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Frequency Domain Methods for Analysis and Design
[. H-INFINITY METHODS AND ROBUST CONTROL

Sigurd Skogestad *
Chemical Engineering
University of Trondheim, NTH
N-7034 Trondheim, Norway

These notes consists of two parts. Part I gives an overview of modern
frequency-domain methods, including H-infinity methods and robust control using
the structured singular velue, mu. Part II gives a tutorial introduction to
controllability analysis for scalar systems using the frequency domain. Some
readers may find it useful to read Part II first. This part I is based on some lecture
notes for a short-course given by Postlethwaite and Skogestad (1993) at the 1993
European Control Conference.

Abstract

The purpose of the paper is to introduce the reader to multivariable frequency domain
methods including H*-design. These methods provide a direct generalization of the classical
loop-shaping methods used for SISO systems. It also aims at providing a basic understanding
of how robustness problems arise, and what analysis and design tools are available to identify
and to avoid them.

As an introduction to the robustness problems in multivariable systems we discuss the
control of a distillation column. Because of strong interactions in the plant, a decoupling control
strategy is extremely sensitive to input gain uncertainty (caused by actuator uncertainty).
These interactions are analyzed using singular value decomposition (SVD) and relative gain
array (RGA) methods.

We then discuss possible sources of model uncertainty, and look at the traditional methods
for obtaining robust designs, such as gain margin, phase margin and maximum peak criterions
(M-circles). However, these measures are difficult to generalize to multivariable systems. In
such cases a more detailed modelling of the uncertainty in terms of norm-bounded perturbations
(A’s) is used. The frequency-domain is particularly well suited for representing non-parametric
(unstructured) uncertainty. To test for robust stability and performance in the presence of
model uncertainty, the structured singular value, p, provides a powerful tool.

*E-mail: skoge@kjemi.unit.no; phone: +47-73-594154; fax: +47-73-594080



1 Introduction

The main goal of this introduction is to answer the following question: Why use the frequency
domain (H*-norm) for defining performance and describing uncertainty? We will also discuss the
two main approaches to H*-design, namely the loop-shaping and the signal-oriented approaches.

We use [|[M||e to denote the H*-norm of a linear transfer function M(s). For the scalar case,
||M||oo is simply equal to the peak magnitude sup, |M(jw)|, where sup denotes the least upper
bound, which for all practical purposes is equal to the maximum value. For the multivariable case
we, “sum up” the channels using the singular value and we have

1M]leo % sup (M (jw) (M

1.1 Notation

G - nominal plant model

M - matrix used to test for robust stability (section 1-4) or coprime factor of G (section 5)

RGA - matrix of relative gains, = G x (G_I)T where x represents element-by-element multiplica-
tion.

s - Laplace variable (s = jw yields the frequency response)

S = (I + GC)~! - sensitivity function

T = GC(I 4+ GC)™! - closed-loop transfer function

Tr = CG(I + CG)™1 - closed-loop transfer function from the plant input

w and W; - frequency-dependent weighting functions

Greek letters

A - overall perturbation block used to represent uncertainty
Ay - perturbation block for input uncertainty perturbations
Y(A) = (A)/a(A) - condition number of matrix A

p(A) - structured singular value of matrix A

w - frequency [rad/s or rad/min]

o(A) - maximum singular value of matrix A

o(A) - minimum singular value of matrix A

Subscripts
p - perturbed (with model uncertainty)
P - performance

1.2 The loop shaping approach

This approach to control system design could also be called the classical approach, the engineering
approach, the frequency domain approach or the transfer function approach.

Figure 1.1: Conventional feedback control system.



Consider the conventional feedback system in Fig. 1.1 where G(s) is the plant and C(s) the
feedback controller.

By “loop shaping” one traditionally means a design approach where one specifies directly the
shape of the magnitude of the open-loop transfer function L = GC. However, we shall use the
term in a wider sense and also allow the specification of closed-loop transfer functions such as
S = (I+GC)~t. We use the following definition: Loop-shaping is any design method that involves
directly specifying the magnitude of one or more nominal transfer functions. To distinguish between
various approaches we will talk about “shaping L” or “shaping S”, and so on.

