined 
using the full nonlinear dynamic model. Note that the as- Instability Caused by the Energy Balance 
sumption of liquid feed and constant molar flows implies that 
L = V- D. Thus, for a given V, D = 0 corresponds to maximum 
reflux L,,, and D = F to minimum reflux Lmin. From the figure 
we see that at low internal flows, that is, low values of V, there 
is no unstable region and hence all operating points are unique 
and stable. However, for values of V above 1.32 kmol/min 
there exists a region of unstable operating points which, as 
expected from the analysis, expands with increasing V. We 
also see from the figure that instability, as expected, is most 
likely for intermediate values of D, that is, intermediate values 
of L for a given V. Furthermore, from Figure 5 we see that 
instability is unlikely for values of the distillate flow D sig- 
nificantly less than 0.5 ( = F z F ) .  This is explained by the fact 
that the top product becomes very pure with D significantly 
less than FzF, and that k;: in Eq. 21 becomes correspondingly 
small. 

The borders between the stable and unstable regions in Fig- 
ure 5 correspond to limit-points with the L,V configuration. 
Locally, two steady-state solutions exist around a limit-point 

To this point we have assumed “molar stability” which 
always holds for the binary case with constant molar flows. 
However, Jacobsen and Skogestad (1991) show that when the 
energy balance is included in the model, even molar specifi- 
cations may yield multiplicity in distillation. The multiplicity 
is in this case caused by interactions between the flows and 
compositions inside the column. The flows will affect the com- 
positions through the material balance while the compositions 
will affect the flows through the energy balance. 

Methanol-propanol example 
Figure 6 and Table 3 show steady-state solutions for the 

methanol-propanol column with the L Vconfiguration and the 
energy-balance included in the model. The heats of vapori- 
zation of the two pure components at 1 atm are approximately 
AHIVap = 35 kJ/mol and = 41 kJ/mol (the exact enthalpy 
data used are given in Table 4). Note that the lightest com- 
ponent in terms of volatility (methanol) also has the smallest 
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Figure 6. Steadystate solutions as function of molar 
reflux L for methanol-propanol column with 
energy balance included. 
Maximum eigenvalue is shown in selected operating points. Ei- 
genvalues were computed assuming a static energy balance. Boilup 
V=4.5  kmol/min. 

heat of vaporization. The maximum eigenvalue at selected 
operating points is also shown in Figure 6 ,  and we see that the 
solution branch with a negative slope between molar reflux L 
and top composition yo corresponds to unstable solutions. The 
eigenvalues were obtained using the same dynamic model as 
was used for the L,V configuration above apart from the 
inclusion of the energy balance. For simplicity we used a static 
energy balance, that is, the term dUL/dt was neglected in the 
dynamic model. 

Conditions for instability with L V-configuration 
To consider the stability properties for the L V configuration 

with the energy balance included we utilize the fact that the 
DV configuration in all known cases yields unique solutions 
(Sridhar and Lucia, 1989; Jacobsen and Skogestad, 1991) which 
are stable under the assumption of perfect level control (see 

Table 3. Steady-State Solutions for Methanol-Propanol Col- 
umn with Boilup V=4.5 kmol/min* 

L D Y D  xi4 
kmol/min kmollmin 

1 4.60 0.535 0.9324 0.002474 
I 1  4.70 0.505 0.9845 0.006344 

111 4.70 0.406 0.9993 0.1587 
IV 4.70 0.0866 0.9997 0.4526 

'The energy balance is included in the model (enthalpy data are given in Table 
4); see also Figure 6. 

