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Control of Symmetrically Interconnected 
Plants* 
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The symmetric circulant structure of  many plants, including paper mach- 
ines and distribution networks, is used to simplify the controller design for 
both 142- and H~-control, and to obtain super-optimality in the H®-case. 
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Airliner--This paper is concerned with control of plants 
composed of n similar interacting subsystems. Such plants 
are common in practice and include paper machines, 
distribution networks, coating processes, and plants consist- 
ing of units operating in parallel. The transfer function 
matrices for these systems are block symmetric circulant. For 
H®- and H2-optimal control, controller synthesis is simplified 
by considering n/2 + 1 independent problems of dimension n 
times smaller than the original problem. For the case of 
H.-optimal control this also yields 'super-optimality', where 
the H~ criterion is optimized in n directions, and not only in 
the worst direction. If the offdiagonal blocks ('interactions') 
are identical the matrix is termed block parallel, and 
controller synthesis involves only two independent sub- 
problems of the same dimension as the subsystems. This 
leads to a dramatic reduction in dimension for systems 
composed of many subsystems. 

1. INTRODUCTION 

WHENEVER POSSIBLE, one should make use of any 
special properties of the system in order to 
simplify control system analysis or design. In this 
paper we study systems consisting of symmetri- 
cally interconnected subsystems, which we define 
as systems whose transfer function matrix has 
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the following symmetric circulant structure: 

6 ( s )  = 

" ~'(S) /~1($) /~2(S) /~3($) " ' "  ~2(  s ) ~I(S)" 

~1($) dr(S) ~1($)  j~2(S) ~3($)  " ' "  ~2 ( s )  

th(s) " ' .  
• • ° , ° 

. . . . .  • 

" .  "" ~2(S)  ~ l ( S )  Of(S) ~ l ( S )  [~2(S) 

th(s) " ' "  th(s) th(s) a (s) 
~l(S ) j~2($) " ' "  ~3($)  ~2(S)  ~ l ( S )  fit'(S) 

(1) 

The n diagonal elements o~(s) denote the 
transfer function of the individual subsystems, 
and the offdiagonal elements f l j ( s ) ,  i = 1, k - 1, 
denote the interactions• The number of different 
transfer function elements in G(s) is k =  
n n - 1  
~ + 1  (n even) or k = T + l  (n odd). For 

MIMO subsystems, both t~(s) and fli(s) are 
matrices, and we terra the corresponding G(s) in 
equation (1) a block symmetric circulant matrix 
consisting of n × n blocks. 

Systems consisting of symmetrically intercon- 
nected subsystems constitute an important class 
of large-scale systems where there may be a clear 
advantage of using multivariable control and 
where it is actually used in practice. The class 
includes a large number of systems that have 
some kind of symmetric planar arrangement. 
One important industrial example is the 
cross-directional control of paper machines if 
edge effects are neglected (Wilhelm and Fjeld, 
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1983, Laughlin et al., 1992). Other examples 
include multizone crystal growth furnaces 
(Abraham and Lunze, 1991) and dyes for plastic 
films (Martino, 1991). Brockett and Willems 
(1974) point out that this type of systems arise in 
lumped approximations to partial differential 
equations. The burner furnace of Rosenbrock 
(1974, p. 197) is also on a form very similar to 
(1). Additional examples are given in the 
discussion of parallel systems below. 

1.1. Parallel systems 
To simplify the analysis, we will concentrate 

the discussion in this paper on an important 
subclass of these systems where the interactions 
between the subsystems are identical, i.e. 

ill(s) = fl(s) Vi. (2) 

With n nominally identical subsystems the 
transfer matrix of the plant consisting of n × n 
blocks may be written 

a ( s )  

t (s) 

G ( s ) =  t (s) 

t (s) 

t (s) t (s) " "  

a ( s )  t (s) " "  t (s) 

t (s) 

: t (s) 

t (s) "-"  t (s) 

(3) 

We have not found any name for the matrix (3) 
in the literature, but we shall refer to it as a 
block parallel matrix in the following, as we 
believe that transfer function matrices of the 
form of G(s) in equation (3) occur pre- 
dominantly for nominally identical, interacting 
processes in parallel. The type of system in 
equation (3) is termed a 'symmetrically intercon- 
nected system' by Sundareshan and Elbanna 
(1991), and 'symmetrically composite systems' 
by Lunze (1986). However, as already noted 
above, we will use these terms in a more general 
sense to include also the block symmetric 
circulant systems in equation (1), and we will 
refer to the special cases described by equation 
(3) as 'parallel systems'. 

Parallel systems occur whenever there are 
similar, interacting subsystems operating in 
parallel. Examples are found in distribution 
networks, when there are parallel units (e.g. 
reactors, compressors, pumps, heat exchangers) 
in a chemical plant (Shinskey, 1979, 1984), for 
electric power systems operating in parallel 
(Lunze, 1986, 1991), for adhesive coating 
processes (Braatz et al., 1992), or for com- 
munication between ships (Hazewinkel and 
Martin, 1983). Additional examples are given by 
Sundareshan and Elbanna (1991) and in Section 
2. 

1.2. Previous work 
A number of the important properties of 

circulant systems, which we make use of in this 
paper, are given in the paper by Brockett and 
Willems (1974), who study in particular state 
controllability and observability of such systems. 
They also point out that the special structure of 
the plant may be used to simplify the controller 
design for the case of least squares (HE) optimal 
control. Circulant systems are also discussed by 
Hazewinkel and Martin (1983). Lunze (1986) 
studies parallel systems and points out they may 
be transformed into one subsystem describing 
the average state and n - 1 identical subsystems. 
He makes use of this property to study state 
controllability and observability, as well as 
stability of the closed-loop system under 
decentralized control. Lunze (1989) extends 
these results to include a robust stability 
analysis. Lunze's model formulation can take 
account of a variety of different uncertainties 
and model errors. However, he does not account 
for the structure of the uncertainty, which can 
lead to very conservative results, as shown in 
Hovd (1992). Sundareshan and Elbanna (1991) 
also study conditions for state controllability and 
observability of parallel systems and they present 
in addition results for controller synthesis. They 
present solutions to the matrix Riccati and 
Lyapunov equations, and show that the solution 
is considerably simplified since one can solve the 
problems of considerably lower dimensions. In 
an application paper Tr~ichtler (1991) studies 
some plants with structure similar to (1), 
including a flexible structure, and makes the 
assumption that the optimal controller has the 
same structure as the plant. Decentralized 
control of symmetrically interconnected systems 
is considered by Lundstr6m et al. (1991). 

1.3. Insights for parallel systems. 
We now want to give the reader some insight 

into how we, as described in the references 
above, may make use of the special structure in 
equation (3) to simplify analysis and design. 
Consider the case when a and fl are scalars and 
rewrite the system as 

Y l  = o l u t  + f l u 2  + f l u 3  + " " " 

Y2 = flUl + Oag2 "]- f l U 3  -{- " " " 

))3 = f l U l  + f l U 2  + OCU3 + " " " 

: (4) 

Adding together all the n outputs yields 

~, Yi = (t~ + (n - 1)fl)ul + (a" + (n - 1)fl)u2 + - . -  
i 

= (or + (n - 1)fl)~'~ u,. (5) 
i 
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We thus note that we have a completely 
decoupled subsystem between the input u'l = 

ui and the output y'l = E Yi, and it is also 
i i 

clear that tr + ( n -  1)fl is an eigenvalue for the 
overall system G(s). Next consider differences 
between two outputs. We get 

)'2 - Yl = (fl - tr)ul + (t~ - ~)u 2 

= (el - fl)(u2 - uO. (6) 

Thus we have another decoupled subsystem in 
terms of the input u~ = u 2 -  u~ and the output 
Y~=YE-Y~ with eigenvalue ( t~-f l ) .  Similar 
arguments for the other differences gives that 
there are a total of ( n -  1) subsystems with 
eigenvalues ( t r -  fl). Thus we have found that 
the plant in equation (3) has at most two distinct 
eigenvalues given by (tr + (n - 1)fl) and (a~ - r )  
(Lunze, 1986), and the physical reasoning 
concerning the sum and ( n - l )  differences 
directly provides a physically motivated set of 
eigenvectors which may be used for diagonaliz- 
ing G(s) in equation (3). 