Shaping L. For single-input single-output (SISO) systems the specifications in terms of the
open-loop transfer function I = GC typically include:

1. Crossover frequency, w. (defined as |L(jw.)| = 1).
System type (defined as number of integrators in L(s)).
The shape of L(jw), e.g., in terms of the slope of |L(jw)| in certain frequency ranges.

Phase margin, PM (given by the phase of L(jw.)).

AN I S

Gain margin, GM (given by the gain of L at the frequency where its phase is —180°).

The first three specifications have to do with performance in terms of speed of response and
allowable tracking error. The last two specifications are included to avoid some of the potential
difficulties with feedback: 1) the closed-loop system may become unstable, 2) noise and disturbances
in a certain frequency range close to the bandwidth frequency may get amplified.

Specifications directly on L = GC make the design procedure simple as it is clear how changes in
the controller affect L(s), and this approach is well suited for non-formalized design procedure. In-
deed, towards the end of this paper we shall discuss the MacFarlane-Glover loop-shaping procedure
where the initial step in the controller design is to select a reasonable L(s).

Shaping closed-loop transfer functions. In many cases one prefers to define specifications
in terms of a closed-loop transfer function for the following reasons: 1) The final performance we
want to evaluate is that of the closed-loop system. 2) The robustness specifications in terms of GM
and PM are difficult to generalize to MIMO systems. 3) Synthesis is difficult if the specifications are
in terms of L (one may have to resort to numerical procedures such as the Method of Inequalities
(MOI) described towards the end of the paper).

Shaping S. The closed-loop sensitivity function, S = (I + GC)~1, is a very good indicator of
performance. Typical specifications in terms of .S include:

1. Minimum bandwidth frequency wp (defined as the smallest frequency at which #(S(jw)) =
0.707)

B

Allowable tracking error at selected frequencies.

R

System type, or if system contains no integrators, the allowed static tracking error, A.

-

The shape of S over selected frequency ranges.
5. Maximum allowed peak magnitude for S, [|S(jw)|loo = M;.

The peak specification prevents amplification of noise at high frequencies, and also introduces
a margin of robustness; typically we select M; = 2. Mathematically, these specifictions may be
captured simply by an upper bound, 1/|wp|' on the magnitude of S, namely

7(8(jw)) < V]wp(jw)|,Yw & [jwpSllo <1 (2)

A typical upper bound is shown in Fig. 1.2. The weight illustrated on that plot may be represented
as
S/Ms + wp

wp(s) = s+wpA

3)

and we see that |wp(jw)|™! is equal to A < 1 at low frequencies, is equal to M, > 1 at high
frequencies, and the asymptote crosses 1 at the bandwidth frequency, wp.

|-t

1Subscript P stands for performance since S is mainly used as a performance indicator
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Figure 1.2: Upper bound on &(S) given by weight 1/|wp(jw)| in (3).

The loop shape L = wp/s yields an S which exactly matches the bound (3) at frequencies just
below the bandwidth and easily satisfies the bound at other frequences. This L has a slope (“roll-
oft”) in the frequency range below the bandwidth of about -1 on a log-log plot (-20 dB/decade). In
many cases, in order to improve performance, we may want a steeper slope for L (and S) in some
frequency range below the bandwidth, and a higher-order weight may be selected.

Stacked requirements. The specification ||wpS||co < 1 does not allow us to specify an upper
bound on the bandwidth or the “roll-oft” of L(s) above the bandwidth. To specify this one needs
to make a specification on another transfer function, for example, on the complementary sensitivity
T=1—-5=GCS. Also, one may want to bound other transfer functions, to achieve robustness
or to avoid too large input signals.

As an example, one may define an upper bound, 1/|wr| on the magnitude of T' to make sure the
system behaves “nicely” at high frequencies, and an upper bound, 1/|w,|, on the magnitude of C'S
to avoid large input signals. To combine these specifications, the “stacking approach” is usually
used, resulting in the following specification:

wpS
[M|loo = sup3(M(jw)) <1; M = | wrGCS (4)
v wyCS
The “mixed-sensitivity” specification with M = wpS is used, for example, by Chiang
wrGCS

and Safonov (1988, 1992) in the Matlab Robust Control Toolbox Manual.