The transfer function from molar reflux L to top compo- 
sition y ,  may be written: 

Write the transfer-function from D to y ,  on the form: 

Note that the constant terms in the polynomials n ,  (s) and d ( s )  
are equal to 1. Stability implies that all ai's in Eq. 29 are 
positive. A material balance around the condenser yields (as- 
suming perfect level control): 

where Vr denotes vapor flow to the condenser. Next consider 
the energy balance, and let H " ( y , )  denote the molar enthalpy 
of the vapor with each component as pure saturated liquid at 
column pressure as reference. For simplicity we will here as- 
sume saturated liquid feed and neglect changes in the liquid 
enthalpy with composition. An overall energy balance then 
yields (see Appendix for details): 

where 

A," = A " ( y B )  ; A :: = A ( y r )  (32) 

y ,  is the composition of the vapor leaving the reboiler and is 
assumed to be in equilibrium with x,. y r  is the composition 
of the vapor on the top stage, which at steady state is equal 
to y,. Inserting Eq. 31 in the material balance (Eq. 30) and 
differentiating yields for a binary mixture: 

the section on instability with D, V-configuration). We will 
again employ the Routh-Hurwitz criterion to derive a sufficient 
condition for instability and hence need an expression for where the transfer functions from D to yB and y ,  may be 

written: aL) v(~). 
1472 September 1994 Vol. 40, No. 9 AIChE Journal 



Table 4. Saturated Molar Enthalpies (kJ/mol) for Methanol- 
Propano1 System at a Pressure of 1 atm* 

H:= 16.(j7e~'087x~ 
H,'= 13.49e- 98x, + 43.97e-0 OSh, 

'Reference state: Pure components as liquid at 0°C. x ,  denotes mole fraction 
methanol in liquid phase. 

since all the transfer functions share the pole-polynomial d (s) . 
Finally, inserting Eqs. 29, 33, and 34 into Eq. 28 yields 

(4) In industrial practice it is more common to specify the 
heat input to the reboiler QB rather than the molar boilup 
V= QB/AWap. In many cases the molar heat of vaporization 
AHvap is nearly constant and the LQB-COnfigUratiOn is very 
similar to the L V-configuration. However, the instability we 
find with the L V  configuration is related to changes in the 
heats of vaporization and we therefore need to consider whether 
the instability persists with the LQB configuration. Assuming 
(ayD/aD),,(s) stable and neglecting changes in liquid enthalpy 
with composition yields: 

J 

Applying Routh-Hurwitz stability criterion to the pole-poly- 
nomial in Eq. 35 yields: 

as a sufficient condition for instability with the LV configu- 
ration. Comparing Eqs. 36 and 33 finally yields that instability 
will occur if (aL/aD) ,>O at steady state. 

Remarks. (1 )  In the above derivation we have assumed a 
binary mixture such that the saturated vapor enthalpy, I?', is 
a function of one composition only (pressure is assumed con- 
stant) as shown in Eq. 32. We have also selected the reference 
state for energy such that it is reasonable to set the liquid 
enthalpy equal to zero at all stages, that is, H f = O  (see Ap- 
pendix for details). This assumption is very good for many 
mixtures. 

(2) From the exact steady-state balances D =  VT 
- L = F +  V -  LB we derive for F constant the following equiv- 
alent steady-state conditions for instability: 

(g) ">O* (z) v >  1 * (2) V <o (37) 

as a sufficient criterion for instability with the LQB configu- 
ration. According to Eq. 38 instability is unlikely eith the LQB 
configuration in the usual case where dHv/dy < O  and k f 3 < 0 .  
Thus, while the energy balance may cause instability with the 
LV configuration it is unlikely to cause instability with the 
LQB configuration. The exception is for cases where d B v /  
dy>O for which Eq. 38 predicts that instability may occur. 
Note that we have in deriving Eq. 38 neglected changes in 
liquid enthalpy with composition and that instability with the 
LQB configuration is possible also in the normal case when 
this assumption is removed. However, we do not include any 
proof here since instability in this case only is predicted in 
regions of operation where the internal flows are unrealistically 
high. 

The fact that the energy balance is unlikely to yield instability 
with the LQB configuration does not render the results for the 
L V-configuration of no interest from a practical viewpoint. 
First, some industrial columns are effectively operated with 
molar boilup Vas an independent input. This is usually achieved 
by inferring the boilup rate V from the differential pressure 
across a column section and manipulating QB to keep the boilup 
constant (Kister, 1990). Secondly, many simulation models use 
the molar boilup Vas a specification rather than the heat input 
QB. Our results show that it may be crucial to choose the 
correct specification in simulations in order to correctly predict 
the behavior of the real column. 