In terms of controller design it seems likely 
that the optimal controller will have the same 
structure as that of the plant. This assumption 
limits the degrees of freedom, but does not 
necessarily simplify the controller design. How- 
ever, equations (5) and (6) directs us towards a 
procedure where we may independently design 
controllers for two subplants: one describing the 
'average' behavior (or sum) and one describing 
the 'distance from the average'. This idea also 
follows from the work of Fagnani and Willems 
(1991) who approach the problem from a 
mathematical point of view by considering more 
general symmetries. The idea of designing one 
controller for the 'average' and n -  1 (or n) 
identical controllers for the 'distance from 
average' has also been used in practice [e.g. for 
paper machine control (Wilhelm and Field, 
1983) and for control of fired heaters with 
several parallel passes (Shinskey, 1984, p. 104)]. 

Clearly, if control performance is defined in 
terms of the 'new' outputs (i.e. the 'average' and 
'difference from the average') then an independ- 
ent controller design for each subsystem is 
optimal. However, if performance is defined in 
terms of the 'original' outputs Yi then this may 
not be the case. The transformation from the 
'original' outputs to the 'new' outputs is given by 
the eigenvector matrix for the diagonalization. It 
turns out that a key step is to use an orthog- 
onal eigenvector matrix, for example the Fourier 
matrix, rather than the physically motivated 
eigenvector matrix introduced above [since we 
have (n - 1) eigenvalues that are not distinct, we 
have freedom in selecting the eigenvector 

matrix]. With an orthogonal eigenvector matrix 
we can make use of the fact that the /-/2 and 
/-/=-norms are invariant under unitary scalings. 

These results on parallel systems can be 
extended directly to include the more general 
block symmetric circulant transfer matrices in 
equation (1). For a n x n plant, we show that 
one may simplify the controller design for the 
HE- and //=-norm by designing n / 2 +  1 inde- 
pendent controllers (for n even) rather than a 
large n x n controller. 

For the HE-case the resulting simplifications in 
terms of controller synthesis are known from 
previous work (Brockett and Willems, 1974; 
Sundareshan and Elbanna, 1991), but our 
approach is quite different and somewhat more 
general. The main emphasis in this paper is on 
/-/=-case for which the results are new, and where 
we in addition to achieving a much simplified 
controller design, also directly get a 'super- 
optimal' controller that optimizes all directions. 
For the HE-norm the controller is always unique 
and we do not have the additional advantage of 
super-optimality. 

1.4. Extensions 
Two other generalizations are considered in 

Hovd and Skogestad (1992) and Hovd et al. 
(1993): (1) The results may be generalized to 
plants that may be diagonalized using constant 
unitary matrices. We then generally find that the 
controller has the form of a Singular Value 
Decomposition (SVD) controller. This is indeed 
the case for the plants considered in this paper, 
but this is of somewhat minor significance in our 
case since the SVD is not unique in our case. (2) 
It is also possible to include robustness 
considerations and still achieve significant 
simplifications in the controller design. We show 
that this is the case when the objective is to 
optimize robust performance within the H= 
framework, i.e. using the Structured Singular 
Value of Doyle (1982). 

2. N O T A T I O N  

In this paper, G(s) denotes the plant, which is 
assumed to consist of n symmetrically intercon- 
nected subsystems, each subsystem of dimension 
no Xni. The plant G(s) therefore has the 
dimension n . n o  x n  .hi. The controller is 
denoted K(s), and S(s) = (1 + G(s)K(s) )  -1 de- 
notes the sensitivity function. The Laplace 
variable s will often be suppressed to simplify the 
notation. The reference signal is denoted r, the 
manipulated inputs u, and the controlled outputs 
y. A block diagram of a feedback system is 
shown in Fig. 1. 

AUTO 30:6-C 



960 M. HovD and S. SKOOESTAD 

FIG. 1. Block diagram of a feedback system. 

Circulant and block circulant matrices are 
denoted C, and parallel and block parallel 
matrices are denoted P. Eigenvalues are denoted 
),, with two subscripts: a letter referring to the 
matrix of which A is an eigenvalue, and a 
number to distinguish the different eigenvalues 
of a matrix. Thus Axt is the first eigenvalue of 
the matrix X. The blocks on the diagonal of a 
matrix that is transformed to be block diagonal 
[see equation (33)] are denoted y; subscripts are 
used for ), in the same way as for ,L The matrix 
M is in general a matrix consisting of blocks 
which are block circulant, but M is also used for 
the matrix in the design objective, i.e. we want 
to optimize the H®-norm or H2-norm of M. The 
matrix N is the matrix in the design objective 
(M) expressed as a linear fractional transforma- 
tion (LFF) of the controller K. The matrix ,4 
denotes a matrix A that has been transformed 
such that it consists of blocks that are block 
diagonal. 

3. SIMPLE EXAMPLES OF PARALLEL PROCESSES 

In this section we present two simple examples 
of a parallel process of the form (3). To simplify 
notation we define for a system consisting of 
SISO subsystems the degree of interaction at 
steady state as 

a = fl(O)/c~(O). (7) 

Example 1. Flow spfitting. Consider controlling 
the flows of n parallel streams from a single 
source as shown in Fig. 2 (Shinskey, 1979, 
p. 201). The manipulated inputs ui are the n 
valve positions z~ and the controlled outputs y~ 
are the n flows q~ [m 3 s - l ] .  Opening value one 
causes ql (flow 1) to increase and q2 (flow 2) to 
decrease because of the reduction in header 
pressure. If there are two parallel streams the 
steady state value of a is expected to lie between 
-1  and 0. The value of zero would be obtained 
if the source was a large tank such that the 
header pressure was unaffected by increasing 
flow 1, and the value of - 1  would be obtained if 
the source was a pump with constant total flow 
q. For n parallel streams from a single source 
similar arguments yield at steady state 

- 1 / ( n  - I) -< a -< 0. (8) 

A value less than the lower bound - 1 / ( n -  1) 

Z1 

Z2 

Z3 

= ql 

q2 

q3 

FIG. 2. Splitting into parallel streams (Example 1). 

would imply that the total flow q is reduced by 
opening a valve and is unlikely in a practical 
situation. 

Example 2. Parallel reactors with combined 
precooling. In processing plants it is common to 
have units in parallel, either because one single 
unit would be too large or to add flexibility. 
Figure 3 shows n identical mixing tank reac- 
tors in parallel, with a common precooler. The 
cooling medium comes from a single source 
which is split into n streams and then completely 
evaporated by heat exchange with the reactors. 
The streams are then combined and this stream 
is superheated by precooling the reactor feed. At 
steady state all temperatures and flows in the 
parallel streams are assumed equal• Consider the 
transfer matrix G(s) between the flows qi 
(inputs) and the reactor temperatures T,. 
(outputs). By neglecting the dynamics of the 
evaporator and the superheater, the model G(s) 
can be shown (Skogestad et al., 1989) to be of 

"1 a a . . .  a 

a 1 a . . .  a 

a a 1 ". " , (9) 

" .  " .  a 

a a . . .  a 1 

the form 

k 
G(s) = 

T s + l  

Th 
perheated) 

T 

(liquid) 

F~c,. 3. Cooling system for parallel reactors (Example 2). 
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where k and a are real constants and • is the 
time constant for holdup in each of the reactors. 
Based on physical arguments we have 

- 1 / ( n  - 1) -<a -< 1. (10) 

The lower limit is obtained by considering the 
case with no precooler and assuming constant 
total flow (recall the parallel flow example 
above). The upper limit is obtained by 
considering the case with no heat exchange 
taking place in the tanks. In this case the streams 
q~ are split and then recombined without 
changing their temperatures, and an increase in 
any cooling stream will affect all reactor 
temperatures equally and we have a = 1. 

