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Abstract

The objective of this paper is to derive some
fundamental results for controllability analysis of
single-input single-output (SISO) systems. The
effects of disturbances, delays, constraints and
RHP-zeros are quantified. These results are ap-
plied to a neutralization process where it is shown
that the process must be modified to get accept-
able controllability.

1 INTRODUCTION

In process control courses the issues of controller
design and stability analysis are often empha-
sized. However, in practice the following three
issues are usually more important.

I. How well can the plant be controlled?
Before attempting to start any controller design
one should have some idea of how easy the plant
actually is to control. Is it a difficult control prob-
lem? Indeed, does there even exist a controller
which meets the required performance objectives?

IT. What control strategy should be
used? What to measure, what to manipulate,
how to pair? In textbooks one finds qualitative
rules to address this issue. For example in Seborg
et al. (1989) one finds in a chapter called “The
art of process control” the rules:

1. Control outputs that are not self-regulating

2. Control outputs that have favorable dy-
namic and static characteristics, i.e., there
should exist an input with a significant, di-

effect.
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3. Select inputs that have large effects on the
outputs.

4. Select inputs that rapidly effect the con-
trolled variables

These rules are reasonable, but what is “self-
regulating”, “large”, “rapid” and “direct”. One
objective of this paper is to quantify this.

ITI. How should the process be changed
to improve control ? For example, one may
want to design a buffer tank for damping a dis-
turbance, or one may want to know how fast a
measurement should be to get acceptable control.

Controllability analysis. All the above
three questions are related to the inherent con-
trol characteristics of the process itself, that is, to
what is denoted the controllability of the process.
We shall use the following definition:

(Input-output) controllabilily is the ability to
achieve acceptable conirol performance, that is,
1o keep the outputs (y) within specified bounds or
displacements from their setpoints (r), in spite
of unknown variations such as disturbances (d)
and plant changes, using available inputs (u) and
available measurements (e.g.,Yym or dm ).

In summary, a plant is controllable if there
extsts a controller (connecting measurements and
inputs) that yields acceptable performance for all
expected plant variations. Thus, controllability
is independent of the controller, and is solely a
property of the plant (process) only. It can only
be affected by changing the plant itself, that is,
by design modifications. Surprisingly, in spite of
the fact that mathematical methods are used ex-
tensively for control system design, the methods
available when it comes to controllability analysis
are usually qualitative. In most cases the “simu-
lation approach” is used. However, this requires
a specific controller design and specific values of



disturbances and setpoint changes. In the end one
never really knows if the assessment is a funda-
mental property of the plant or if it depends on
the specific choices made.

The objective of this paper is to present quan-
titative controllability measures which can replace
this ad hoc procedure. The paper deals with
scalar (SISO) systems, but all the tools presented
may be generalized to multivariable (MIMO) sys-
tems. Disturbances are considered in detail, but
model uncertainty, which also necessitates the use
of feedback control, is not included in this paper.
Linear control theory is used, and most of the
tools make use of the frequency response. One
reason for this is the very useful idea of “band-
width” which is a purely frequency-domain con-
cept.

One shortcoming with the controllability anal-
ysis presented in this paper is that all the mea-
sures are linear. This may seem to be very restric-
tive, but in most cases it is not. In fact, one of the
most important nonlinearities, namely input con-
straints, can be handled with the linear approach.
To deal with slowly varying changes one may per-
form a controllability analysis at several selected
operating points. As a last step of the controlla-
bility analysis one should perform some nonlinear
simulations to confirm the results of the linear
controllability analysis. The experience from a
large number of case studies has been that the
agreement is generally very good.

Remarks on the definition of controlla-
bility. The above definition is in agreement with
one’s intuitive feeling about the term, and is also
how the term was used originally in the control lit-
erature. For example, Ziegler and Nichols (1943)
define controllability as “the ability of the process
to achieve and maintain the destred equilibrium
value”. Rosenbrock (1970, p. 161) notes that “n
engineering practice, a system s called control-
lable if it possible to achieve the specified aims of
control, whatever these may be”. Unfortunately,
in the 60’s the term “controllability” became syn-
onymous with the rather narrow concept of “state
controllability” introduced by Kalman, and the
term 1is still used in this restrictive manner by
the system theory community. “State control-
lability” is the ability to bring a system from a
given initial state to any final state (but with no
regard to the dynamic repsonse between and af-
ter these two states). This concept is of interest
for realizations and numerical calculations, but
as long as we know that all the unstable modes
are both controllable and observable, it has little
practical significance. For example, Rosenbrock
(1970, p. 177) notes that “most industrial plants
are controlled quite satisfactorily though they are
not [state] controllable”. He also remarks that
“the chief point to be stressed is that controlla-
bility is an engineering term with a wide connota-

tion. To restict its meaning to one particular type
of controllability seems wrong, and leads to con-
fusion.” To avoid confusion with Kalman’s state
controllability, Morari (1983) introduced the term
“dynamic resilience”. However, this term does
not capture the fact that “controllability” is re-
lated to control, and so instead we propose to use
the term “input-output controllability” to make
the distinction with “state controllability”.

Finally, one should note that the term “con-
trollable” does not quite mean the same as “easy
to control”. The latter usually means that one
can “casily design a simple controller” and get ac-
ceptable performance. On the other hand, “con-
trollable” means that there exisis a controller
which yields acceptable performance, although
this controller may be very complex and require
a detailed model of the plant. It is possible to
restict the definition of controllability to make it
closer to the term “easy to control”. For example,
one may require the controller to be linear (as is
done throughout this paper), or to be decentral-
ized, or to be of a certain order or form (e.g., PID
controller).

One may also consider controllability using
feedback control, which is the main topic in this
paper, although we do also have some discussion
on the use of feedforward control.

The link between process design and
control. The terms controllability provides the
link between process design and control. This
is explained very nicely by Ziegler and Nichols
(1943):

“The finest controller made, when applied to a
miserably designed process, may not deliver the de-
sired performance. True, on badly designed pro-
cesses, advanced controllers are able to eke out bet-
ter results than olde models, but on these processes,
there is a definite end point which can be approached
by instrumentation and it falls short of perfection.
The chronology in process design is evidently wrong.
Nowadays an engineer first designs his equipment so
that it will be capable of performing its intended func-
tion at the normal throughput rate plus a safety fac-
tor. The control engineer or instrumentman is then
told to put on a controller capable of maintaining the
static equilibrium for which the apparatus was de-
signed. When the plant is started, however,
it may be belatedly discovered that, in spite of the
correct equipment design for steady-state condition
and the correct instrument selection, control results
are not within the desired tolerance. A long expen-
sive process of “cut and try” is then begun in order
to make the equipment work. Both engineers realize
that some factor in equipment design was neglected
but generally can neither identify the missing ingre-
dient nor correct it in future design.

The missing characteristic can be called “control-
lability”, the ability of the process to achieve and
maintain the desired equilibrium value. Design for
steady-state conditions is not enough if exact mainte-
nance of variables is necessary. ”



Ziegler and Nichols then point out that al-
though “a great many factors affecting controllabil-
ity have been identified” the problem is complex, and
“as it now stands the plant designer is almost justi-
fied in disregarding the entire matter. ... Sooner
or later, however, these factors affecting process con-
trollability will have to be smoked out and reduced to
definite “good-practice” rules which will be as much
a part of equipement design as safety factors”.

It it probably fair to say that progress has
been slow, and now, more than 50 years later,
such good-practice rules are still not in common
use. It is hoped, however, that this tutorial paper
will contribute to the “smoking-out” process.

Design modifications. As pointed out
above, controllability can only be affected by de-
sign modifications. These may include:

1. Change the apparatus itself (type, size, etc.)

2. Relocate sensor and actuators

3. Add new equipment to dampen distur-
bances, for example, buffer tanks.

4. Add extra sensors for measurement (cas-
cade control)

5. Add extra actuators (parallell control)
6. Change the control objectives

7. Change the control structure of the lower
levels

In most cases controllability is improved by
bringing the actuator and measurement device
closer together in order to improve the speed of
response, for example, by reducing the process de-
lay. This applies to the first items above, which
usually are quite problem specific and are not
treated in this paper.

It it arguable whether or not the last two items
are design modifications, but at least they address
issues which come before the actual controller de-
sign. The last issue is important because con-
trol systems are usually designed in a hierarchical
manner, and the lower-level loops are assumed
closed when designing the control system at a
given level. Thus, a change in the lower-level con-
trol structure may drastically change the achiev-
able control performance of the levels above, and
therefore may be viewed as a design modification
as seen from the level above.

Previous work on controllability analy-
sis. The topic has been addressed in many appli-
cation papers, but mostly on an ad hoc basis since
the theoretical basis for a controllability analysis
has been relatively poor (one reason for this is
probably the unfortunate use of the term in the
meaning of state controllability, which led to the
belief that there was nothing more to).

Except for the initial work by Ziegler and
Nichols (1943), there does not seem to have
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Figure 1: Block diagram of feedback control sys-
tem.

been much progress on input-output controllabil-
ity analysis until Rosenbrock (1966, 1970) pre-
sented a thorough discussion on the various def-
initions of state controllability and observability,
and introduced similar concepts in terms of the
outputs. This led to the introduction of the term
“functional controllability” (which for scalar sys-
tems is equivalent to requiring that the transfer
function g(s) is not identically equal to zero) and
to the important notion of right half plane (RHP)
zeros (which for scalar systems is directly related
to inverse responses). Another important step to-
wards a quantitative analysis was made by Morari
(1983) who made use of the notion of “perfect con-
trol” in an attempt to quantify the term control-
lability. Balchen and Mumme (1988, pp. 16-21,
pp.47-48) present some nice controllability guide-
lines which are more specific than the rules from
Seborg er al. (1989) given above, but most of
them lack a theoretical justification.