Thus, we find that an unstable operating point corresponds to 
a situation where at steady state an increase in liquid flow, L, 
in the top of the column, yields a decrease in liquid flow, Lg, 
at the bottom of the column (to observe this in practice one 
would need feedback to stabilize the operating point). 

(3) Since (ay,/aD) usually is negative at steady-state (see 
Appendix I in Jacobsen and Skogestad, 1991; counter ex- 
amples are given by Jacobsen, 1993), we see from Eq. 28 that 
the instability condition (X./aD) v(0) > O  corresponds to 
kiL = (ayD/aL) v(0) < O .  That is, at the unstable operating points 
we have the unexpected situation where the separation gets 
worse with increasing reflux. This is in accordance with the 
numerical results in Figure 6 .  
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Effect of operating conditions on stability 
From Eq. 36 we see that the probability of instability with 

the LVconfiguration will increase with internal flows (that is, 
V ) .  This is similar to what was found for the instability caused 
by a singularity in the input transformation with the L,Vcon- 
figuration. 

If we assume ideal vapor phase and neglect the small con- 
tribution from vapor heat capacity, we have for a binary mix- 
ture: 

AV(y)=yAH\;aP+(l -y)AHyaP (39) 
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and we derive dHv/dy  = MyP - AHpp which is the difference 
in heats of vaporization for the light and heavy component at 
their boiling point. Usually, the most volatile component has 
the smallest heat of vaporization and we get dR"/dy<O. We 
also usually have k;; < 0 and kf'< 0 (Jacobsen and Skoges- 
tad, 1991), and we see from Eq. 36 that in this case instability 
is most likely when Ikzl is large relative to Ikf'I, which 
corresponds to having high purity in the top relative to the 
bottom. Note that this is different from what was found for 
the instability caused by the transformation between molar 
and mass reflux for the L,V configuration where instability 
was found to be most likely with a relatively impure top prod- 
uct. 

Figure 7 shows the stable and unstable regions in terms of 
boilup V and distillate flow D for the methanol-propanol col- 
umn with the L V configuration. For low internal flows, that 
is, low values of V ,  we see that there is no unstable region and 
thus a unique stable operating point for all values of L .  For 
values of V above 2.56 kmol/min there exist a region of un- 
stable operating points and, as expected from the analysis 
above, the unstable region expands with increasing I/, that is, 
increasing internal flows. We also see from Figure 7 that for 
high values of D, corresponding to low purity in the top relative 
to the bottom, there are no unstable operating points. This is 
true even at high values of the internal flows, and is also as 
expected from the above analysis. 

The borders between the stable and unstable regions in Fig- 
ure 7 correspond to limit-points with the L V configuration 
and locally there are thus two steady-state solutions around 
these points. 

Note that we in our derivation of Eq. 36 as a sufficient 
criterion for instability neglected changes in the liquid enthalpy 
with composition while the region of unstable operating points 
in Figure 7 was computed using a model with composition 
dependent liquid enthalpy. Because of this the unstable region 
is not predicted exactly by the criterion (Eq. 36). However, we 
note that the instability criterion (aL/aD) 40) = 0 Predicts the 
unstable region in Figure 7 exactly. This is not surprising as 
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the border between the stable and unstable regions corresponds 
to ( $ ~ , / a L ) ~ ( s )  being singular, that is, it has a single zero 
eigenvalue at the border, and from Eq. 28 we see that this 
corresponds to having (aL/aD)  ' (s) singular or (aD/ 
aL) 40) = 0. 

Combining mass flows and energy balance 
Jacobsen and Skogestad (1991) show that both types of 

multiplicities may be present in the same region of operation. 
They show that a column operating with the L,V-configuration 
may have up to five different steady-state solutions, two of 
which they find to be unstable. 