Note that G(s) is singular both for a =  
- 1 ~ ( n - l )  ( r a n k ( G ) = n - 1 )  and for a = l  
(rank ( G ) =  1). Obviously, when G is singular, 
independent control of the controlled outputs is 
not possible. An example of this is found in 
Braatz et al. (1992), who consider the cross 
directional control of a coating process for which 
a = - 1 / ( n  - 1). In this case we need only design 
one controller since we cannot do anything 
about the average. 

In many cases we have multi-input multi- 
output (MIMO) subsystems. For example, in 
Fig. 3, one may have 2 x 2 subsystems where we 
want to control temperature (T~) and concentra- 
tion (ci) in each tank, using cooling (qi) and flow 
(m~) as manipulated variables. 

4. RESULTS FROM MATRIX THEORY 

4.1. Circulant matrices 
The results in this section on circulant matrices 

are from Bellman (1970) and Davis (1979), and 
some of their important properties for control 
are given by Brockett and Willems (1974). The 
general form of a circulant matrix C is: 

IC cl C2 C 3 • . . C n 

Cn Cl C2 • . . Cn_ 1 

C =  ~-1 cn cl " ' "  c~-2 (11) 
: : • . .  : 

L C 2 C 3 C 4 • " "  C 1 

Circulant matrices belong to the class known 
as Toeplitz matrices, as all elements along any 
one diagonal are identical. Introduce v l=  
exp (2~t( /-  1)i/n) where i = ~ a n d  I = 1 . . . . .  
n. That is, vt is a root of the equation v n = 1. 
The eigenvalues of the circulant matrix C are 
given by Davis (1979): 

Acl=Ci +C2Vt+c3v~ + ' ' ' + c ~ v 7  -1. (12) 

The eigenvector corresponding to Act is: 

m, = [1 v, v 2 . . .  v~'-'l r. (13) 

Since vt can take n distinct values, C will always 
have a complete set of eigenvectors, and will 
thus always be diagonalizable. In fact, all 
circulant matrices of the same order have the 
same eigenvectors, and are therefore diagonal- 
ized by the same eigenvector matrix, the Fourier 
matrix. The Fourier matrix of order n is given by 
Davis (1979). 

1 
Fn  = ~nn [m, m 2 " -  m.l. (14) 

F is unitary ( F F n =  F n F  = I), and we have for 
any circulant matrix C 

C =  F n A c F ;  Ac =diag {Acl . . . . .  Ac,}. (15) 

Furthermore, we have for the singular value 
decomposition C =  LrZcV H that the singular 
values o l=  JAIl, and V = F  H, the eigenvector 
matrix, and U = FHD, where D = diag {dl}, 
dl = AI/IAI[ = Ai/ol(dl contains the phase of the 
/th eigenvalue). 

4.2. Symmetric circulant matrices 
Consider the case when C 2 = Cn, C 3 = Cn_l, e t c  

in equation (11), such that C is symmetric as well 
as circulant. Note that equation (1) is on this 
form with ot = c1, fll = c2 = cn, r3 = ca = cn-l, 
etc. Calculating the eigenvalues of a symmetric 
circulant matrix from equation (12), we find that 
it is only eigenvalues number 1 and n /2  + 1 (if n 
is even) that are distinct. All the other 
¢igenvalues appear in pairs such that Acp = 
Ac(~+2_p), for p ={2,  3 . . . .  , v}, where v =  
(n + 1)/2 if n is odd and v = n /2  if n is even. 

The eigenvectors corresponding to the distinct 
eigenvalues are real. Eigenvectors corresponding 
to repeated eigenvalues are not unique, and we 
may use this to construct a real eigenvector 
matrix R for symmetric circulant matrices. In the 
theory that follows it will be required that the 
eigenvector matrix is unitary. One possible 
choice for the real orthogonal eigenvector matrix 
is R = 1/Vn[rl . . . r~] with 

r l=m~ = [1 1 . - .  1] r (16) 

r(~/2)+1 = m t ~ ) + t  if n is an even number (17) 

1 
r, = - ~  (mp + mn+2-p) (18) 

i 
rn+2-p = ~ (mp - m,+2-p) 

f o r p = { 2 , 3  . . . . .  v}. (19) 

Note that mp is the complex conjugate of 
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TABLE 1. Fourier matrix, F n, and real, orthogonal eigenvector matrix, Rn, for symmetric circulant matrices of 
dimension n × n [see equation (16)-(19) for general case]. 

n /~, R~ 

n = 2  

n=3 

n = 4  

1[ 1 
1 

1 1 I] I] 
1 1 ] [: ~1 -0.5(1 + iVY) -0.5(1 - iVY) 1 1 V2 - -  - 0 . 5 V ~  0. 

-0.5(1 - iV3) -0.5(1 + iV~)[ V3 -0.5X/2 -0.5V~[ 

t 1 - i  - 1  I 1 0 - 1  
- 1  1 ~ - V ~  1 
i - 1  0 - 1  - V ~ . ]  

mn+2-p. In Table 1 we show the Fourier matrix F 
and the corresponding real orthogonal eigenvec- 
tor matrix R resulting from equations (16)-(19) 
for n = 2, n = 3 and n = 4. For diagonalization 
one has Ap = X P X  -l  where X = F  (Fourier 
matrix) or X = R (real, orthogonal matrix). 

4.3. Parallel matrices 
Consider the case with c~ = a~ and c2= c 3 = 

. . . .  cn = ft. This yields a parallel n x n matrix, 
P, with the general form in (3). All the 
properties derived above for circulant matrices 
and symmetric circulant matrices hold for the 
parallel matrix P. Specifically, the parallel matrix 
P has eigenvalues ~.m given by the formula: 

Ze, = o: + f l(v;  + v 2 + . . .  + v T - ' ) .  ( 2 0 )  

Note that 

l + v ~ + v 2 + . . . + v 7 - 1 = O  for v t ~ l .  (21) 

From equations (20) and (21) we see that that 
the matrix P will have at most two distinct 
eigenvalues given by 

~v, = tr + (n - 1)fl (22) 

~.~ = ~.P3 . . . . .  ~.Pn = tr - ft. (23) 

The eigenvector matrix for P can be any 
non-singular matrix with (some multiple of) m~ 
in the first column and columns 2-n orthogonal 
to column 1. One possible eigenvector matrix 
may be found from the physical considerations in 
the introduction. However, for controller design 
we shall need a unitary eigenvector matrix, and 
we will use the Fourier matrix F [we may instead 
use the real orthogonal eigenvector matrix R 
from equations (16)-(19) if we for computational 
reasons need to work with real matrices]. For 
realization of controllers we require the use of a 
real eigenvector matrix, but for this purpose the 
eigenvector matrix need not be orthogonal, as 
will become clear below. 