One important issue which was missing from
most of Morari’s and Rosenbrock’s analyses was
an explicit consideration of disturbances. Distur-
bances have of course been discussed in many ap-
plication papers, but only recently have their re-
lationship to controllability been treated in a sys-
tematic manner (e.g., Skogestad and Wollff, 1992).

The tools for controllability analysis are now
reaching a more mature state, but still the fun-
damental ideas are not well known. The objec-
tive of this paper is to present the ideas for scalar
systems in a tutorial manner. For decentralized
control of multivariable processes the results may
be generalized directly by introducing the Closed
Loop Disturbance Gain (CLDG) and the Perfor-
mance Relative Gain Array (PRGA) (Hovd and
Skogestad, 1992).

2 LINEAR
THEORY

Notation. Consider a linear process model in
terms of deviation variables

CONTROL

y=gu+gad (1)
Here y denotes the output, u the manipulated in-
put and d the disturbance (including what is of-



ten referred to as “load changes”). g(s) and gq4(s)
are transfer function models for the effect on the
output of the input and disturbance, and all con-
trollability results in this paper are based on this
information. The Laplace variable s is often omit-
ted to simplify notation. The control error e is
defined as e=y—r @)

where r denotes the reference value (setpoint) for
the output.
Feedback control. Consider a simple feedback

scheme

u=c(s)(r —y) 3)
where ¢(s) is the controller. Eliminating u from
equations (1) and (3) yields the closed-loop re-

sponse y=Tr+ Sgad (4)
Here the sensitivity is S = (I + g¢)™' and the
complementary sensitivity is 7' = ge(I + ge)~! =
1 — 5. The transfer function around the feedback
loop is denoted L. In this case L = gc. The
corresponding input signal is

u = —ce = ¢Sr — ¢Sgqd (5)

The frequency domain. Most of the results
in this paper are based on the frequency domain.
Unfortunately, few process engineers feel comfort-
able with this domain, so a simple introduction is
given first. Consider the effect of a small change
in the input (input signal) u on the output (out-
put signal) y. In the Laplace domain this may be
represented as

Ay(s) = g(s)Au(s)

where Au represents a small change in the input
(independent variable), and Ay(s) is the resulting
change in the output. g(s) is the transfer func-
tion of the system. The A is included to show
explicitly that we are dealing with deviation vari-
ables, but since we will only deal with deviation
variables in this paper the A will be omitted to
simplify notation.

Let us now consider the time domain where
most engineer feel more comfortable. The prob-
lem with the time domain is that we have to con-
sider specific input signals u(¢) and have to recom-
pute y(t) for each signal. The favorite input test
signal for engineers is a step. However, in general
a step response does not provide sufficient infor-
mation for a controllability analysis. Therefore
the frequency domain shoul be used.

The physical interpretation of the frequency
domain for a system y = g(s)u is a follows: A per-
sistent sinusoidal input with frequency w, u(t) =
ugsin(wt), yields a persistent sinusoidal output
with the same frequency, y(t) = yosin(wt + ¢),
but shifted in phase by ¢. This is shown graphi-
cally in Figure 2 for a first-order system with time
delay,

g(s) =

—fs

fe i k=50=271=10 (6)
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Figure 2: Sinusoidal response for system
g(s) = 5e™2 /(1 + 10s) at frequency w = 0.2
[rad/min]. Period P = 27/w = 31.4 min. Gain

lg(jw)| = 5/4/1+ (10w)? = 2.24. Phase shift
¢ = —arctan(l0w) — 2w = —1.51 rad = —86.3°
corresponding to time shift At = —¢/w = 7.6
min.
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5e~2% /(1 + 10s).

It is useful to have in mind this physical picture
of the frequency domain when one interprets the
controllability results presented later. The magni-
tude yo and phase shift ¢ is easily computed from
the Laplace transform g(s) by inserting the imag-
inary number s = jw and evaluating the magni-
tude and phase of the resulting complex number:

voluo = lgGw)l; & = Lg(jw) [rad]  (7)

In this paper we use a “frequency-by-
frequency” approach and at each frequency con-
sider the response to a sinusoidal input of unit
magnitude (ug(w) = 1) as illustrated in Fig 2.
This results in the “frequency response” of
the system where we consider the system gain
Yo(w)/uo(w) = |g(jw)| (and possibly the phase
shift Zg(jw)) as a function of w. Graphically,
this frequency response is usually represented in a
Bode plot with a log-scale for frequency and gain.

In Fig. 3 the frequency response (Bode-plot) is



shown for the example in (6). We note that in this
case both the gain (amplitude) and phase falls
monotonically with frequency. This is quite com-
mon for open-loop (no feedback control) chemical
engineering systems. The delay § will only shift
the sinusoid in time, and thus affects the phase
but not the gain. The system gain |g(jw)| is equal
to k at low frequencies (this is the steady-state
gain and is obtained by setting s = 0). The gain
remains relatively constant up to a frequency of
about 1/7 where it start falling sharply. Physi-
cally, the system responds too slowly to let high-
frequency (“fast”) inputs have much effect on the
outputs, that is, high-frequency sinusoidal inputs
are smoothened (“dampened”, “attenuated”) by
the system dynamics.

Assume that k£ > 1 and note for later refer-
ence the frequency wg where the gain is 1, that is,
|g(jwq)| = 1 (this frequency is of particular inter-
est when ¢(s) is the disturbance model, and this
is the reason for the subscript d). The exact value
is given by k/+/1 + (wq7)? = 1, but we often use

the asymptotic approximation k/(ws7) & 1, and

obtain war k)T (8)
Thus, we see that wq is large if the steady-state
gain k is large (the input has a large effect on
the output) or if the time constant 7 is small (the
input has a fast effect on the output).

Frequency responses may be obtained for any
transfer function. In this paper we consider
frequency responses of three transfer functions:
g(jw) (effect of manipulated inputs u on outputs
Y), 9a(jw) (effect of disturbances d on outputs
y), and L = ge(jw) (frequency response of loop
transfer function). The frequency responses of g
and g4 are often similar to the response shown in
Fig. 3, whereas the magnitude of L = ge is often
infinite at low frequency because the controller
¢(s) usually contains an integrator.

Bandwidth. Here bandwidth is defined as
the frequency wp where the loop gain is one in
magnitude, i.e. |L(jwp)| = 1 (or more precicely
where the low-frequency asymptote of |L| first
crosses 1 from above). This frequency is often
called the “crossover frequency”.

At frequencies lower than the bandwidth (w <
wp) feedback is effective and will affect the fre-
quency response. However, for sinusoidal sig-
nals (for example, a disturbance) with frequencies
higher than wp the response will not be much af-
fected by the feedback.

Other definitions of bandwidth are also in use,
for example, as the frequency where |S(jw)| = 0.7
or the frequency where |T'(jw)| = 0.7. The above
definition in terms of the loop transfer function
is preferred because it i1s simple. It usually yields
a value between the two alternative definitions in
terms of |S| and |T'|.

A frequency domain analysis, in particular in
the frequency-region corresponding to the band-

A

width, is very useful for systems under feedback
control. This is the case even when the distur-
bances and setpoints entering the system are not
sinusoids. One reason for this is that the feed-
back control system will usually amplify frequen-
cies corresponding to the closed-loop bandwidth,
wp. . For example, the effect of disturbances is
usually largest around the bandwidth frequency;
slower disturbances are attenuated by the feed-
back control, and faster disturbances are usually
attenuated by the process itself. Thus, the magni-
tude of g4 at the bandwidth frequency, |g4(jws)l,
is usually a very good approximation of the worst-
case amplification of a disturbance when using
feedback control. This means that if we can some-
how estimate the best achievable wp, we can say
a lot about how sensitive the system is to distur-
bances under feedback control. The implication
for design is to look for plant modifications which
makes the plant more “self-regulating” in terms
of reducing the magnitude of |g4(jwg)|.

For pure feedforward control the frequency
domain may not be quite as relevant. For ex-
ample, if the disturbances are always steps then
a step response analysis may be more relevant.
However, in many cases the disturbances are si-
nusoidal since they are generated from feedback
loops in other parts of the system.

3 CONTROLLABILITY
ANALYSIS

Scaling. The interpretation of most measures
presented in this paper assumes that the transfer
functions g and g4 are in terms of scaled variables.
The first step in a controllability analysis is there-
fore to scale (normalize) all variables (input, dis-
turbance, output) to be less than 1 in magnitude
(i.e., within the interval -1 to 1).

Thus, in the following we assume that the
signals are persistent sinusoids, and that g and
ga have been scaled, such that at each frequency
the allowed input |u(jw)| < 1, the expected dis-
turbance |d(jw)| < 1, the allowed conitrol error
le(jw)| < 1, and the exzpected reference signal
|r(jw)| < Rmasz- Note that e and r are measured
in the same units so R4z 18 the magnitude of the
expected setpoint change relative to the allowed
control error. The detailed scaling procedure is
outlined in the Appendix.