The “stacking procedure” is selected for mathematical convenience as it does not allow us
to exactly specify the bounds on the individual transfer functions as was described above. For
example, assume that ¢1(C) and ¢,(C) are two real scalars (here we could have ¢1(C) = ||wpS||s
and ¢2(C) = ||lwrGCS||) and that we want to achieve

1 <1 and ¢;<1 (5)

This is not quite the same as the “stacked” requirement

o (0)=rras (©

The two requirements are quite similar when either ¢ or ¢ is small, but in the worst case when
#1 and ¢ are equal, we get from (6) that ¢; < 0.707 and ¢, < 0.707, that is, there is a possible
“error” equal to a factor v/2 &~ 3 dB. In general, with n stacked requirements the resulting error is
at most y/n. This inaccuracy in the specifications is something we are probably willing to sacrifice
in the interests of mathematical convenience. In any case, the specifications are in general rather
rough, and are effectively knobs for the engineer to select and adjust until a satisfactory design is
reached.
The H-optimal controller is obtained by solving the problem

min [[M(C)les ™
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Figure 1.3: Block digram corresponding stacked requirement in (4).

Provided M can be written as a linear fractional transformation (LFT) of C, M(C) = Ni; +
N21C(I — NayC)~!Nys, the solution is easily obtained with standard software (e.g. the Robust
Control or Mu Toolboxes in Matlab). In practice, to be able to write a stacked M as an LFT of
C, one must be able to represent M by a block diagram with the input (or output) at only one
location. For example, the M in (4) may be represented in a block diagram with a single input
entering at the output of the plant as shown in Fig.1.3.

Let 49 = ming ||[M(C)||cc denote the optimal H*-norm for the problem in (7). An important
property of H*>-optimal controllers is that it will yield a flat frequency response, that is, it will
yield ¢(M(jw)) = o at all frequencies. The practical implication is thai, except for at most a
factor \/n, the transfer functions resulting from solving (7) will be very close to g times the bounds
selected by the designer. This means, that the designer may almost exactly specify the final shape
of, for example,

Remark. There are cases where M cannot be written as an LFT of C, for example

= (oiitée) ®

Actually, this M is a special case of the Hadamard-weighted H*-problem studied by van Diggelen
and Glover (1991, 1992), but the solution to the H®-problem in (7) remains intractable. Van
Diggelen and Glover (1991,1992) do, however, present a solution for a simtlar problem where the
Frobenius norm is used instead of the singular value to “sum up the channels” in the H*®-norm.

Summary. The classical loop-shaping approach to controller design involves direct specifica-
tions of how the final solution should be in terms of the magnitude frequency response. It requires
the engineer to be able to formulate bounds that lead to acceptable robustness and closed-loop
performance. This approach is often preferred because it has few adjustable design parameters
(knobs) and directly involves the engineer in the design. We shall return with a more detailed
discussion on the physical significance of some transfer functions which the engineer may want to
bound in Section 5.1.

1.3 The signal-oriented approach

The signal-oriented approach is very general, and may be more appropriate for multivariable prob-
lems in which a number of objectives must be taken into account simultaneously. Here we define
the plant, including possibly the model uncertainty, define the class of external signals affecting
the system and define the norm of the “error signals” we want to keep small. Direct bounds on
selected transfer functions, such as the closed-loop bandwidth, cannot be specified in this case.
On the other hand, one may argue that the concept of bandwidth is difficult to use for complex
systems.

The “modern” state space methods from the 60’s, such as LQG control, are based on the signal-
oriented approach. Here the input signals are assumed to be stochastic (or alternatively impulses
in a deterministic setting) and the output signals are measured in terms of the 2-norm. These
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Figure 1.4: Typical block diagram for signal-oriented approach to H*-performance.

methods may be generalized to include frequency dependent weights on the signals leading to what
is called the Wiener-Hopf or Ha-norm design method.

Sinusoidal signals and the H*-norm. We may also consider the system response to
persistent sinusoidal signals of varying frequency. This leads to the signal- oriented H*-norm
approach used, for example, by Doyle et al. (1987) in their space-shuttle application. A signal-
oriented problem specification with disturbances, commands and noise, and with bounds on both
the input and outputs is shown in Fig. 1.4. The overall performance objective is that ||E||c < 1.
For more details the reader is referred to Lundstrom et al. (1991).