5. RESULTS F O R  SYMMETRICALLY 
I N T E R C O N N E C T E D  SYSTEMS 

5.1. Systems with SISO subsystems 
5.1.1. Diagonalization of  parallel systems. The 

matrix results above can be applied in a 
straightforward manner to the diagonalization of 
parallel transfer function matrices. For example, 
consider the parallel transfer matrix G(s)  in 
equation (3). From the results above we have 

G(s)  = X - 1 A ( s ) X  (24) l ~.c,(s) ] 
A(s) = Ac,2(s) (25) 

X~(s) 
where ).c,l(s) = re(s) + (n - 1)fl(s) and Ac,2(s) = 
t r ( s ) - f l ( s ) .  We see that the n × n process 
described by G(s)  has been decomposed into n 
non-interacting 1 x 1 subprocesses. One of these 
subprocesses, Zc, l(s) = a(s)  + (n - 0ff(s)  is dis- 
tinct, and the n - 1 other subprocesses ~.o2(S) = 
. . . .  ;t,(s) = a ( s ) -  fl(s) are equal. For a fixed 
value of s, ~.c;(s) is the ith eigenvalue of G(s).  
Three possible choices for X are: 

(1) X = F from equation (14); 
(2) X = R from equations (16)-(19); and 
(3) From the physical reasoning in the 

Introduction: [11 1] - 1  0 . . .  0 

X =  " " - .  " ' .  " . (26) 

1 - 1  0 

0 1 - 1  

5.1.2• Combinations o f  parallel systems. If A 
and B are parallel matrices of the same 
dimension and k; a scalar, then A r, A n , 

k lA  + k2B, AB ,  S, kiA i are parallel matrices and 
i 

A and B commute, that is, A B  = BA. Note that 
A- i  is also a parallel matrix. 
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For example, if both the process G and the 
controller C are parallel transfer function 
matrices, the sensitivity function S = (I + GC)  -~ 
and the complementary sensitivity function 
H = 1 - S are both parallel matrices. 

5.1.3. Systems consisting o f  circulant blocks. 
Consider a matrix M consisting of m~ x m2 
blocks which in general are different, but each 
block is a circulant matrix of order n. We shall 
call the class of such matrices CBm,,m2.~. The  
m a n y  results from the theory of circulant 
matrices do not hold for matrices consisting of 
circulant blocks. However, we can find some 
results which will prove helpful. 

• If Mt and M2 both belong to the class 
CBm,.m~., and aq and tr2 are scalars, then 
aqM~+tr2M2 also belongs to the class 
CBm,.m2.~ and M1 n belongs to the class 
CBs2.m,,,. If M1 belongs to the class 
CBs,.s2, ,  and ME belongs to the class 
CBm2,,,,., then M~M2 belongs to the class 
CBm,,m,.,. 

• For 'diagonalization' we have 

l~I, = (In, ® F.)M,(I,,,, ® F~) n, (27) 

where ® denotes the Kronecker product, 
and AI~ is a matrix with the same block 
structure as M~, each block in Mj being the 
(diagonal) eigenvalue matrix of the cor- 
responding block in M~. This is illustrated 
by an example. Consider 

MI = [ C~ C2 C3], 
C4 C 5 C6J (28) 

where C~, C2 . . . . .  C6 all are circulant 
matrices of order n. Mi then belongs to the 
class CB2.3,n. We then have 

M~ = (12 ~ Fn)Hff[l(13 ~ Fn) (29) 

(30) 

0 

(13®F~)= 0 F. (31) 

0 0 F. 

/ l ~ , = [ A c ,  ACE Aca],  (32) 
LAc4 Ac5 Ac6J 

where Ao- is the (diagonal) eigenvalue 
matrix of block C~. 

5.2. Systems with M1MO subsystems 
5.2.1. Block circulant and block parallel 

systems. The  matrix C in equation (11) is block 
eireulant if c~, c2 . . . . .  cn all are blocks of 
dimension no x ni. Note that the individual 
blocks ci need not be circulant, thus in general 

block circulant matrices are not matrices 
consisting of circulant blocks. For such a block 
circulant matrix C we can generate a block 
diagonal matrix 

= (Fn ® I,,,)C(Fn ® ln,) H, (33) 

where t~= diag {yl, ~/2 . . . . .  ~n}) and yl,  )/2 . . . . .  ~/n 

all have dimension no x n~ and can be calculated 
from the blocks of C using I cll ] 

y LC._l 

Proof. Follows from the proof of Theorem 5.6.4 
in Davis (1979), by setting Bk =In,,Ak+~lnl. If 
C2=C3 . . . . .  C, then we term the matrix C 
block parallel, and we have 

YCl = cl + (n + 1)c2 (35) 

Yc2 = 3'3 . . . . .  1', = c l - c2. (36) 

In this way, a symmetrically interconnected 
system C consisting of n units in parallel can be 
decomposed into one distinct subprocess Ycl and 
n - 1 equal subprocesses Yc2. 

5.2.2. Combinations o f  block circulant sys- 
tems. If A is a block circulant matrix with n x n 
blocks, each of size no x ni we have: 

• A n and A r are block circulant matrices with 
n x n blocks of size ni x no. 

• If A -1 exists, it is a block circulant matrix. 
• If B is block circulant, consisting of n x n 

blocks of size n i x  rib, then A B  is a block 
circulant matrix with blocks of size no x rib. 

• In general, block circulant matrices do not 
commute, A B  4: BA. 
5.2.3. Systems consisting o f  blocks which are 

block circulanr Consider a matrix N consisting 
of m, x mc blocks, each block being a block 
circulant matrix with n x n sub-blocks. Sub- 
blocks belonging to the same column of main 
blocks must have the same number of columns. 
Let n7 denote the number of columns of the 
sub-blocks in column c of main blocks. Likewise, 
sub-blocks belonging to the same row of main 
blocks must have the same number of rows, and 
we use n,~ to denote the number of rows in the 
sub-blocks of blocks in row r of main blocks. To 
illustrate, consider 

[Nn N12] (37) 
N = LN21 NEE J" 

Let N~I, N~2 N2~ and N22 all be block circulant 
matrices consisting of n x n sub-blocks, and let 
the sub-blocks of N o have dimension n~ x nT. 

- n p  n Then nio ' = nlo 2 = n~, n 21 = no 2 - no, = = 
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1 n] and nil 2= n/22=n, -2, but no may be different 
from n 2, and n~ may be different from n 2. 
Introduce the matrices 

~ = diag {F~ ® I~,,} (38) 

, ~  = diag {F~ ® 1,~}. (39) 

We then have that N can be 'diagonalized' by 
the following transformation 

IXl = ff'~N ~t~, (40) 

where N is a matrix consisting of blocks which 
are block diagonal, where each block of ~/can 
be calculated from the corresponding block of N 
using equation (34). 

6. CONTROLLER DESIGN FOR BLOCK PARALLEL 
SYSTEMS 

In this section we consider control of plants 
described by block parallel transfer function 
matrices, that is, matrices with the block 
structure shown in equation (3). Note that the 
blocks or(s) and fl(s) need not be parallel. We 
also assume that all weighting matrices used to 
represent uncertainty or performance are block 
parallel matrices. Physically this means that the 
performance requirements and uncertainties are 
the same for all subsystems. We will find that the 
result of the controller design is that the optimal 
controller is block parallel, such that the distinct 
subprocess Ycl(s) of the plant G(s) is controlled 
by the controller yrl(S) and the n -  1 identical 
subprocesses Yc2(s) are controlled by n -  1 
controllers all equal to yx2(s), and that ~,m(s) 
and yr2(s) both have dimension n; x no. The 
block parallel feedback controller K(s) will then 
have diagonal blocks k ,  = [Y~c~ + (n - 1)Yr2]/n 
and offdiagonal blocks kij = [Yrl - Yx2]/n. 