Figure 8 shows the stable and unstable operating regions in 
terms of boilup V and distillate flow D for the methanol- 
propanol column with the L,V configuration and the energy 
balance included in the model. The unstable region appearing 
in the upper part of the figure is caused by singularities in the 
transformation from L ,  to L while the unstable region in the 
lower part is due to the presence of the energy balance. As 
seen from Figure 8, the two regions coincide at high values of 
V ,  that is, high internal flows, and all solutions are therefore 
unstable for V >  12.2 kmol/min. 

Note that all the unstable operating points have only a single 
RHP pole. Some readers might believe that both types of 
instability may be present in some operating points thereby 
possibly giving rise to two unstable poles. However, instability 
with the L V-configuration, due to energy balance effects, cor- 
responds to (ay,/aL) 40) < 0 which implies that instability due 
to the input transformation is not possible according to Eq. 
21 (when MI < M 2 ) .  

Instability with D,V-Configuration 
We have so far only considered using reflux and boilup as 

independent variables. However, as discussed in the introduc- 
tion, there are many possible configurations. For instance, 
changing condenser level control from using distillate D ,  to 
using reflux L ,  results in the D,V-configuration. Jacobsen and 
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Skogestad (1991) show that multiplicity is unlikely with this 
configuration. Dynamically, with perfect level control, the op- 
erating points are found to be asymptotically stable in all 
examples we have considered. However, here we show that 
without the assumption of perfect level control an operating 
point may become unstable also with the D,V-configuration. 
We start by considering an example and will then explain the 
results thereof using analytical results. 

27.72 0.73 

Methanol-propanol example 
Consider the methanol-propanol column in Table 1. The 

holdups in the reboiler and condenser are increased to MD/ 
F =  M,/F= 5.0 min. We consider the case with constant molar 
flows, and use distillate flow D, and boilup V as independent 
inputs, that is, D,V-configuration. With this configuration the 
condenser level is controlled by reflux L ,  and the reboiler level 
is controlled by bottoms flow B",. The nominal operating point 
we consider has D,= 18.36 kg/min and V= 2.0 kmol/min. For 
these specifications we obtain y,= 0.9237 and x, = 0.0078, and 
the steady state is unique. Note that the operating point cor- 
responds to solution 111 in Table 2 and Figure 2, that is, the 
operating point is unstable with the L,V-configuration. 

We now consider the response for different gains K M ,  in the 
condenser level controller. A pure proportional controller is 
used, that is, dL,(s) = K M D d M D W ( s ) .  We assume perfect level 
control in the reboiler. The upper part of Figure 9a shows the 
response in top composition y D  to a small increase in D,, 
keeping V constant, with the level controller gain K M , =  0.10. 
We see that the response is stable and slightly oscillatory. The 

lower plot in Figure 9a shows the corresponding phase plot 
for y ,  and B,, and we see that the steady state is a stable spiral 
attractor (sink). Figure 9b shows the corresponding response 
with KMD reduced to 0.05. The response is now more oscillatory, 
but the steady state is still a stable spiral. With K M ,  reduced 
to 0.03 the operating point becomes an unstable spiral (source) 
as seen from Figure 9c. However, the response settles into a 
stable periodic behavior. This implies that there, in addition 
to the unstable steady state, is a solution correponding to a 
stable limit cycle. 

The fact that the steady state changes from a stable spiral 
to an unstable spiral as the level control gain is reduced implies 
that a pair of complex conjugate eigenvalues cross the ima- 
ginary axis. This may be seen from Figure 10a which shows 
the largest eigenvalues as a function of level control gain 
KMD, that is, the root locus. We see that as the gain is reduced 
below a value of 0.043, the eigenvalues cross the imaginary 
axis, and the operating point becomes unstable. The fact that 
a pair of complex conjugate eigenvalues crosses the imaginary 
axis as K M ,  is reduced below a certain value implies that the 
column undergoes a Hopf bifurcation and a limit cycle results 
as the steady state becomes stable. The bifurcation is super- 
critical in this case as the resulting limit cycle is stable (see for 
example, Guckenheimer and Holmes, 1983). 