The H*-norm may be interpreted in other ways, such as the induced 2-norm from inputs to
outputs. In any event, as far as signals are concerned there does not seem to be an overwhelming
cage for using the H*-norm rather than the more traditional Hy-norm (LQG). When we begin to
consider issues of model uncertainty, however, the frequency domain approaches such as H® are
preferred.

Model uncertainty. The traditional method of dealing with robustness and model uncertainty
within the framework of “optimal control” (LQG) has been to introduce uncertain signals (noise
and disturbances). One particular approach is loop transfer recovery (LTR) where unrealistic noise
is added specifically to obtain a robust design. Of course, one may say that model uncertainty
generates some sort of disturbance, but this disturbance depends on the other signals in the system
and thus introduces an element of feedback. Therefore there is a fundamental difference between
these two sources of “uncertainty” (at least for linear systems): model uncertainty may introduce
instability, whereas signal uncertainty can not.

A more direct way to handle robustness issues within the signal approach, is to model the
uncertainty explicitly. It appears that the frequency domain is very well suited for describing model
uncertainty, and in particular for describing non-parametric uncertainty, resulting, for example, by
using a simplified low-order model of a high-order plant. Indeed, Owen and Zames (1991) make
the following observation in a recent paper: “The design of feedback controllers in the presence of
nonparametric and unstrucltured uncertainty ... is the raison d’étre for H® feedback optimization,
for if disturbances and plant models are clearly parameterized H*® -methods seem 1o offer no clear
advaniages over more conventional state-space and parametric methods.”

If the H*®-norm is selected for the uncertainty, then, again for mathematical convenience, one
may also want to select the H*-norm for performance. This leads to a robust performance (RP)
problem, for which there exists a very efficient analysis tool, namely the structured singular value,



. But, for controller synthesis there are difficulties: the p-synthesis problem, in its full generality,
is not yet solved mathematically; where solutions exist the controllers tend to be high order; the

available algorithms may not always converge and design problems are sometimes difficult to specify
directly.

1.4 Combined approaches

The loop shaping approach and the signal approach above may, of course, be combined. One such
approach is “loop-shaping with uncertainty” as used, for example, by Skogestad et al (1988). Here
performance is specified in terms of an upper bound on the sensitivity S, leading to the specification
llwpS||leo < 1. One then takes a “worst-case” approach and requires that this bound is satisfied for
all plants as defined by the uncertainty description. For the case of input uncertainty of relative
magnitude wy this leads to the following robust performance analysis condition (see £q.49)

(9)

. ' . v _ (wiCSG wiCS
RP iff M(N(Jw)) <1, Vw; N= ( wpSG wpS )

where p s the structured singular value computed with respect to a special block-diagonal structure.
This is similar to the H*-condition in (4), but in (9) the bounds on the transfer functions are
specified indirectly, and it is not clear what nominal transfer functions CSG, CS, SG and S are
allowed. Specifically, recall that the H*®-optimal controller would essentially result in a controller
which matches all the bounds at all frequencies (except for at most a factor v/n). On the other
hand, the p-optimal design, may result in a design where, for example, &(wpS) is very small at
some frequency and large at another frequency. It is therefore not clear from the specifications
what the final (nominal) design will be.

However, the p-approach does have definite advantages since we do know that the worst-case
sensitivity function S, (p stands for perturbed) will exactly satisfy our requirements, i.e., for all
possible perturbed plants ||wpSp|lec < 1. Whereas for the H®-problem we only specify nominal
transfer functions and must make sure by specifying these carefully that robustness is achieved.
When applied to design, the approach (9) has the usual problems associated with p-synthesis:
computational difficulties, high-order controllers, and the indirect specification of individual transfer
functions . From the above discussion then, it follows that y-analysis may be very useful for checking
the robustness of designs obtained, for example, by an H* design procedure.

Another “combined approach” is the the “Glover-McFarlane loop-shaping procedure”. In this,
one first specifies the desired open-loop shape L(s) for performance using simple pre- and post-
compensators. One then “robustifies” this design by considering a particular robust stability con-
dition, which involves solving an H*®-problem. This procedure is further described in Section 5
and used in the design example in Section 6.