All H®-computations in this section are 
performed with the /~-Analysis and Synthesis 
Toolbox for MATLAB TM. 

6.1. Optimal H® control 
H® control theory can be used for designing 

controllers which ensures that the closed-loop 
system satisfies singular value loop shaping 
specifications. For example, the standard 'mixed 
sensitivity' H® problem is to minimize 

WoH 
]lm[[~= WeSIv '  (41) 

where S = (1 + GK)-~ is the sensitivity function 
and H = GK(I  + GK)- I  the complementary 
sensitivity function. This objective may cor- 
respond to simultaneous optimization of robust 
stability with respect to output multiplicative 
uncertainty and nominal performance in terms of 
weighted sensitivity. For controller synthesis, the 

(a) 

V : 1 ~  tc W 

(b) 

r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  i 

vi v w ! w 

;,::::::::::2. ================================ 

,_ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

FIG. 4. (a) Expressing M(s) as a linear fractional 
transformation of the controller K(s). (b) Pre and 

postmultiplication of M(s) by unitary matrices. 

controller is 'pulled out' of M, by writing M as a 
Linear Fractional Transformation (LFF) of the 
controller (see Fig. 4a): 

M(s) = NH(s) + N,2(s)K(s) 

X [t - N22(s)r(s)l-'N2,(s). (42) 

For example, for the mixed sensitivity problem 
in (41) 

(0) ( WoG  
N i l  = Wp ' NI2 = \-WoG]' 

N2, = I, N22 = - G .  (43) 

Theorem 1. Consider the design of a controller 
in order to minimize liMit= where the intercon- 
nection matrix M is a function of the plant G(s), 
the controller K(s) and some weights W~(s), and 
may be written as an LFT of the controller as 
given in (42). Assume that 

(1) G(s) is described by a block parallel transfer 
function matrix [equation (3)], consisting of 
n x n blocks, each block [o<(s) or fl(s)] of 
dimension no x ni. 

(2) All weights W{(s) are block parallel matrices 
with blocks with dimensions compatible with 
the dimension of the blocks of G(s). 

(3) M(s) has overall dimension n • r x n • c. 

Then the n . n i  x n . n o  optimal controller K is 
block parallel and is obtained by solving two 
independent H=-optimai controller problems, 
each involving minimization of the H~-norm of a 
r x c interconnection matrix to obtain a n~ x no 
controller. 
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Proof 

(1) After expressing the matrix M(s), whose H® 
norm is to be minimized as a LFT of the 
controller K(s), we find that Nu, N12, N2~ 
and N22 consist of blocks which are block 
parallel. This is so because all blocks of Nu, 
N12, N21 and N22 can depend only on the 
plant G, the weights, identity matrices of 
appropriate dimension, and/or zero matrices 
of appropriate dimension, all of which are 
block parallel (see Section 5.2.2). In general 
N22 = - G .  

(2) Premultiplication or postmultiplication of 
M(s) by unitary matrices will not change the 
singular values, and will thus leave the /-/® 
norm unchanged (Fig. 4b). We use the 
matrices 3~e and 3~ defined in equations 
(38) and (39). 

(44) 
~',, = ~ N , , ~  (45) 

/V,2 = ~zN,2(F~ ® I,,,)" (46) 

IV2, = (F~ ® I,,o)N2, a n (47) 

= (F. ® Ino)S22(  ® IJ". (48) 

Thus, since Nu, Nn, N21 and N22 all consist 
of blocks which are block parallel, ]Vu, /V~2, 
N2t and /V22 all consist of blocks which are 
block diagonal, the first sub-block in each 
block being distinct and the other n -  1 
sub-blocks equal (see upper part of Fig. 5). 

(3) The structure of D given in equations 
(45)-(48) implies that the controller synthe- 
sis problem can be decomposed into n 
non-interacting synthesis subproblems. To 
see this consider Fig. 5 where the matrix at 
the top may represent /V for the mixed- 
sensitivity problem in (41) where /V22 = 
diag {h~, h2 . . . . .  h2} is the diagonalized 
plant. After permutations (reordering the 
inputs and outputs) we get the matrix at the 
bottom of Fig. 5. It is then apparent that the 
controller design problem consists of n 
independent subproblems, one distinct and 
n - 1 identical. 

(4) The controller/~ = diag {Yrl, Yr2 . . . . .  Yr2} 
in Fig. 4 will be block diagonal, the first 
block on the diagonal being distinct and the 
n - 1 other blocks equal. Consequently, 

r ( s )  = (F. ® ~,,)"g(s)(F, ® I.,,) 
= (R,, ® l,,,)rK.(s)(R,, ® 1,,.) (49) 

will be a block parallel matrix with the same 
structure as G. R, is the real eigenvector 

al bl 

a2 b2 
• . .  " ,  

a2 b2 

d] el 

d2 e2 
• . " .  

d2 e2 

gt hi 

g2 h2 
" .  ' . .  

g2 h2 

Permutations 

al b] 

dl el 

gl hi 

a2 b2 
d2 e2 

.q2 h2 

a2 b2 

d2 e2 

g2 h2 

FIG. 5. Top: matrix with a special block structure. Bottom: 
same matrix after permuting the order of the inputs and 

outputs. 

matrix for a parallel matrix of dimension 
n x n (recall Section 4 and Table 1). 

Remark 1. The same theorem holds for the 
H2-optimal problem, since the Frobenius norm is 
also unitary invariant. The result for the H2-case 
has been proved before (Sundareshan and 
Elbanna, 1991) using properties of the Riccati 
equations. However, the results of Snndareshan 
and Elbanna (1991) are stated for the somewhat 
less general case where both the matrices B and 
C of the state-space realization are block- 
diagonal. Note, for example, that the parallel 
system in (9) cannot be realized in this form. 

Remark 2. We have shown that the optimal 
controller K has the same structure as N22 -- - G ,  
that is, /( has the same structure as/V22. If we 
use this as a starting point, then M must have the 
same structure as the matrix at the top of Fig. 5 
which may be permuted to give the block- 
diagonal structure at the bottom of Fig. 5. From 
this it is trivial to confirm that the H®-optimal 
controller for the overall problem may be 
obtained by solving two independent sub- 
problems of much smaller dimension. 
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Remark  3. In general, N 2 2 = - G  and /~/22= 

-d iag {Yc~, Yc,,2 . . . . .  Ya2} [See equations (33)- 
(36)]. Thus the controller design corresponds to 
designing controllers for each of the two 
subsystems corresponding to the two 'plants' 
yc,,(s) and yc,,2(s). 

Remark 4. Note that this corresponds to 
optimizing the H~ objective for both the systems 
corresponding to Yc, and Yc,2. If m,. = ni = 1 or 
m, = no = 1, all directions in the H~ criterion are 
optimized. In contrast, the controller Doyle et 
al. (1989) terms the 'central solution' to the H~ 
synthesis problem only optimizes the worst 
direction in the overall H~ criterion. In general, 
the solution to the H~ controller synthesis 
problem is non-unique (Doyle et al., 1989), since 
many controllers will achieve the optimum H~ 
norm in the worst direction, while doing equally 
well or better in the other directions. How to 
minimize the peak values of the singular values 
corresponding to directions other than the worst 
direction is a line of research, called super- 
optimal H~ control (Tsai et al., 1988; Kwaker- 
naak, 1986)• Thus, we have here found a class of 
problems where the solution to the super- 
optimal H~ control problem is very simple. 

Remark 5. The interconnection matrix ~/(s) in 
Fig. 4b has the same number of states as N(s )  in 
Fig. 4a. The number of states in the controller/(  
will therefore equal the number of states in a 
controller based on regular H~ synthesis. 