Conditions for instability 
To understand why the steady state for the D,V configu- 

ration becomes unstable, consider the transfer function (ay,/ 
~ 3 D , ) ~ ( s )  which may be written: 
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Here the transfer function (ay,/aL,) v (s )  expresses the effect 
of reflux on top composition with the L,V-configuration. For 
simplicity we consider only the largest pole in the transfer 
function: 

- h, (h) (s) = k;kvN - 
aL, S -  h, 

Here h, denotes the largest eigenvalue with the L,V-config- 
uration, and as we have seen it may become positive, either 
because of  the input transformation or because of the energy- 
balance effects. Here we consider the first case only, that is, 
we assume constant molar flows. However, similar results are 
obtained for cases where the instability is caused by the energy 
balance. 

may be computed from 
a material balance around the condenser: 

The transfer function (aL,/aD,) 
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Rearranging and using Vrw = VTM and assuming constant mo- 
lar flows such that dVT= dV yields: 

Here y T  denotes the composition of Vr We consider only the 
dominant response and get (ayJaD,.) ,,(s) = (ay,/aD,) , ( s ) .  
Inserting Eqs. 41 and 43 into Eq. 40 yields: 

The two eigenvalues (poles) of the transfer function (Eq. 44) 
become: 

Figure 10b shows the root locus for the methanol-propanol 
column computed using Eq. 45, and we see that the simple 
expression of this equation yields a reasonable prediction of 
the behavior of the full model in Figure 10a. The deviation is 
explained by the assumption of first-order response and neg- 
ligible condenser holdup in the analytical treatment. 

Let us now use Eq. 45 to  consider the stability of the D,V 
configuration for the two cases when the operating point is 
stable or unstable with the L,V configuration. 

(1) Stable L,V-configuration (X,.<O and k,&Vu >O): In this 
case the first term in Eq. 45 is negative for all values of KMD >O. 
Furthermore, the second term under the root in Eq. 45 is 
negative and the root will be real with a value less than 
( K M D - h , ) ,  or it will be imaginary. This implies that both 
eigenvalues in Eq. 45 are in the LHP,  that is, the D,V-con- 
figuration is stable for all values of KM,>O. 

(2)  Unstable L,V-configuration (h,>O and k$gW <O): In 
this case the first term in Eq. 45 is positive if KM,<h, ,  that 
is, a t  least one of the eigenvalues in Eq. 45 are in the R H P  
with KMD< h,. The size of KMO will determine whether the root 
in Eq. 45 is imaginary. For KMD = A,, that is, a t  the bifurcation 
point, the root is imaginary if ( -  k;$)V,(M, -Mi) > 1 (note 
that we also assume M,>Mi).  From Eq. 17 we get with s=O 
that k t ~ ~ ~ = k ~ ~ ~ / [ M - L ( M , - M , ) k $ ~ ] ,  and we find that the 
root is imaginary if: 

V~(M2-Mi)k.b; , (46) 
L ( M 2  - M i  )k-iL - M 

which is always satisfied since the denominator is positive and 
V T z L .  Thus, under the assumption of first-order response in 
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Eq. 41, the bifurcation point will always correspond to a Hopf 
bifurcation and a limit cycle is born as the steady state becomes 
unstable. In all examples that we have studied the bifurcation 
is supercritical, that is, the resulting limit cycle is stable. 

We conclude from the above analysis that a prerequisite for 
instability with the D,V configuration is that the operating 
point is unstable with the L,V configuration. This is not sur- 
prising as the level control for the D,V configuration may be 
viewed as a feedback effect on the L,V configuration. If the 
feedback control is not sufficiently tight then we are not able 
to stabilize the column. With a gain K,,=O, that is, no con- 
denser level control, we see from Eq. 45 that there will be a 
RHP pole at A, (in addition to a pole at 0), and we effectively 
have the stability properties of the L,V-configuration. This 
may also be seen from the root locus in Figure 10a for 

Also other configurations may display the type of instability 
found with the D,V configuration above. For instance, it is 
easily shown that the L,,B,-configuration becomes unstable if 
the L,  V configuration is unstable and the reboiler level control 
is not sufficiently tight. The instability is also in this case 
resulting from a Hopf bifurcation. 