The ideal controller and plant inversion.
The objective of the control system is to manipu-
late u such that the control error e remains small
in spite of disturbances and changes in the set-
point. The ideal controller will accomplish this
by inverting the process (Morari, 1983) such that

1The bandwidth frequency will often show up as oscilla-
tions in the time response and we usually have wg = 27 /P
where P is the period of the oscillations.



the manipulated input becomes (set y = r in (1)
and solve for u):

'r— g7 gad 9)

For example, an ideal feedforward controller op-
erates in this manner. Usually, the disturbance
is not measured and feedback control is used in-
stead. As may be expected, the input signal gen-
erated under feedback is also given by Eq.(9) at
frequencies where feedback is effective. To see
this, consider Eq. (5) and use the fact ¢S = g~ 1T
to derive the following expression for the input
signal under feedback control

u=g

u=g Tr— g 1Tg4d (10)

At low frequencies, w < wpg, where |gc(jw)| >
1 and feedback is effective we have S = 0 and
T = 1, and we rederive (9). Consequently ideal
control (inversion) requires fast feedback control
(high bandwidth).

On the other hand, inherent limitations of the
system may prevent fast control. The limitations
may include constraints on the allowed input sig-
nal » and non-minimum phase elements in g(s)
such as time delay and right half plane zeros. If
these requirements for high and low bandwidth are
in conflict then controllability is poor. The objec-
tive of the remaining part of this section is to
quantify these statements. The results are de-
rived for feedback control, although some of them
also apply to feedforward control.

3.1 Disturbances and bandwidth

The effect of a disturbance on the output at a
frequency w in the absence of control is

y(jw) = ga(jw)d(jw) (11)
(we are here assuming that r = 0 such that
the control error e = y). The worst-case dis-

turbance at this frequency has magnitude 1, i.e.,
|d(jw)| = 1. Furthermore, at each frequency the
output should be less than 1 in magnitude, i.e.,
we need control if |y(jw)| > 1. Consequently,
at frequencies where |ga(jw)| > 1 we need con-
trol (feedforward or feedback) in order to prevent
the output exceeding its allowed bound. Typically,
lga(jw)| is larger than 1 at low frequencies and
drops to zero at high frequencies. In this case
the frequency, wy, where |ga(jwq)| = 1 is a useful
controllability measure: At frequencies lower than
wq we need control to reject the disturbance, and
thus wq provides a minimum bandwidth require-
ment for control, and we have the approximate

requirement wE > wa (12)

Ezample. Consider the disturbance model (re-
call Fig.3)

ga(s) = kde_o“/(l + 745) (13)

where ks = 5 and 7; = 10 [min]. Scaling has
been applied to g4, so this means that with no

control, the effect of disturbances on the outputs
at low frequencies is kg = 5 times larger than
what we allow. Thus control is required, and since
ga crosses 1 at a frequency wy = kg/7q = 0.5
rad/min, the minimum bandwidth requirement
for disturbance rejection using feedback control

iswp > 0.5 rad/min.
Remarks.

1. Scaling is critical for any controllability mea-
sure involving disturbance rejection.

2. Recall the following rule from the introduction:

e Control outputs that are not self-
regulating
This rule can be quantified as follows: Control
outputs y for which |ga(jw)| > 1 at some fre-
quency.

3. In words we have proved that “large distur-
bances with a fast effect” require fast control.
Specifically, if the disturbance is increased, then
to get acceptable performance the bandwidth
(speed of response) of the control system has
to be increased.

4. To be more specific assume that the distur-
bance is increased by a factor f, and assume
that at frequency wq the slope of |ga(jw)| on the
log-log Bode-plot is —f3, that is, gqa ~ 1/s° at
the frequency wq (in the example above g = 1).
Then the bandwidth has to be increased by a
factor fl/ # to counteract the increased distur-
bance.

5. Note that a delay in the disturbance model has
no effect on the required bandwidth.

6. On the other hand, with feedforward control
where the disturbance is measured, a delay in
the disturbance model makes control easier.

3.2 Input constraints

Consider the response to a “worst-case” sinusoidal
disturbance of magnitude 1 (|d(jw)| = 1) and as-
sume r = 0. From Eq.(9) the input magnitude
needed for perfect control (e = 0) is

|ul = 197" gad| = |g9al/l9l (14)
(Strictly speaking, perfect control is not required,
and the input needed for “acceptable” control
(le] < 1) is |u| = (]gq] —1)/|g]- The difference
is small at frequencies where |gq4| is larger than 1,
and the input needed for perfect control will be
used in the following?).

Consider frequencies w < wq where control is
needed to reject disturbances. The requirement
is that |u(jw)| < 1 at each frequency. To fulfill
this one must require

()l > lga(jw)l, Vw <wq (15)

Similarly, to perfectly track a setpoint »(jw) =
Rper at each frequency with |u| < 1 one must
from Eq.(9) require

2For multivariable systems the differences between per-
fect and acceptable control may be large if the plant is
ill-conditioned.



lg(]w)l > Rma:r:; Yw < w, (16)

where w, is the frequency up to which setpoint
tracking is desired.

Remarks.

1. Recall the following rule from the introduction:

e Select inputs that have large effects on the
outputs.
This rule may be quantified as follows: In terms
of scaled variables we should have |g| > |gq4| at
frequencies where |gq4| > 1, and additionally we
should have |g| > Rmas at frequencies where
setpoint tracking is desired.

2. The following remark applies also to the pre-
vious subsection on disturbances and band-
width, If there are several disturbances then
they should be analyzed individually to iden-
tify the most difficult ones. This could be the
starting point for proposing design modifica-
tions. (The worst-case combined effect of sev-
eral disturbances may be obtained by simply
adding together their individual effects. For ex-
ample, let the effect of disturbance dx on y be
gar. Then to consider the worst-case combina-
tion one may simply replace |ga| by >, |gak| in
the above expressions.)

3. For unstable plants we need a minimum band-
width p to stabilize the system (see below). In
this case we need |g| > |ga| up to the frequency
p. Otherwise, the input will saturate, and the
plant can not be stabilized.

4. The bounds (15) and (16) are strictly speak-
ing only necessary conditions for controllability.
This follows since we have used a frequency-
by-frequency analysis and have not considered
whether there actually exist a causal controller
that can achieve the performance required by
perfect control. In other words, we must always
satisfy the bounds (15) and (16) (or at least the
modified bound for “acceptable” control), but
this may not be sufficient to avoid input con-
straints in the presence of delays or RHP-zeros.

5. Since the input needed for perfect control is in-
dependent of the control implementation, the
bounds (15) and (16) also apply to feedforward
control.

3.3 Time delay and right half plane
ZEeros

It is well-known that time delays and right half
plane (RHP) zeros limit the achievable speed of
response. We shall here quantify this statement in
terms of upper bounds on the allowed bandwidth.
The derivation makes use of the complementary
sensitivity function 7" which for a controller with-
out a prefilter on r is the transfer function from
setpoint to output, i.e., y = Tr.

Consider an “ideal” controller which is inte-
gral square error (ISE)-optimal for the case with
step changes in the setpoint (this controller is
“ideal” in the sense that it may not be realiz-
able in practice because the required inputs may
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Figure 4: “Ideal” loop transfer function for plant
with delay

be infinite). That is, the objective is to minimize
L7 le(t)|?dt for the case where r(t) is a step, and
with no penalty on the input u. In this case the
corresponding “ideal” complementary sensitivity
for a plant with RHP-zeros at z; and a time delay
6 is (see Morari and Zafiriou, 1989, p. 58)

—-s5++ z; R~
T = ¢ 17
155 (17)

where z; is the complex conjugate of z;. Note that
T is “all pass” since |T'(jw)| = 1 at all frequen-
cies. Given T we can compute the loop trans-
fer function L = T/(1 — T'), and then obtain the
bandwidth as the frequency where |L(jw)| crosses
1.
Time delay. Consider a plant with a time delay,
that is, g(s) contains the term e~%. The “ideal”
controller can “invert away” most of the dynam-
ics in g(s), but it cannot remove the delay. Thus,
even the “ideal” complementary sensitivity func-
tion will contain the delay,

T=e"% (18)
The loop transfer function corresponding to this
ideal response is L = T'//(1—T) = e~ % /(1—e%*).
The magnitude |L| is plotted in Figure 4. At
low frequencies, wd < 1, we have e ~ 1 — 0s
(by a Taylor serles expansion of the exponential)
and L ~ 5, and thus the low frequency asymp-
tote of |L{jw)| crosses 1 at frequency 1/6 (the ex-
act frequency where |L(jw)| crosses 1 in Fig. 4 is
2% =1.05/6). This is the bandwidth frequency.
In practice, the “ideal” controller cannot be real-
ized, and so this analysis provides an upper bound
on the bandwidth of approximately

wp < 1/6 (19)
Real RHP zero. Consider a plant with an
inverse response, that is, g(s) contains a term
(—s + z) corresponding to a real RHP zero at 2.
Again, the “ideal” controller cannot remove the
effect of this RHP zero. Thus, even the “ideal”
complementary sensitivity function will contain
the RHP-zero 7 —54+ 2 (20)
The loop transfer functign corresponding to this
ideal response is L = (—s + z)/2s. The magni-
tude |L| is plotted in Figure 5. ‘The low frequency
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Figure 5: “Ideal” loop transfer function for plant
with RHP zero.

asymptote of |L(jw)| crosses 1 at frequency z/2.
In practice, the “ideal” controller cannot be real-
ized, and we obtain an upper bound on the band-
width of approximately

wp < % (21)
Remarks on bounds (19) and (21).