Remark  6. Recall from Section 4 that the choice 
of real eigenvector matrix Rn is not unique• 
However, if an eigenvector matrix Rn that is not 
orthogonal is chosen, the transpose in equation 
(49) and Fig. 6 must be replaced by inversion• A 
block diagram for K(s)  is shown in Fig. 6. 

Example 3. Consider the process 

corresponding to the two subplants 

0.5s + 1 = 
(20s + 1)(lOOs + 1)' 

- s + l  - 
(20s + 1)(100s + 1)" 

(51) 

We want to minimize the Ho~ norm of M in (41), 
with weights W o ( s ) = w o ( s ) l ;  Wo(S)=O.25s+ 
1/0.5s + 1 and Wp(s) = wp(s)l;  wa,(s) = 0.52s + 
1/2s. Using the approach outlined above we may 
solve this problem by considering the two SISO 
plants tc, t(s) and ~tc,2(s), and solve the two 
design subproblems 

• IlWoAciAKi/(1 + Ac, iAKi)[I 
mln xK, 11 we/(1 "~ ~Gi~Ki) L' i =  1, 2. (52) 

Hoo synthesis for these two subplants gave H= 
norms of 0.56 and 0.89, respectively. State space 
descriptions of the resulting 'controllers' ,~.KI and 
i t2  are given in the Appendix. The 'controllers' 
,tr, and Ix2 may be combined into a regular 
controller with eight states using equation (49). 
Conventional H® synthesis for the overall system 
also gave a controller with eight states which 
achieved a H= norm of 0.89. However, in this 
case the peak of the singular value correspond- 
ing to the 'easy' direction was 0.73 (for the 
central solution), whereas our controller gave 
0.56. In Fig. 7 are shown the responses to 
setpoint changes for the two controllers. We also 
show the response for an inverse-based control- 
ler which gives peak values of 0.89 for both 
singular values (see section on inverse-based 
controllers below). When the setpoint enters in 
the 'difficult' direction, the three responses are 
indistinguishable, whereas when the setpoint 
enters in the 'easy' direction it is clear that the 
controller synthesized using our method is 
superior and the inverse-based controller is 
worst. 

C(s )  = 
1 

(20s + 1)(lOOs + 1) 

[ -0.25s + 1 0.75s ] 

× [ 0.75s -0.25s + 1 
(50) 

Example 4. Consider the 8 x 12 block parallel 
plant 

t (s) 

C ( s ) =  t (s) 
t (s) 

a ( s ) l  

(53) 

i % 
i 
t 

iZ ~K 

FIG. 6. Realization of a full block parallel controller K. 

where tr(s) and fl(s) are transfer function 
matrices with two outputs (no = 2) and three 
inputs (ni = 3) with state space realizations 

tr(s) = Cl (s l  - A , ) - I B I  + 0 ,  (54) 

fl(s) = C2(sl - A2 ) - IB:  + l)2 (55) 
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(a) 

I / Z " "  Y l = Y 2  - I._1-1 
o61- / ,',,' 

o+L/ / /  
I / / ~  -b - ~  °n-s-y-ste-m dec°mp°s!ti°n 

0.2 ~ ~ l u t i o n  to H-infinity synthesis 
I / ,/ -- . . . .  Inverse based controller 

0 / 

-0.2 

-0.4 

0 2 4 6 8 10 12 14 

lima 

(b) 

0.6 

0.4 

0.2 

0 

-0.2 

-0.4 

0 

1 

0.8 

16 18 20 

4 10 ! 14 16 18 20 

lima 

FIG. 7. Response of the closed-loop system to setpoint changes entering in the 'easy' (a) and 'difficult' (b) 
directions in Example 3. All three controllers yield an H.-norm of 0.89 for the overall problem. 

and 

I 
-0.05 0 0 ]  

A t  - - A 2  = 0 --0.1 0 ; 
0 0 --0.2 

B1 = 6 9 ; 
8 0 

B2 = - 2  1 ; 
- 2  1 

[0.35 0.60 0.20]. 
Cl = C2 = L0.45 -0.20 2.40_1' 

° o o] 
D1 = 0 2  = -1.25 -1.25 " 

(56) 

(57) 

The design criterion is to minimize the H®-norm 
of 

F WoGK(I + G K ) - ' ]  
M = I Wp(] + GK) -1 / ( 5 8 )  

L wur(t + Gr)-' d 
with weights 

4s+l  
Wo = O.2 o. 48 +----~ I. 

I0.5 2.58 +_______~1 0 1 
2.58 0.50"38 + 1 " 

Wp= I4 ® 0 0.38 

W. = O. l l n  

We decompose the plant G(s) into Ycl and 
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~G2 : ~ /G3  : ~G4, each of dimension 2 x 3, using 
equation (33), and design one 3 x 2 controller 
7rl for the system corresponding to )'c,~, and 
one 3 x 2  controller )'r2 for the system 
corresponding to ~'c2. For both these design 
subproblems a H=-norm of 0.91 was achieved, 
and the same H~-norm of 0.91 was achieved for 
the overall system after calculating the controller 
K from ~'r, and )'K2 according to equation (49). 
The best value of the H=-norm achieved when 
using the same software to design a 1 2 x 8  
controller for the overall plant was 0.99. The fact 
that the value was 0.99 instead of 0.91 
demonstrates weaknesses in the synthesis soft- 
ware we have available.* However, more 
importantly it demonstrates that controller 
synthesis becomes simpler when the system is 
decomposed into problems with fewer states and 
of lower dimension. In our case, H= synthesis for 
the overall plant gives a 36 x 8 interconnection 
matrix M with 28 states, whereas after 
decomposition we get two H= synthesis prob- 
lems, each with a 9 x 2 interconnection matrix 
with seven states [three states from the plant, 
two from Wo(S) and two from we(s)]. The 
number of states in the final controller is 28 for 
both cases. State space descriptions of the 
'controllers' YK, and )'K2 are given in the 
Appendix. 

6.2. Special case: inverse-based controllers 
Consider a parallel plant G(s) consisting of 

SISO subsystems, and the special case when the 
following conditions hold: 
Condition 1. The subplants Ac, l(s) and ),6-2(s), 
defined by equations (22) and (23), have the 
same RHP zeros. 
Condition 2. All weights are scalar times 
identity matrices. 
Condition 3. G and K only appear as products 
of each other in the problem statement [as in 
equation (41)]. 
Condition 4. The subplants Aol(s) and ~.c2(s) 
have the same pole excess. 

In this case we need only perform one H® design 
for the subplant ~.a, and obtain the controller 
Ar~. Then the H~ norm that was obtained for the 
SISO 'system' corresponding to Ac~ can be 
obtained for the overall system by choosing 

3,K2 . . . . .  3,K, = ~,r13,cJ3.o2. (59) 

The result will be an inverse-based controller of 
the type 

K(s) = ~(s)G-~(s), (60) 

thus effectively transforming the n x n H~ design 
problem to n identical SISO problems. Condi- 
tion 1 ensures that any RHP zeros in the 
subplants cancel in equation (59), such that the 
controller is stable. If ~.c,2 has a larger pole 
excess than ).c,, calculating ;tr2 from equation 
(59) may result in an improper controller which 
is impossible to realize. Condition 4 ensures that 
this is not a problem. The Conditions 1-4 ensure 
that the same H~-norm is achievable for the 
subproblems corresponding to ).cl and )-o2. 
Thus, the Ho~ controller will be unique if the 
solution to the SISO subproblems corresponding 
to ~.c,1 and ;~cz are unique. Whereas Condition 2 
will normally hold for SISO subsystems in 
parallel, Condition 3 may well be violated, e.g. if 
M contains a term like W , K ( I + G K )  -~ cor- 
responding to a bound on the closed-loop 
transfer function from reference signal to 
manipulated variables. 