K M , = O .  

Discussion 
Use of volumetric flows 

In this article we have only discussed using inputs on a mass 
basis, for example, reflux L ,  in kg/min. In many columns the 
flows are fixed on a volume basis [m3/min]. If this is the case, 
and we assume ideal mixing, the molecular weights MI and M2 
(for example, in Eq. 21) should be replaced by the molecular 
volumes V ,  = M , / p ,  and V, = M 2 / p 2  where pi is the liquid density 
in kg/m3 of component i. For most mixtures the difference in 
liquid density between the components is small, and very sim- 
ilar results are obtained with volume flows as those obtained 
with mass flows. 

Industrial columns 
The methanol-propanol column that we have studied in this 

article is not optimally designed for the product compositions 
at operating point 111 in Table 2. In fact it is doubtful that 
the column would be unstable when optimally designed as the 
internal flows then would be significantly smaller. This is prob- 
ably true for many separations, that is, an optimally designed 
column will be open-loop stable. However, few industrial col- 
umns are operated close to the optimal operating point. One 
reason is that the desired compositions will change after the 
column is built. In addition, many operators prefer to use high 
internal flows (overpurification) in order to assure that spec- 
ifications are kept when disturbances enter the column. It is 
therefore likely that many industrial columns may have prob- 
lems with open-loop instability. The fact that this has not been 
reported previously is probably due to the fact that open-loop 

system where we assume feedback control of pressure and the 
two levels. One may ask whether the observed instability is a 
fundamental property or if it is an artifact caused by these 
feedbacks. We argue that it is indeed a fundamental property. 
Consider the L,V or LwQB configuration for which instability 
is most likely to occur in a practical situation. It is easily shown 
that the instability in this case is independent of the level 
control. Next consider the pressure. First, there are many cases 
where pressure may be kept constant without the need for 
feedback. As an example consider a typical lab-scale distillation 
column with an open vent to the surroundings, and where the 
pressure is “self-regulated’’ since the cooling adjusts itself to 
maintain atmospheric pressure at the top. Secondly, for the 
case of constant molar flows and constant relative volatility 
(independent of pressure), our analysis would be the same if 
we assumed constant cooling duty Q D  rather than constant 
pressure. This follows since Q D =  VT/Hr (Appendix 1) where 
HF is independent of composition when we have constant mo- 
lar flows. Thus, QD constant implies that V,  is constant such 
the vapor flow remains constant up the column. Also, if the 
relative volatility is independent of pressure, (ayD/aL) is the 
same both when p or V, is constant. In conclusion, the insta- 
bility for the L,V-configuration is not caused by feedback 
control of level and pressure. 

On the other hand, for the D,V configuration the feedback 
control is critical for the observed results. Indeed, without any 
condenser level control the D,V configuration behaves as the 
L,V configuration. It is therefore unstable with sufficiently 
slow level control when the L,V configuration is unstable, but 
the level control may stabilize the system, and yield, for ex- 
ample, the stable limit cycle as shown in Figure 9c. 

Conclusions 
(1) Two-product distillation columns operating with reflux 

and boilup as independent inputs may be open-loop unstable 
with a single right half plane pole. Two different effects may 
cause the instability: 

Singularities in the transformation between the actual in- 
put units (mass or volume) and the molar units which determine 
separation. 

Singularities between molar flows and compositions due 
to interactions through the material and energy balance. 
In both cases the probability of instability is increased with 
increased internal flows. 