1. The bounds are independent of scaling.
2. The bounds provide a quantification of the rules

e Control outputs that have favorable dy-
namic and static characteristics, i.e., there
should exist an input with a significant,
direct and rapid effect.

e Select inputs that rapidly effect the con-

trolled variables
3. Toreject a disturbance we obtained the require-

ment wp > wq. Combining this with (19) yields
an upper limit on the allowed delay, 6 < 1/wq.
Similarly, we get wa < z/2.

4. Tt will be possible to have a slightly higher
bandwidth than given by these two bounds,
but only at the expense of a very oscillatory
response (corresponding to a large peak in T
and S).

5. The above derivation applies when the delay
or RHP zero is in the plant itself (between the
input % and the output y). However, with feed-
back control a delay or RHP zero in the mea-
surement of y yields similar limitations, and the
above bounds still apply.

6. The bound (21) for RHP-zeros assumes that we
want to use « for “slow control” of y for frequen-
cies lower than z/2. However, if this is not the
case, then one may instead use u for fast (tran-
sient) control of y for frequencies higher than
z (with the sign of the controller gain reversed
compared to the “normal” case®). This is fur-
ther discussed below. This assumes that we are
not concerned with the long-term behavior of
the output®, or that we have a “parallel]” con-

3To see that the controller gain must be reversed one
may consider the formulas in Morari and Zafiriou (1989,
p. 63) where we see that the sign of § and thus of the
feedback controller c is zero if the desired response time 7
is such that r = 1/z.

4In process control we are usually concerned with the
long-time behavior and often require perfect control at
steady-state, but there are cases where the control objec-
tive is to reject transient disturbances and the steady-state
does not matter. One example is the use of a buffer tank
to eliminate high-frequency flowrate disturbances.

trol system where another input may be used
for long-term control of the output.

7. Zeros in the left half plane, corresponding
to “overshoots” in the time response, do not
present a fundamental limitation on control,
but in practice a LHP-zero located close to the
origin may cause problems. First, one may en-
counter problems with input constraints at low
frequency (because the steady-state gain is of-
ten low). Second, a simple controller can prob-
ably not be used. Specifically, a simple PID
controller contains no poles that can be used to
counteract the effect of a LHP zero.

8. Similar restrictions to those given by the
bounds above also apply to feedforward con-
trol. This follows since the ideal T in (17) cor-
responds to the input «# which minimizes the
ISE of the output irrespective of the control
implementation.

Further remarks on the limitation of RHP-
zeros and the use of positive feedback.

In remark 6 it was claimed that one may essentially
choose whether a RHP-zero should pose control lim-
itations at low or high frequencies. This may need
some further discussion, as it was certainly not clear
to me when I first looked at it.

Let us start with a simple time domain interpreta-
tion. A RHP-zero corresponds to an inverse response,
that is, to a gain reversal. Usually, one wants good
steady-state control and applies negative feedback. In
this case one cannot get good transient response as
one has to wait until the effect of the apllied input
goes in the right direction (after the gain reversal).
On the other hand, if one wants good transient re-
sponse then one can react immediately, but since the
gain is in the opposite direction one must positive
feedback, and due to the gain reversal one gets poor
steady-state control.

Of course, one can use a controller which itself has
a RHP-zero and thus a gain reversal, but as shown
below this does not really help. Another, even more
tempting approach is to use an unstable controller
with a pole at the location of the RHP-zero of the
plant. However, it is well known that this does not
work as it results in an internally unstable system
where something eventually will blow up.

Let us now consider an example in more detail.
The problem is to design a feedback controller for the

lant —
’ o) = 5= (22)
which has a a RHP-zero at ».' We shall first consider
negative feedback, then positive feedback, and finally
the combination of the two.

I. Negative feedback. Let us first consider the con-
ventional case where we want good steady-state con-
trol and where the bandwidth is approximately lim-
ited to wp < z/2. The “ideal” controller in terms
of minimizing the integral square error to step set-
points has loop transfer function L = (—g + z)/2s
corresponding to a PI-controller

o(s) = K= (23)

with gain K = 0.5. With the controller (23) the sen-
sitivity function is
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Figure 7: Plant with RIHP-zero at z = 1 using
positive feedback, ¢(s) = —Ks.

1 K]
S = p—3
14gc (1-K)s+ K=z
and we see that the system is stable for 0 < K < 1.
For the numerical calculations let z = 1. In Fig. 6 are
shown the frequency response of the sensitivity func-
tion S and the response to a step setpoint change for
various values of K. We note that with higher gains
the controller is able to reduce the sensitivity at low
frequencies, but only at the expense of a higher peak
at some frequency above z = 1. Similarly, we see from
the time response that an increased gain yields faster
settling towards the steady-state, but a poorer initial
response (in all cases the output goes in the wrong di-
rection initially). The value K = 0.5 is seen to yield
a reasonable trade-off between the two situations.
Positive feedback. If we do not care about the
steady-state behavior then we may “reverse” the gain
of the controller and instead achieve good control at
frequencies higher than z. To this effect consider pos-
tive feedback using a derivative controller

(24)

c(s) = —Iz—(s (25)
.. _ otz .
This yields S = —J-—(K/z)32+(1—K)s+z' The system is sta-

ble for 0 < K < 1. In Fig. 7 the frequency and step
responses for various values of K are shown. We note
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Figure 8: Plant with RHP-zero at z = 1 using
combined negative and positive feedback, ¢(s) =
K(—s+ 1) K =0.25

that with higher gains the controller is able to reduce
the sensitivity at high frequencies, but only at the
expense of a peak in |S(jw)| at intermediate frequen-
cies around z = 1. Similarly, we see from the time
response that an increased gain yields somewhat bet-
ter setpoint tracking initially (in all cases the output
“jumps” directly up to the desired value of y = 1 at
t =0), but at the expense of much larger oscillations
(in all cases there is no tracking at steady-state). The
value K = 0.5 yields a reasonable trade-off between
the two situations.

1I1. Combined negative and positive feedback. One
may finally consider combining the two control ac-
tions at low and high frequency, for example, with
the controller
o(s) = K(_Z n s—‘{g—_z) _ g(—s + 1.62z)(s + 0.62z)

It is interesting to note that the controller contaigzsﬁg
RHP-zero which gives the desired gain reversal. To
have stability we must require 0 < K < 0.5. In Fig. 8
the frequency and step responses for K = 0.25 are
shown. We are able to reduce the sensitivity below
one at all frequencies except around the frequency z
corresponding to the RHP-zero. Similarly, we note
from the step response that the error is quite large
around time ¢t =1/z = 1.

In summary, this combined approach with both
negative and positive feedback does not yield much
(if any) improvement compared to negative feedback
alone. In particular, the settling towards the steady-
state is poor. In a practical situation one must, in or-
der to improve the controllability, add another manip-
ulated input to the process to take care of the control
at either high or low frequencies. This is commonly
done in cases when there is an input with a fast (di-
rect) effect, which has no steady-state effect (i.e., a
zero at the origin), and thus can only be used for
transient control (Balchen and Mumme, 1988, p.47).
In this case a second input must be used for the steady
state control.



3.4 Instability

Consider an unstable plant. That is, g(s) contains
a term 1/(s — p) corresponding to a RHP pole at
p. Pure feedforward control can not be used, since
even with a feedforward controller with a RHP-
zero at p which exactly cancels the RHP-pole, we
will have instability because of disturbances en-
tering between the controller and the plant. Thus,
the main “limitation” caused by the instability is
that feedback control is required for stabilization.

To quantify this consider a plant g(s) = 1/(s—
p) which is stabilized by a proportional controller,
¢(s) = K,. The closed-loop pole is at s = p— K,
so we need K, > p to stabilize the system. Fur-
thermore, for K. > p the asymptote of the loop
transfer function |L| crosses 1 at frequency K.,.
Combining these two pieces of information we
conclude that the approximate minimum band-
width needed for stabilization is

wp >p (27)

Remarks.

1. In words we have found that there is a mini-
mum bandwidth p needed to stabilize the sys-
tem (“we must respond quicker than the time
constant of the instability”).

2. For a plant with a time delay we obtained the
requirement wp < 1/6. Combining this with
(27) yields the requirement p < 1/8 or equiva-
lently 6 < 1/p.

3. Similarly, for a plant with a RHP-zero we must
require p < z/2.

4. In theory, any linear rational plant (without
time delay) can be stabilized, provided the con-
troller is allowed to be unstable and be nonmin-
imum phase (contain RHP-zeros). Thus, even
a plant with a RHP-pole p located to the left
of a RHP-zero z (1.e. p > z) can in theory
be stabilized. This seems to be inconsistent
with the above results. It is not, since these
results required performance and not just sta-
bility. Thus, the requirement p < z/2 is in-
deed needed for obtaining acceptable control
performance (at least at low frequencies). Fur-
thermore, if the controller is restricted to being
stable, then a plant with a single RHP-pole at
s = p can be stabilized (it is “strongly stabiliz-
able”) if and only if p < z (Youla et al., 1974).

3.5 Phase lag

Consider a minimum-phase process of the form
k _ k
(14 ms) (L4 m28)--  [LL(1+7s)

where n is two or larger. At high frequen@gg
the gain drops sharply with frequency (|g(jw)| =
k/w™ ] ™) and one may therefore, depending on
the value of k, encounter problems with input con-
straints. Otherwise, the presence of high-order
lags does not present any fundamental problem.