Note that Conditions 1-4 imply that the same 
Hoo-norm is achievable for both design sub- 
problems (corresponding to )~c,~ and )~t72), such 
that there is no need to consider super- 
optimality, as this is automatically achieved. 

Example 5. To illustrate, consider Example 2 in 
Section 2, with four reactors in parallel (n--4) ,  
and choose the values k = 1, r -- 100 and a = 0.7. 
From equations (22) and (23) we then have that 
the subplants are 

3.1 0.3 
~ ' G I ( S )  : 100s + 1' A G E ( S )  - -  100s + 1" 

Consider the mixed H®-sensitivity problem in 
equation (41), with weights We=wel ;  {we = 
0.5(10s + 1)/10s} and Wo = wol; {Wo = 0.2(5s + 1) 
/ (0 .5s+1)}.  Thus Conditions 1-4 are all 
fulfilled. The magnitude of the weights we and 
Wo are shown together with the magnitude of the 
plant eigenvalues (= singular values) in Fig. 8. 

A third order H~-optimal controller ~.rl was 
designed for the SISO 'plant' kc,, according to 
equation (41) (with weights wp and Wo 
substituted for Wp and Wo, respectively), 
achieving a H~-norm of  0.50. The magnitude of 
),x~ is also shown in Fig. 8, and a state space 
description is given in the Appendix. After 
calculating At2 from At, according to equation 
(59), and combining the two controllers ~.rl and 
,~,K2 according .to equation (49) to find the 
controller K for the full plant, we found that the 
same H®-norm was achieved for the full system 
as for the SISO case (end example 5). 

*The #-tools and Robust Control toolboxes for 
MATLAB. 

There may exist an inverse-based controller 
achieving the optimal H~-norm also when 
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FiG. 8. Magnitudes of plant  eigenvalues gG= and Zo--z, performance weight w e ,  output  weight w o and first 
controller  eigenvalue gg,  for Example 5. 

Conditions 1-4 are not fulfilled (or when the 
plant consists of MIMO subsystems), and in 
many cases this inverse-based controller can be 
found by first synthesizing the controller 
corresponding to the most difficult system 
direction and then use equation (59) to find the 
controller corresponding to the other direction. 
For such cases super-optimality will not be 
achieved by an inverse-based controller. 

Example 3 continued. We see that Condition 1 
above is violated, as Zo2 has a zero at s = 1, 
where ZGt has no RHP zero. Designing an 
//=-controller for the most difficult subplant 3.m, 
and calculating Art from ~'g2 using equation (59) 
(the reverse would yield an internally unstable 
closed-loop system) yields an equalizing solution 
with a/ /=-norm of 0.89 in both directions. The 
resulting poor response in the easy direction 
corresponding to XG1 is shown by the 'Inverse 
based controller' in Fig. 7a. 

6.3. Controller implementation 
One possible controller implementation is 

given in equation (49). However, an infinite 
number of eigenvector matrices X may be used 
instead of R, [provided the transpose in equation 
(49) is replaced with inversion whenever X is not 
orthogonal]. Possible choices for X for n = 
{2, 3, 4} are given in Table 1, another possible 
choice is given by equation (26). 

A distributed implementation of the optimal 
controller may be desirable in some cases. In 
such cases, one may use the physical insight from 
the Introduction, and control the 'distance from 

average' locally, and only correct for deviations 
in the 'average' output centrally. This is 
illustrated schematically in Fig. 9. Mathemati- 
cally, this can be expressed as 

K = diag {Yr2} I, .... --n i~,d/  

+ Yrt n 

which is the same K as in equation (49). One 
disadvantage with a distributed implementation 
is that it increases the number of states in the 
overall controller K. If the controller in equation 
(49) has kn states, a realization according to 
equation (61) will result in a controller with 
k(n + 1) states. 

Advantages with the distributed implementa- 
tion in Fig. 9 are: 

(1) It is transparent and makes implementation, 
tuning and correction easier. 

(2) There are cases, e.g. for electric power 
generators in a network, where the in- 
dividual units are separated by large 
distances, and it may become impractical to 
calculate all control moves centrally, or one 
may want to update the central control 
moves less frequently. 

(3) If the connection to the central control 
system is lost, then some local control is 
maintained since the plant is controlled by 
the controller K'=diag{yr2}, and the 
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Local controller no. 1 
r l - r  u I 

Local controller no. 2 
r2"7 I ~  u2-u u2 

l ¢+ 

Local controller no. n 

Plant 

Y l  

Y2 ID 

~ m  

Yn 

I . . . . . . . . . . . . .  

. . . . . . .  Average_!nputl au_ . . . .  777:7-7777 . . . . . . . .  i 

+ Average output, y 

_ | Central control system 
Average setpoint, r J 

FIG. 9. Distributed implementation of a full block parallel controller K. 

closed-loop system will remain stable prov- 
ided Yr2(s) stabilizes yc, l(s) in addition to 
~'~,2(s). 

Remark to advantage 3. It will not always be 
possible to find one controller Yr2(s) which 
stabilizes both yc,~(s) and y~(s ) .  For instance, if 
integral action is required, a necessary require- 
ment for the existence of a controller YK2($) 
which stabilizes both Yc, l(s) and Yc,2(s) is that the 
determinants of  ya~(0) and y ~ ( 0 )  have the same 
sign (e.g. Grosdidier et al., 1985). For the 
physically motivated examples of parallel proc- 
esses in Section 3, the bounds in equation (10) 
imply that ~c1(0) and An(0)  always have the 
same sign. There are also cases when yc](s)  has 
a severe R H P  zero that is not present in y~(s). 
In such cases, requiring yx2(s) to stabilize both 
ym(s) and y ~ ( s )  will imply that the control of 
the 'distance from average' will have to be made 
much slower than would otherwise be the case. 

6.4. A note on decentralized control 
Note from above that if the central controller 

fails we are left with a block-diagonal controller 
K',  that is, a block-decentralized control system 

with identical blocks ~K2(S). A natural question 
to ask is whether the optimal block-decentralized 
controller for block parallel processes should 
have identical blocks. Intuitively, this seems 
reasonable (e.g. Lunze, 1989), since all the local 
plants are identical and it seems logical that their 
optimal local controllers should be identical. 
However,  we show with a simple example that 
decentralized control with identical local con- 
trollers cannot be optimal for all cases. 

Example 6. Consider the plant 

I 1 - 0 . 6 - ! 1 6 1  1 - 0 . 6  1 - 6 . ( 6 2 )  
G(S)=lOOs+l - 0 . 6  - 0 . 6  

The corresponding subplants are: 

- 0 . 2  1.6 
~.a~(s) = 100s + 1'  ~.c,2(s) = ~c3(s) = 100s + 1" 

The objective is to design a stabilizing 
decentralized controller with integral action. We 
assume that the local input is used to control the 
local output,  that is, a pairing corresponding to 
the diagonal elements of G(s) is used. Since the 
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sign of ~,a~(0) differs from the sign of 
An(0) = ).c3(0), we know that there does not 
exist a decentralized controller with identical 
controllers in all channels and integral action 
that will stabilize G(s) .  On the other hand, the 
controller 

C(s)  = diag {cl(s), c2(s), c3(s)} 

100s + 1 
cl(s)  = c2(s) = 100 1-----~--' 

100s + 1 
Ca(S) = - 1 0  100-------~ (63) 

which has different controller elements, results 
in a stable dosed-loop system. 