(2) Distillation columns operating with distillate flow and 
boilup as independent variables may have unstable operating 
points if the condenser level control is not sufficiently tight. 
The instability will in this case correspond to a Hopf bifur- 
cation, that is, a pair of complex conjugate eigenvalues cross 
the imaginary axis and a limit cycle (usually stable) is born as 
the steady state becomes unstable. A prerequisite for instability 
with this configuration is that the operating point is unstable 
with reflux and boilup as independent variables. 
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and Skogestad (1991b) we discuss in detail the effect of 
instability on column operation and control. 
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Notation Is the instability caused by feedback? 
B = bottoms flow (kmol/min) 

All the results in this article are for a partially controlled d ( s )  = 1 +a,s+ . . . . -pole polynomial 
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D =  
F =  

HL 5 

HV 5 

f i V  = 

A j p P  5 

kuy;y = 

KMD = 
K =  

L =  
LHP = 

M =  
M I  = 
M, = 
MB = 
M, = 
M L  = 

n ( s )  = 
N =  
NF = 
q F  = 

QB = 
Q D  = 

RHP = 

V =  

v, = 

s =  

x, = 
x,  = 

Y B  = 

YD = 

Y, = 
YT = 
ZF = 

distillate flow (kmol/min) 
feed rate (kmol/min) 
saturated liquid enthalpy (kJ/mol) 
saturated vapor enthalpy (kJ/mol) 
saturated vapor enthalpy (kJ/mol) with pure components 
as saturated liquids at column pressure as reference state 
heat of vaporization of pure component 
steady-state gain from input u ,  to output y with uluz con- 
figuration 
slope of equilibrium line 
condenser level control gain 
reflux flow rate (kmol/min) 
left half plane 
molecular weight, usually of top product (kg/kmol) 
molecular weight of most volatile component (kg/kmol) 
molecular weight of least volatile component (kg/kmol) 
reboiler holdup (kmol) 
condenser holdup (kmol) 
stage liquid holdup (kmol) 
1 + b,s + . . . . - numerator polynomial 
number of theoretical stages in column 
feed stage location (1-reboiler) 
liquid fraction in feed 
heat input to reboiler (kJ/min) 
heat removal in condenser (kJ/min) 
right half plane 
Laplace variable 
boilup from reboiler (kmol/min) (determined indirectly by 

vapor flow to condenser (kmol/min) 
mole fraction of most volatile component in bottom product 
liquid mole fraction of most volatile component on stage i 
vapor mole fraction of most volatile component in equilib- 
rium with xB 
mole fraction of most volatile component in distillate (top 
product) 
vapor mole fraction of most volatile component on stage i 
mole fraction of most volatile component in V ,  
mole fraction of most volatile component in feed 

QB ) 

Greek letters 
(Y = ( y , / x , ) / [ ( l  - y , ) / (  1 - x , ) ]  relative volatility (binary mixture) 
X = eigenvalue (pole) of system 

A,,, = eigenvalue with largest real part 
zL = hydraulic time constant (min) 

Subscripts 
0 = initial steady-state value 
1 = most volatile component 
2 = least volatile component 
i = stage no. 

w = flow rate in kg/min 
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Appendix: Simplification of the Energy Balance 
The energy balance on a stage without external heating or 

cooling is: 

Here subscript i denotes stage-number (reboiler is stage l ) ,  
H v ( y )  and H L ( x )  denotes vapor and liquid enthalpies re- 
spectively and H F  feed enthalpy. Vapor holdup has been ne- 
glected. We also assume constant pressurep, and we then have 
dUk = dHk . 

As the reference state for energy we select the pure com- 
ponents as saturated liquids at pressure p (the column pres- 
sure). Note that this means that the reference temperature for 
each component will be different, since their boiling points 
generally differ. Then, under the assumptions of no heat of 
mixing, equal heat capacities for the components and a linear 
boiling point curve we get H: = 0 on all stages (this is a common 
assumption in distillation which yields “constant molar flows” 
if we in addition assume the same heat of vaporization for all 
components). Also assume that the feed is saturated liquid so 
that Hr=O.  With these assumptions the energy balance (Eq. 
47) becomes: 

where we have used the notation H to explicitly show that this 
only holds when the saturated pure liquids are used as reference 
state. The corresponding energy balance for the entire column 
then becomes: 

where VE = V and VT represent the vapor flows in the bottom 
and top of the column, respectively. 
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