9(s) =

However, in practice the large phase lag at
high frequencies (£Zg(jw) — —n - 90°) will usu-
ally pose a problem independent of the value of
k, because we need the phase of I = gc to be less
than —180° at frequencies lower than the band-
width wp to avoid instability (assuming that g(s)
is stable). Thus, zeros in the controller (e.g.,
derivative action) are needed to counteract the
negative phase in the plant. Define the frequency
wg1go as the frequency where the phase lag in
the process itself is —180°. With a simple PID
controller where the derivative action is active
over one decade the maximum phase lead is 54.9°.
This is also a reasonable value for the phase mar-
gin, and we therefore conclude that with a simple
PID controller we must require approximately
wp < Wy180 (29)
Balchen and Mumme (1988, p.17) state that a vi-
olation of this bound implies that “feedback con-
trol alone will not be satisfactory”. This is not
strictly correct, as the bound does not pose a fun-
damental limitation if a more complex controller
1s used. However, in most practical cases the
bound in (29) applies since one wants to use sim-
ple controllers, and also because the plant model
is not known sufficiently well to place zeros in
the controller to counteract the poles at high fre-
quency.

Practical bound :

3.6 Loop gain requirements for

feedback control
The control error under feedback control is given

by e = —Sr+ Sgad (30)
We have already used this expression to derive the
requirement wp > wq, but we may also get more
detailed information about the required loop gain
L = gc at low frequencies. At a given frequency
the worst-case disturbance is d(jw) = 1 and the
requirement is that |e(jw)| < 1 (assuming that g4
has been appropriately scaled). This requirement
1s satisfied

if and only it |S(w)| < 1/lga(ie);

At low frequencies, w < wp, where feedbacﬁ{gllg

w < Wwq

effective and we have |L(jw)| > 1 and S(jw) =
1/L(jw), (31) becomes
ly(jw)| < 1if and only if |L(jw)| > |ga(jw)l;

Thus, at frequencies where feedback is needea(:}‘%)r
disturbance rejection (|gq| > 1), we must require
the loop transfer function |L(jw)| to be larger than
the disturbance transfer function, |ga(jw)| (appro-
priately scaled).

3.7 Summary of controllability re-
sults

Let wp denote the closed-loop bandwidth of the
system. The following rules apply

w < wy



1. Speed of response to reject disturbances.
Must require wp > wq. Here wy is the
frequency at which |g4(jwq)| first crosses 1
from above. Below this frequency the error
will be unacceptable (Je] > 1) for a distur-
bance d = 1 unless control is used. More
specifically, we must for feedback control
require at frequencies lower than wg, and
|L| = |ge(jw)| > |ga(jw)| for w < wq.

2. Speed of response to follow setpoints with
minimum required response time 7, = 1/w,.
Must require wp > w,. The requirement
comes in addition to the bandwidth require-
ment imposed by the disturbances.

3. Input constraints for disturbances. Must re-
quire |g(jw)| > |ga(Jw)|, Yw < wgq. This
1s needed to avoid input constraints for per-
fect rejection of disturbance d(jw) = 1.

4. Input constraints for setpoints. Must require
lg(jw)| > Rmae,Vw < wy.  This is needed
to avoid input constraints (Ju(jw)| < 1) for
perfect tracking of |r(jw)| = Rmag. Here w,
is the frequency up to which setpoint track-
ing is desired, and R, is the magnitude of
the setpoint change relative to the allowed
control error. Often R,,.. = 1.

In the frequency range up to the band-
width wp there should not be any time de-
lays, RHP-zeros or high-order plant dynam-
ics that need to be counteracted. We get

5. Time delay . Must require wp < 1/6.

6. Real RHP-zero at s = z. Must requirewp <
z/2.

7. Phase lag constraint.
cases: wp < Wgy180-

In most practical

Here wyigo is the frequency at which the
phase of g(jw) is —180°. This condition is
not a fundamental limitation, but more of a
practical limitation. In particular it applies
if the phase drops rather quickly around the
frequency wyigo.

8. Real open-loop unstable pole at s = p. We
need fast control to stabilize the system and
must approzimately require wp > p.

4 APPLICATIONS

4.1 Room heating

Consider the problem of maintaining a constant
room temperature. A heat balance yields the fol-
lowing differential equation for the temperature
T in the room

SO =Q+KL-T)  (33)

Here @@ [W] is the heat input, T, is the outdoor
temperature, and the term k(7T, — T") [W] repre-
sents the heat loss due to heat conduction through
the walls or due to inflow of fresh air ®. Consider
a case where the heat input ¢ is 2000W and the
difference between indoor and outdoor tempera-
ture T'— T, is 20K. Then the steady-state energy
balance yields & = 2000/20 = 100 W/K.

Let the heat capacicity be Cy = 100 kJ /K ©.
On introducing deviation variables and taking the
Laplace transform we get

1 1
p—— (EAQ(S) + ATo(S)) ;o T= %
The time constant for this example is 7 = 1(&&)
103/100 = 1000s = 17 min which seems reason-
able (for a increase in heat input it will take about
17 min for the temperature to reach 63% of its
steady-state increase).

Problem statement. Feedback control should
be used to maintain approximately constant room
temperature. The measurement delay for 7' is
6 = 100s. Assume the acceptable variations in
room temperature are £1K i.e., Typqr = 1K. Fur-
thermore, assume that heat input can vary be-
tween 0 W and 4000 W, i.e., the heat input is
2000 £ 2000 W so Qmaz = 2000 W. Finally, the
expected variations in outdoor temperature are
+10 K, ie, T, .. =10 K.

max

AT(S) =

e Is the process controllable with repect to
disturbances?

o Is the process controllable with respect
to setpoint changes” of magnitude +3 K
when the desired response time for setpoint
changes is 7, = 1000 s (17min) ?
Solution. A critical part of the controllability
analysis is scaling, and we introduce the following
scaled variables

y=AT/1K; u=AQ/2000W; d=ATy/10K
The model in terms of scaled variables then(%%2

comes
y = g(s)u+ ga(s)d (36)
20 10
= — =— (37
99 = Toons+ 1 94 = o001 7
The frequency responses of these transfer func-
tions are shown in Fig. 9.

5The heat loss may be represented by gcp(To — T) +
UA(T, —T) where the first term represents the convective
heat transfer (difference in energy of inflow and outflow of
air) and the second term represents the heat loss through
the walls and windows. Thus k = gcp + UA, where g
[kg/s] is the Howrate, cp [J/ kg,K] is the heat capacity, U
[W/m2 K] is the heat transfer coefficient, and A [m?] is
the wall area.

6 The value Cy=100 kJ/K corresponds approximately
to the heat capacity of air in a room of about 100 m?.
Thus we neglect heat accumulation in the walls.

"The setpoint change may be due to a desired increase
in temperature when we come home from work or get up
in the morning.
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Figure 10: Feedback control for room heating ex-
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Figure 11: Feedback control for room heating

example using PID controller. Setpoint change
3/(150s + 1).

1. Disturbances. Feedback control is neces-
sary up to the frequency wg = 10/1000 = 0.01
rad/s, where [g4| crosses 1 in magnitude (wp >
wg). This is exactly the same frequency as the
upper bound given by the delay, 1/6 = 0.01
rad/s (wp < 1/6). We therefore conclude that
the system is barely controllable for this distur-
bance. No problems with input constraints are
expected since |g| > g¢q| at all frequencies. This
conclusion is supported by the closed-loop simula-
tion in Fig. 10 for a unit step disturbance (corre-
sponding to a sudden 10 K increase in the out-
door temperature) using a PID-controller with
K, = 0.4,71 = 200s, 7p = 60s (the tunings are
in terms of scaled variables for a controller in cas-
cade form with derivative action over one decade).
The output error exceeds its allowed value of 1 for
a very short time after about 100 s, but then re-
turns quite quickly to zero. The input goes down
to about -0.8 and thus remains within its allowed
bound of £1.

2. Setpoints. The plant is also control-
lable with respect to the desired setpoint changes.
First, the delay is 100s which is much smaller than
the desired reponse time of 1000s, and thus poses
no problem. Second, |g(jw)| > Rmez = 3 up
to about w = 0.007 [rad/s] which is significantly
higher than the required w, = 1/ = 0.001
[rad/s]. This means that input constraints pose
no problem. In fact, we should be able to achieve
response times of about 1/0.007 = 150s without
reaching input constraints. This is confirmed by
the simulation in Fig.11 for a desired setpoint
change 3/(1505+1) using the same PID controller
as above.

4.2 First-order with delay process

Consider disturbance rejection for the following
process
e e

g(s) :kl—*-'rs; gd(s) :kdl—}—rds

In addition there is a measurement delay 0, for
the output and 8,,4 for the disturbance. All pa-
rameters have been appropriately scaled such that
at each frequency |u| < 1,|d| < 1 and we want
ly| < 1.

Problem: a) For each of the eight parame-
ters k, 7,0, ka, T4, 04, Omandfnyq state qualitatively
what value you would prefer to have good con-
trollability (large, small, no effect). Give answers
both for the case of pure feedforward control and
pure feedback control. b) State any quantitative
relationships between the parameters that need
to be satisfied to have acceptable controllability.