Remark .  In this example the interaction 
parameter a = f l (0 ) / ac (0 )= -0 .6  is outside the 
limits - 0 . 5 - - < a -  1 in equation (10), which we 
derived in Section 3 for some physically 
motivated systems. Nevertheless, this example 
demonstrates that identical local controllers do 
not in general give the optimal decentralized 
controller for parallel plants, and numerical 
evidence (Lundstr6m et al., 1991) suggests that 
the same holds also when a is within the bounds 
of equation (10) such that ,~c1(0) and ).~(0) 
have the same sign. 

7. C O N T R O L L E R  DESIGN F O R  BLOCK 
SYMMETRIC C I R C U L A N T  SYSTEMS 

The results in the previous section on H2- and 
H®-optimal control of block parallel systems are 
easily generalized to processes described by 
block symmetric circulant transfer function 
matrices of the form in equation (1). If the 
individual blocks ac and fli have dimension 
ni x no, G will have dimension n • ni x n • no. 
Note that it is only the block structure of G that 
needs to be symmetric, the individual blocks or, 
f l~ , f l2 , - . . ,  and thus G itself, need not be 
symmetric. If c~, /~, f12 . . . .  are of dimension 
l x 1, G ( s )  is termed a symmetric circulant 
matrix (recall Section 4.2). 

Let k be the number of independent blocks 
Yci in equation (34). In general, if n is an even 
number, k = n / 2  + 1, and if n is an odd number, 
k -- (n - 1)/2 + 1.* 

Theorem 2. Consider the design of a controller 
in order to minimize IIMI]® where the intercon- 
nection matrix M is a function of the plant G(s ) ,  
the controller K ( s )  and some weights W~(s), and 

* Also note that if n is an even number,  k = v + 1, if n is 
odd k = v, see Section 4.2. 

may be written as an LFT of the controller as 
given in (42). Assume that: 

(1) G ( s )  is described by a block symmetric 
circulant transfer function matrix [equation 
(1)], consisting of n x n blocks, each block 
[c~(s) or fli(s)] of dimension no x ni. 

(2) All weights Wi(s) are block symmetric 
circulant matrices with blocks with dimen- 
sions compatible with the dimension of the 
blocks of G(s) .  

(3) M ( s )  has overall dimension n • r x n • c. 

Then the n . n i  x n ' n o  optimal controller K is 
block symmetric circulant and is obtained by 
solving k independent H~-optimal controller 
problems, each involving minimization of the 
H®-norm of a r x c interconnection matrix to 
obtain a ni x no controller. 

Proof.  Similar to the proof of Theorem 1, using 
the same diagonalizing transformation /V= 
~F.zN~:g (40) where ~:~e and ~ have the unitary 
Fourier matrix F~ as blocks, and making use of 
the fact that the H®-norm is unitary invariant. 

The same theorem holds for H2-optimal 
control since also the Frobenius norm is unitary 
invariant. For H®-optimal control we get 
super-optimality where the H®-norm is optimized 
in n directions. The resulting controller K can be 
found from equation (49). Note, however, that 
one has to exercise some care when finding the 
real matrix R used for controller realization in 
equation (49). Recall from Section 4 that only 
linear combinations of eigenvectors correspond- 
ing to identical eigenvalues may be used to find 
real eigenvectors. The matrix R found from 
equation (16)-(19) fulfills this requirement. 

8. CONCLUSIONS 

For parallel systems [equation (3)], instead of 
considering a plant of dimension n • no x n • ni 
we can consider two subplants, each of 
dimension no x ni when designing a H®-optimal 
or H2-optimal controller. 

For plants described by block symmetric 
circulant processes [equation (1)], we have to 
consider k subplants, where k = n / 2  + 1 if n is 
even and k = (n - 1)/2 + 1 if n is odd. 

For both cases the optimal controller has the 
same structure as that of the plant. For 
H.-synthesis the resulting block parallel control- 
ler optimizes the H® criterion in n directions. 
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APPENDIX: STATE SPACE DESCRIPTIONS OF 
CONTROLLERS FOUND IN THE EXAMPLES 

TABLE A.  1. STATE SPACE DESCRIPTION /~k I FOR THE 
CONTROLLER FOUND IN EXAMPLE 3 

A 

-4,993E-07 - 1.633E-04 2.858E-02 3.357E-06 
-1.853E-04 -0.1051 -7,644E + 02 3.392E-02 

2.929E-02 7.995E + 02 -2.908E + 03 -0.5641 
-3.220E-06 -6.248E-02 0.2264 -2.000 

B C r D 

0.6859 0.6972 0 
1.436E + 02 1.454E + 02 

-2.420E + 04 -2.419E + 04 
1.891 -2.346 

TABLE A.2. STATE SPACE DESCRIPTION OF ~'K2 FOR THE 
cONTROLLER FOUND IN EXAMPLE 3 

A 

-5.009E-07 -2.046E-02 - 1.183E-05 3.129E-05 
-2.001E-02 1.294E + 03 -6.275E + 02 3.182 

1.352E-05 6.276E + 02 - 1.430E-04 1.056E-03 
-2.966E-05 -3.182 1.276E--03 -1.611 

B C r D 

0. 5429 0.5314 0 
1.353E + 04 1.353E + 04 

-5.061 4.495 
16.61 -16.61 

TABLE A.3. STATE SPACE DESCRIPTION OF Yul FOR THE 
CONTROLLER FOUND IN EXAMPLE 4 

diag {A } B 

-231.439 0.0134 2.9209 
-2.470 1.2090 -2.1960 
-0.823 -0.3021 0.5568 
-1.064 -0.3085 0.0152 
-0.176 -0.1196 -3.4066 

- 1E-08 1.82E-04 4.6785 
- 2 E - 0 9  0.7891 3.1E-09 

C r 

0. 0565 - 41. 2565 37. 2301 
0.0455 -0.4676 0.3644 
0.1665 -0.1291 -0.0588 
0,0720 -0.1922 0.0877 

-0,0221 0.0114 -0.0850 
-0.0331 -0.0253 0.0350 
-0,0395 -0.0237 0.0410 

D 

-0.0125 0 
0 -6.25E-03 
0 -6.25E-03 
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TABLE A . 4 .  STATE SPACE DESCRIPTION OF YK2 FOR THE 
CONTROLLER FOUND IN EXAMPLE 4 

diag {A } B 

-3591.5 0.0107 -20.3237 
-266.7 0.0330 -24.2771 
-130.4 0.0257 15.3908 
-1.120 0.0663 1.031E-03 

-0.0521 0.0734 -0.3711 
- 3 . 9 E - 0 8  - 3 . 0 E - 1 0  -0.6377 
- 4 . 7 E - 0 9  -0.2745 -6 .5E-11  

C r 

-1241 316.2 -171.4 
53.76 41.55 38.59 

-18.46 46.87 21.23 
-9 .744E-03 0.2968 0.1639 

1.219E-02 -2 .804E-03 4.267E-03 
-3 .593E-02 2.020E-02 2.295E-03 

6.100E-03 - 1.288E-02 -4 .  801E-03 

D 

0 0 
0 0 
0 0 

TABLE A.5. STATE SPACE DESCRIPTION OF ~KI FOR THE 
CONTROLLER FOUND IN EXAMPLE 5 

A B 

-1 .00E-07  -1 .73E-03  1.29E-06 0.187 
-1 .73E-03  -4 .44E + 05 1 .11E+03 1.63E +0.3  
-1 .30E-06  - I . 1 1 E + 0 3  -0 .60 1.20 

C D 

0.188 1.62E + 03 - 1.21 0 