Solution: a) Qualitative results are given in
Table 1. Essentially, the effect of the input should
be as large and quick as possible, whereas the op-
posite is true for the disturbance. The main dif-
ference between feedback and feedforward control

—0s —eds

(38)



| | Feedback control | Feedforward control ]

k Large Large .
T Small Small
6 Small Small
kq Small Small
T4 Large Large ; .
B4 No effect Large A P
Om Small No effect ¥y /kq t
amd NO eﬂeCt Sma‘ll ‘1.\?_ ““““ ;;‘)‘ ““““““ 7777777'1'0WER'BO“UND-<-
€4
Table 1: Desired value of parameters to have good Eigllffs 12: Resp(?nse for step disturbance, g4 =
controllability. Tfﬁf Note: 0 in plot should be 8,4
is that a delay for the disturbance has no effect y(t — 02) = ka(1 — e—t/r.z) (43)

for feedback control, while it is an advantage for
feedforward control as it leaves more time to take
the appropriate control action. We now want to
quantify the statements in Table 1.
b) To derive quantitative results we may use
of the rules from Section 3.7. Assume kg > 1
such that control is needed to have acceptable
performance (|y| < 1). From Rule 1 we have that
control is needed up to the frequency wg where
lga(iwa)| =1, ie.,
Wqg ~ k‘d/Td (39)
To avoid input saturation (i.e, to have |u| < 1) we
have from Rule 3 that that |g(jw)| > |g4(jw)]| for
frequencies w < wq. Specifically, to have |u| < 1
we must require for both feedback and feedfor-
ward control
k> kd; k’/‘l‘ > k’d/Td (40)
The required bandwidth for disturbance rejection
is wq. Thus, we must require for feedback control
that wg < 1/0:0:, where 0;5 is the total delay
around the loop. That is, to have |y| < 1 for
feedback control we require (combine Rule 1 and

Rule 5) 0+ 0 < Tafka (41)
For feedforward control any delay for the distur-
bance itself yields a smaller “net delay”, and to
have |y| < 1 we require

0 + Oma <Td/kd+9d (42)
4.3 Step response controllability
analysis

The controllability analysis presented in this pa-
per is based on the frequency domain. However,
most engineers feel much more comfortable with
the time domain. The purpose of this example is
to analyze the controllability using step response
for a simple first-order process.

Let the model from the disturbance to the out-
put be first-order with delay, i.e.,

gd(s) = k‘de_eds/(l + Tds)

Consider a unit step disturbance, d = 1. Without
control the output response is

The response is shown graphically in Fig. 12.
Since kg > 1 the output y(t) will exceed 1 after
some time. Disregarding for a moment the delay,
the time where y(t) = lisat tg = —74In(1— =) ~
74/ka (the approximation holds for k¢ >> 1 and
corresponds to the point where the initial tan-
gent of the time response crosses 1, see Fig. 12).
Assuming that we measure the disturbance, the
“minimum reaction time” to achieve |y| < 1 is
then (see Fig. 12)

tg=rTq/ka+ 64

This is then an upper bound on the allowed delay
in the process. This is the same value as was
obtained in Eq.(42) using the frequency domain
in the case of feedforward control.

From this example it seems like a step re-
sponse controllability analysis yields results sim-
ilar to the frequency domain, at least for a first-
order process and feedforward control. However,
for feedback control a step response controllability
analysis is generally less suitable, as it explained
next.

First, it can not be used to estimate the re-
quired speed of response for counteracting distur-
bances.

For example, a possible step response control-
lability method for disturbances may be based on
the following idea: “Generate a unit step distur-
bance and find the time t; it takes before the
output exceeds its maximum value (which is 1
in terms of the scaled variables used in this pa-
per). Acceptable controllability is possible if the
process has a minimum response time (including
delay) less than ¢4”. This statement is not correct.
We know that the presence of a disturbance delay
4 should not matter with feedback control. A fre-
quency reponse analysis is consistent with this as
the frequency wg where |gqa(jwa)| = 1 is indepen-
dent of any delay in g4. On the other hand, from
a step response analysis we find that the time 4
does depend on the delay in the disturbance (see
Fig. 12) and a step response analysis is optimistic.



As another example, consider two distur-
bances for which the step responses are almost
identical, but the magnitude frequency responses
are very different

kd e_eds. kd 1

gai(s) = gax(s) =

1+ 748 '
. 44
Assume kg >> 1. Then the first dlsturba,nc(s 12
very difficult (in fact, acceptable controllability is
impossible), whereas the second disturbance may
be counteracted provided the process delay is less
than 4. A frequency analysis yields this result,
whereas the step response analysis again is opti-
mistic for the first disturbance with the delay.

Second, a step response analysis is less suitable
for analyzing the effect of constraints at high fre-
quencies. At steady state the two methods yield
the same result (k > k4). However, the condition
k/T > kq/7q which applies at high frequency is
difficult to derive from a step response analysis
unless the delays are neglected.

Third, there are disadvantages with an open-
loop step response analysis for high-order systems
and for systems with oscillations.

However, one advantage with a step response
analysis is that nonlinearity may be included.

In conclusion, the frequency domain should
generally be used for controllability analysis, and
the purpose of this example was not to suggest
using step responses, but to provide another jus-
tification for the usefulness of the frequency do-
main.

4.4 Design of buffer tanks.

Buffer tanks are frequently used in the process
industry to dampen disturbances in temperature,
concentration and flow. For “quality” (e.g., tem-
perature and concentration) disturbances the idea
is to dampen high-frequency disturbances by use
of a well-mixed tank, and level control is not im-
portant. For flowrate disturbances the level con-
trol is used actively to dampen the disturbance
and mixing is not important. Of course, it is pos-
sible to use the same tank for both kinds of dis-
turbances - design of the tank must then be based
on the most difficult disturbance from a control
point of view.

Although buffer tanks are often introduced for
control purposes, they are usually sized in a rather
ad hoc manner without explicitly considering the
expected disturbances and desired control objec-
tives. Fortunately, the results on controllability
with respect to disturbances presented in this pa-
per, provide the basis for a quantitative approach.

To design the buffer tank consider the control-
lability of the plant when the disturbance transfer
function g4(s) is replaced by

4a(s) = ga(s)h(s) (45)
where h(s) represents the transfer function for the
buffer tank(s). Presumably, the controllability is

9
L4745 (1 + S25)n

not acceptable without the buffer tank (i.e., with
h(s) = 1), that is, the effect of the disturbance
is too large such that, either the required speed
of response is not achievable (typically due to a
process delay 6), or the required inputs to reject
the disturbance are too large.

The objective of the buffer tank is then to
dampen the disturbance such that:

1. The required speed of response is achiev-
able, that is, for a process delay # we must
require

def

|ga(jwe)| < 1; we = 1/6  (46)

2. Input constraints cause no problem, that is

9G] < lgaGGw)l, Yo <04 (A7)
where wq is the frequency where |§4(jwq)| =
1.
That is, h(s) should be selected such that require-
ments (46) and (47) are satisfied. Although this
is rather straightforward, we consider it in some
detail because it yields some rather interesting re-
sults.

We shall first consider design of buffer tanks
for “quality” disturbances (temperature and con-
centration) and then consider flow rate distur-
bances. The main difference between these cases
is that for quality disturbances h(s) has to be a
series of first-order lags, whereas for flowrate dis-

turbances one may use the level controller to get
a desired h{s).

4.4.1 Quality disturbances.

Consider a tank with constant volume V [m?] and
with an inlet and outlet flowrate ¢ [m3/s]. Let ¢;y,
denote the inlet concentration or temperature to
the tank, and ¢ the corresponding value in the
outlet stream. A material or energy balance for a
perferctly mixed tank yields

de
VE = qCin — gC (48)
The transfer function for one tank then becomes
1
c(8) = hi(8)ein(s); hi(s) = p— (49)

where 7, = V/q [s] is the residence time in the
tank (the subscript h denotes holdup). For n
equal tanks in series with total residence time 7
and total volume V', hy(s) is replaced by

ha(s) = 1/(Zts +1)"

Typical frequency responses are presented in
Figure 13. We have that |h,(jw)| = 1 at frequen-
cies w < n/tp, that is, the buffer tanks are only
effective for reducing the effect of disturbances at
frequencies higher than the residence time of the
individual tanks. The high-frequency asymptote
is |h(jw)| & (7-)" so for rejecting high-frequency

(50)
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Figure 13: Frequency responses for n tanks in
series with total residence time 74, hy(s) =

/(% + 1)

disturbances it is best to use many tanks if the ob-
jective is to minimize the total volume. At inter-
mediate frequencies we see from Fig.13 that there
is a small frequency range where fewer tanks is
better, but the main reason for using fewer tanks
is usually to save on equipment cost (including
costs for piping, mixing and level control), and
not to minimize the total volume.

The design of the buffer tank(s) now depends
on which of the two requirements (46) and (47) is
most difficult to satisfy.

1. Delays is the problem. In this case the
objective tanks is to make the curve for |§4| cross
1 in magnitude before the frequency wy = 1/6.
Thus, we need to select h(s) such that

|hn(jwo)l - lga(sws)| < 1 (51)
Introduce the factor by which the effect of the
disturbance must be reduced

J = lga(jws)| (52)

We must at least require |h,(jws)| = 1/f.
This may be solved graphically using Fig.13. Al-
ternatively, for n equal tanks in seriesEq.(50)
yields the required total residence time

T = fny/ f2/7 — 1 (53)

where 6 i1s the total delay in the feedback loop.
The optimal number of tanks can then be found
by taking into account cost for equipment, piping,
control systems (each tank may require a level
controller), etc. As an example, for f = 10 we
get

No. of tanks, n 1 2 3
Total residence time,r,

In this case the smallest total volume is obtained
with 3 tanks, but with 2 tanks the required vol-
ume is only 4% larger and is clearly preferable.
In practice one would probably prefer to use only

; .
10" 10° 10! 10°

4

9.9460 6.000 b5.726 5.886

1 tank which has 66% larger total volume, but
which saves additional equipment.

Remark. From (53) we find for large values
of f (ie., f2/* >> 1) the following limiting value
for the total residence time

™ ® On fl/n (54)
Thus, with one tank the residence time should be
approximately equal to 4f.

2. Constraints is the problem. If con-
straints is the problem then we must in any case
require that there are no problems at steady-
state, that is, we must have |g(0)] > |ga(0)|. Let
w, be the frequency where |g| = |g4| > 1. The ob-
jective of the buffer tanks in this case is to make
|ga| smaller than |g| in the frequency range from
We to wq.

The following procedure may be used to
achieve this: Let n, > 0 be the difference in the
slope of |g4| and |g| (on a log-log plot) at fre-
quency w.. Assume that the difference in slopes
remains constant or decreases in the frequency
range from w, to the frequency where |g| = 1. Se-
lect the number of tanks n equal to n., and select
the holdup of the individual tanks as 1/w,, that
is, select the overall residence time as 7, = n,/w,.

FErample. Let

(5) = 200
I\ = (559005 + 1)(89.45 + 1)

(s) = 100(5000s + 1)
9a18) = (559005 + 1)(89.4s + 1)

We find in this case w, = 5oas55 = 0-0004 [rad/s]
(using asymptotic values) and n, = 0—(—1) =1,
and the difference in slopes remains constant at
high frequencies. To reduce the effect of the dis-
turbance to an acceptable level such that input
constraints are avoided, we then need n, = 1
buffer tank with residence time 1/w, = 2500s =
0.7h.

Problems.

1. The effect of a concentration disturbance must
be reduced by a factor of 100 at the fre-
quency 0.5 rad/min. The disturbances should
be dampened by use of buffer tanks and the
objective is to minimize the total volume. How
many tanks in series should one have? What is
the total residence time?

2. The feed to a distillation column has large vari-
ations in concentration and the use of one buffer
tank is suggest to dampen these. The effect of
the feed concentration d on the product com-
position y is given by (scaled variables, time in
minutes) ga(s) = /35 (55)
(that is, after a step 1n d the output y will, after

an inital delay of 1 min, increase in a ramplike

fashion and reach its maximum allowed value

(which is 1) after another 3 minutes). Feedback

control should be used and there is a total pro-

cess delay of 3 min. What should the residence
time in the tank be?
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Figure 14: Use of slow level control to dampen
flowrate disturbance.

3. In terms of minimizing the total volume it is
optimal to have buffer tanks of equal size. The
only “exception” is for low-frequency distur-
bances (frequencies lower than about 1/6, see
Figure 13) where it better to use fewer tanks
(that is, one tank has zero volume). Consider
the case with two buffer tanks with total resi-
dence time 7. Let the residence time in one of
the tanks be £. Then

he(s) = Araa) A+ (= a)s (56)
and the high-frequency asymptote becomes
[R2(5w)| = 1/[(Thn — )zw?] which is minimized
by selecting © = 74 /2, that is, the tanks should
be of equal size to get the best disturbance at-
tentuation with a given total volume. For n
tanks in series we get the same result by con-
sidering the high-frequency asymptote. Show
this.

4. Is there any reason to have buffer tanks in par-
allell (they must not be of equal size because
then one may simply combine them) ?

5. What about parallel pipes in series (pure de-
lay). Is this a good idea?

4.4.2 Flow rate disturbances

Flowrate disturbances may be dampened by use
of a slow level controller as illustrated in Fig. 14.
Let V [m3] denote the volume of the buffer tank
and let g;n, and ¢ [m3/s] be the inlet and outlet
flowrates. The dynamic model for the tank and
the level control system is

V()= ~(ain(s) ~ a(s); 4(s) = (s)V(5) (57)
where ¢(s) is the transfer function of the level con-
troller (including measurement and actuator de-
vices). We get

1
V(s) = ST o) ) qin(s) (58)
and the transfer function of interest becomes
c(s

16) = )n () H0) = Trms 69
For flowrate disturbances we have more free-
dom in selecting h(s) because we can select the al-
gorithm for the level controller, ¢(s). On the other
hand, the level will vary so the size of the tanks
must be such that the level does not reach con-
straints. The design of a buffer tank for flowrate

disturbances then consists of two steps
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Figure 15: pH-neutralization process.

1. Design the level controller such that h(s)
has the desired shape, that is, such that (46)
and (47) are satisfied.

2. Design the size of the tank such that the
level remains within the allowed range for
the expected disturbances.

First-order filtering. In many cases the desired
h(s) has the shape
h(s) =1/(rs+ 1) (60)
and we see from (59) that the required controller
is a P-controller with gain K, = 1/7. The re-
sponse for the volume in the tank is given by (58),
that is, we get V(s) = -T7q1(s). This transfer
function has its largest value equal to 7 at low
frequencies, and if the inlet flowrate varies within
its full range +¢;, (£100%), we get that the vol-
ume will vary within +7¢;,. This is in terms of
deviation variables, and the total volume of the
tank should be 27¢;,. We then find, as one prob-
ably may expect, that the average residence time
in the tank, 75, should be equal to the desired
filter time constant 7.
Remark. In some cases one may want to add
a slow integral action to the controller to reset
the volume (level) to its nominal value, but this
is not always desired. For example, if ¢;;, is at its
maximum value, then we may want V to stay at a
large value to anticipate a possible large reduction

in Qin .
Problems.
1. Second-order filtering. Let h(s) = m De-

sign the controller and tank in this case.

2. Is there any advantage of using more than one
tank in this case?

4.5 Neutralization process

The derived controllability results are next ap-
plied to a neutralization process, and we find that
more or less heuristic design rules given in the lit-
erature follow directly. The key point is to con-
sider disturbances and scale the variables prop-
erly.



One mixing tank. Consider the process in
Figure 15 where a strong acid (pHI= —1) is neu-
tralized by a strong base (pH=15) in a tank with
volume V= 10 m® to make ¢=0.01 m3/s of “salt
water”. The pH in the product stream is adjusted
to be in the range 7+ 1 (“salt water”) by manip-
ulating the amount of base, ¢g. The delay for the
measurement of pH is § = 10s. Details about the
dynamic model are given in Appendix 2. Intro-
duce the excess of acid ¢ [mol/]] defined as

C=CH —CoH (61)
Somewhat surpisingly, we find that in terms of ¢
the dynamic model, which is usually believed to
be strongly nonliner, is given by that of a simple

mixing process

d
7 (V6) = taca+apep —qc (62)
Introduce the following scaled variables
¢ qB qA
= —; == = 63
Y= 10-s 75 0.5¢" (63)

where suprescript * denotes the steady-state
value. The appropriately scaled linear model then
becomes (see Appendix 2)

kq
= m(—?u +d);
where 7 = V/q = 1000s. The output is extremely
sensitive to both u and d and the large gain is
easily explained: A change d = 1 corresponds to
a 50% increase in the amount of acid which has a
concentration of 10 mol/l of H+ (pH=-1). This
increases the amount of H+ in the product from 0
to 2.5 mol/l, while the largest allowed amount of
H? in the product is 10~% mol/1 (pH=6), thus the
gain in terms of scaled variables is kg = 2.5/1075.
Input constraints do not pose a problem since
lg| = 2|g4| at all frequencies. The main control
problem is the high disturbance sensitivity, and
from (39) we find the frequency up to which feed-
back is needed

wg & kg/T = 5000 rad/s (65)

This requires a response time of 1/5000 = 0.2
millisecond. However, there is a delay § = 10s
so the bandwidth must be less than wp < 1/6 =
0.1 rad/s. From the controllability analysis we
therefore conclude that acceptable control using
a single tank is impossible.

Design change: Several tanks. The only
way to improve the controllability is by design
changes. The most useful change in this case is
to do the neutralization in several steps. This
can be considered as a special case of the buffer
tank example considered above: The acid and
base is mixed and is then send to one or more
buffer tanks, and the measured pH of the final
stream is used to adjust the addition of base, as
is illustrated with two tanks in Figure 16. The
mixing process itself is assumed immediate so in
the following (66)

kg=25-10° (64)

ga(s) = kg

ACID

Figure 16: Control of neutralization process using
two tanks.

and the objective is to find an appropriate h(s)
such that the “new” process §a(s) = ga(s)h(s)
has acceptable controllability in terms of having
acceptable self-regulation.

As we already found, the disturbance has a
gain of kg = 2.5-10°% Thus, if the main con-
trol problem is a delay of = 10s, we must de-
sign buffer tanks which reduces the effect of the
disturbance by a factor f = 2.5 - 10° at the fre-
quency wy = 1/6= 0.1 [rad/s]. The required total
residence time, 73, is given by Eq.(53), and the
corresponding total volume is

V = 1myq (67)

where ¢ = 0.01 m®/s. From this we find that
the following designs have the same controllability
with respect to disturbance rejection:

No. of Total Volume
tanks volume each tank
n V[m® [m®]

1 250000 250000
2 316 158
3 40.7 13.6
4 15.9 3.98
5 9.51 1.90
6 6.96 1.16
7 5.70 0.81
18 3.66 0.20
30 3.89 0.13

With one tank we need a volume correspond-
ing to that of the worlds largest ship to get accept-
able controllability. The minimum total volume
is obtained with 18 tanks of about 203 1 each -
giving a total volume of 3.662 m®. However, tak-
ing into the account the additional cost for extra
equipment such as piping, mixing and level con-
trol, we would probably select a design with 3 or
4 neutralization tanks for this example.
Remarks.

1. Further remarks on some of the practical
aspects and comparison with previous work are
found in Skogestad (1994).



2. The use of several mixing tanks in series
can be compared to playing golf: It is almost im-
possible to hit the hole with one stroke, but with
5 strokes or more almost anyone can do it.

3. Traditionally, a “feedforward” approach
has been taken when considering controllability
of such processes, and one key argument has been
that control is difficult because on needs to ad-
just the amount of base extremely accurately to
counteract the disturbance in the acid. This is a
valid argument for feedforward control, but not
for feedback control as the feedback control ac-
tion will be able to adjust the input accurately.
As demonstrated above the key problem for feed-
back control is that the output is extremely sensi-
tive to disturbances (k4 and wy are large), which
requires an extremely high bandwidth.

4. Of course, feedforward control based on
measuring ¢4 and ¢4 can be used in addition to
feedback to improve performance. According to
McMillan (1984) one can typically save one buffer
tank using a well designed feedforward controller.

5. The results given above compare well
with results by other authors. A simple short-
cut method given by McMillan (1984) is to use
about one mixing tank for each 2 units change
in pH. For example, with a pH change of 8, as
in our example (from pH 15 to 7), four tanks is
recommended.

5 Conclusions

The paper has presented in a tutorial manner a
detailed controllability analysis for SISO systems
using the frequency domain. The analysis may
be used to answer whether or not a given plant
is controllable, and thus extends beyond the tra-
ditional use of “controllability indicators”. The
method has been applied to several examples, in-
cluding design of buffer tanks for pH-processes. It
is found that previously presented heuristic rules
follow directly from the analysis. The key point
is to consider disturbances and scale the variables
properly.

Acknowledgement. Manfred Morari was
the first to consider a rigorous approach to con-
trollability analysis. He also pointed out to me to
the paper of Ziegler and Nichols (1943) who first
introduced the term controllability in the control
literature.

References

[1] Balchen, J. G. and K. Mumme, 1988. “Process Con-
trol. Structures and Applications”, Van Nostrand
Reinhold, New York.

[2] Hovd, M. and S. Skogestad, 1992. “Simple Frequency-
Dependent Tools for Control Structure Analysis,
Structure Selection and Design”, Automatica, 28,
989-996.

[3] McMillan, G.K., 1984, pH Control, Instrument Soci-
ety of America.
[4] Morari, M., 1983. “Design of resilient processing
plants ITI, A general framework for the assessment of
dynamic resilience”, Chem. Eng. Sci., 38, 1881-1891.
Morari, M. and E. Zafirou, 1989. Robust Process Con-
trol, Prentice Hall.
Rosenbrock, H.H., 1966, “On the design of lin-
ear multivariable control systems”, §rd IFAC World
Congress, Paper 1la.
Rosenbrock, H.H., 1970. State-space and Multivari-
able Theory, Nelson, London.
Seborg, D.E., T.F. Edgar and D.A. Mellichamp, 1989,
Process Dynamics and Control, Wiley, New York.
Skogestad, S., 1994, “A Procedure for SISO control-
lability analysis - with application to design of pH
processes” , Preprints IFAC Workshop on Integration
between process design and control (IPDC'94), Bal-
timore, June 1994, 23-28.
Skogestad, S. and E.A. Wolff, 1992, “Controllability
measures for disturbance rejection”, Preprints IFAC
Workshop on Interactions between process design and
control, London, Sept. 1992, Edited by J.D. Perkins,
Pergamon Press, 127-132.
Youla, D.C., J.J. Bongiorno and C.N. Lu, 1974,
“Single-loop Feedback Stabilization of Linear Mul-
tivariable Dynamical Plants”, Automatica, 10, 159-
173.
Ziegler, J.G. and N.B. Nichols, 1943, “Process Lags
in Automatic Control Circuits”, Trans. ASME, 65,
433-444.

(5]
(6]

[7]
(8]
(9]

(10]

[11]

[12]

APPENDIX 1.
cedure

Scaling pro-

Let the unscaled variables (in their original units) be
identified by a prime (‘). The model in terms of un-
scaled variables is

yl — gl(s)ul + g:i(s)dl

(68)

e =y -7 69
where g'(s) and g4(s) denogt,;e the unscaled (“original”;
transfer functions.

The normalized or scaled variables are obtained
by normalizing each variable by its maximum allowed
magnitude

' ' /
d’ u' e Y r
d= , U = = = =
dmaz Umazx €mazx €max €maz
Here (70)

® Umqr - largest allowed magnitude change in «
(typically because of saturation constraints)

® dmas - largest expected magnitude disturbance

® emas - largest allowed magnitude control error
for output
® Tmaz - largest expected magnitude change in
setpoint
The maximum control error should typically be cho-
sen by thinking of the largest deviation one can allow
as a function of time, and not as the steady-state er-
ror. The same applies to the other maximum errors.
Note that e, ¥ and r are in the same units and have
alll been normalized with respect t0 emqz. Let

_ Tmasz

Rmaa: -

71
ema.z' ( )

denote the magnitude of the largest setpoint change
relative to the allowed control error. In most cases



Rinaz > 1. With these scalings we have the following
requirements at all frequencies

ld(jw)] < 1,|r(jw)| £ Rmas, [u(jw)] £ 1, le(jw)| < 1

that is, if we think in terms of sinusoids the variables

d(t), u(t) and e(t) should stay within the interval -1

to 1, and r() within the interval +Rqs.
Introducing (70) into (68) yields

€mazl = g’(s)uma:pu + g;(s)dma:rd
Define the scaled transfer function models as
Ymaz dmaz
9(s) =g'(s)===;  ga(s) = ga(s)= (72)

We then get the “new” model in terms of sca.led vari-
ables and scaled transfer functions

y = g(s)u + ga(s)d (73)

e=y—r (74)

In this paper we use the frequency domain,
and use the same maximum value at all frequen-

cies, although one may in some cases use frequency-
8, The assumption for the control-
lability analysis is then: The (scaled) external signals
d and r are persistent sinusoids with magnitude less
than 1 and Rmae at all frequencies, that is, |d(jw)| <
1 and |r(jw)| < Rmas.
inputs and allowed scaled control error should be less
than 1 at all frequencies, that is, [u(jw)| < 1, and
le(jw)| < 1. For example, we assume that gq(s) is
scaled such that at each frequency the worst (largest)
disturbance corresponds to |d(jw)| = 1, that is, in the
time domain we consider a persistent disturbance of
magnitude 1, d(t) =1 - sin(wt).

dependent values.

Similarly, the allowed scaled

APPENDIX B. Neutraliza-
tion model

Derivation of model: Consider Fig.15. Let ¢y [mol/l]
and com [mol/l] denote the concentration of H and
OH ™ -ions, respectively. Material balances for these
two species yields

d
E(VCH) =gacH,a +qBcH,B — qcH + 1V

8Tt is usually reasonable to assume that ¢maz,dmaz
and 7maz are independent of frequency. However, one
may select to make emaz(jw) frequency dependent. Let
€Y . denote the largest allowed steady-state error for the
time response, and we usually have €9, ,. < Tmaz, that is,
Rmazr = Tmaz/€%as > 1. However, at high frequency it
is reasonable to assume that emaz(Jw) — PmazM where
M > 1 (typically, M = 2). This follows since we cannot
track very fast setpoint changes, and in fact may have to
accept an error larger than 100% at high frequencies. A
reasonable choice is then

Trﬂgm.z.s +1
emaz

e"““?(s) = €maz '}:wr_s +1
where 7, is the desired response time for the output (we
have that (/4550 |mrme, 10T W = 1/7r. At low frequencies
one may let emag(Jw) approach 0 to include a requirement
of integral action. The approach outlined in this footnote
leads directly into the problem of selecting weights for Hao-
control.

|4

a(VCOH) = qACoH,A + qBCOH,B — qcoH + TV

where r [mol/s;m®] is the rate for the reaction
H,O0 = HY 4+ OH™ which for completely disocciated
(“strong”) acids and bases this is the only reaction in
which Ht and OH~ participate. We may eliminate
r from the equations by taking the difference to get
a differential equation in terms of the excess of acid,
¢=CH — COH:

d
E(Vc) = qaca+ gBcB — qc

Note: 1. This is the material balance for a mixing
tank without reaction. The reason is that the quan-
tity ¢ = eg — Cox is not affected (invariant) by the
reaction. 2. c is the excess of acid and will take on
negative values when pH is above 7.

Assume the feed concentrations cs and cp are
constant. Linearization and Laplace transform yields

1+1's (chq *qA(S)-I_ q* (S))

where 7 = V/¢"* is the residence time and * is used
to denote steady-state values. To derive this we
have made use of the total material balance dV/dt =
g4 + gr — q (alternatively one may assume V is con-
stant but this is not strictly necessary) and the corre-

c(s) =

sponding steady-state balance ¢ +¢5 = ¢*. We now
introduce the following scaled variables
ga(s gn(s
so)= AL, gy = 2ld; g5y - 22(0)
JAmez dBmaz

We use the following numbers: V=10m?, ¢% = ¢§ =
0.005 m®/s, ¢}; » = 10 mol/] (corresponding to pH=
—1 and ca = 10 — 107"° = 10 mol/l), ¢y p = 10
mol/l (corresponding to pH=15 and ¢} = 107° —
10 &~ —10 mol/l), ¢* = 0 mol/l (corresponding to
PH=7)’ dAmaz = @IZ/Z = 0.0025 ms/s, gBmaz = !I;a =
0.005 ms/s, and crmas = 107° mol/l (i.e., pH=7=1..
Note from this that the largest disturbance is 2:50%
of ¢%, while the largest input is £100% of ¢%.