1.5 Summary

We have considered two alternative approaches to controller design: the loop- shaping approach
and the signal approach. In both cases we find the frequency- domain to be the natural setting.
The loop-shaping approach, with direct specifications on bandwidth etc, is directly based in the
frequency domain so here there is no alternative. For the signal-oriented approach there are a
variety of ways to define the signals. The reason why the frequency-domain (H*-norm) is again
preferred is that it is very well suited to handling unstructured model uncertainty.

In a practical design situation, the above two approaches may be combined. For example,
one may design the controller (Step B below) by some loop-shaping approach (involving H®-
synthesis) and then analyze the solution (Step C below) using a signal-oriented approach with
model uncertainty explicitly included (involving p-analysis).

This paper is concerned with analysis and design of control systems for industrial plants. In
this case the designer must usually go through the following steps:

Step A. Controllability analysis: This is where the plant is analysed and we discover what closed-

loop performance can be expected, what the limitations are, how good the control might
be.

Step B. Controller design: This is where the design problem is formulated and the controller
synthesized.



Step C. Control system analysis: This is where the feedback control system is assessed by analysis
and simulation to judge how well it might behave in practice.

With the above steps in mind, the following topics are covered in the remainder of this paper.
Section 2: Analysis of the plant - controllability

Section 3: Robustness problems - Introductory distillation example

Section 4: Tools for robustness analysis

Section 5: Robust control system design

2 Analysis of the plant - Controllability

Before attempting to start any controller design one should have some idea of how easy the plant
actually is to control. Is it a difficult control problem? Indeed, does there even exist a controller
which meets the required performance objectives? It appears that the frequency-domain is very
well suited for answering such problems in a general setting. One reason for this is the very useful
idea of “bandwidth” which is a purely frequency-domain concept. The concept of right half plane
(RHP) zeros is also of fundamental importance in answering questions of the kind.

We use the term (input-output) controllability to denote the “achievable performance” of the
plant (irrespective of the controller). More precisely, (input-output) controllability is the ability to
achteve acceptable control performance, that is to keep the outputs (y) within specified bounds or
displacements from their setpoints (r), in spite of unknown variations such as disturbances (d) and
plant changes using available inpouts (u) and available measurements (e.g., ym or dp)..

This usage is in agreement with most persons intuitive feeling about the term, and was also how
the term was used historically in the control literature. For example, Ziegler and Nichols (1943)
define controllability as “the ability of the process to achieve and maintain the desired equilibrium
value”.

Unfortunately, in the 60’s Kalman defined the term “controllability” in the very narrow meaning
of “state controllability”. This concept is of interest for realizations and numerical calculations,
but as long as we know that all the unstable modes are both controllable and observable, it has
little practical significance.

It would be desirable to have an even more precise definition of controllability, but on the
other hand this is difficult and probably not useful. An exact definition would require selection
of a certain norm to measure the control error, and would also require a detailed specification of
all external signals such as noise, reference signals and disturbances. Indeed, Ziegler and Nichols
(1943) note in their paper that although they “took the area under a recovery curve as one measure
of controllability ... this is only one of many possible bases for comparison of control results”. They
also stress that it is difficult to narrow controllability down to one single attribute of the plant. They
say: “Unfortunately, the authors are not able to give a formula for controllability. Tt appears that
when such a factor is devised it will consist of several factors. One might be called the “recovery
factor”, the ability of the process to recover from the maximum change in demand or load. Another,
a “load factor” must take into account the point in the process at which the disturbance occurs”.
Later in the paper they state that the total integrated control error, [ |e(t)|dt, is equal to: (Load
Factor) - (Recovery Factor).

Essentially, the “recovery factor” depends on the process model, g(s), and recovery is poor (and
thus the recovery factor is large) if it contains large time delays or if the plant gain is small. The
“load factor” expresses the effect of the disturbances and thus depends on the disturbance model,
ga(s). These concepts are very similar to the ideas summarized below in terms of upper and lower
bandwidth limitations.

2.1 Summary of controllability results for SISO plants

A more detailed treatment is given in Part II of these notes.
Consider the control system in Fig, 1.1 for the case when all blocks are scalar. The control error
e = y — r may be written
e(s) = g(s)u(s) + ga(s)d(s) — r(s) (10)
We assume that the signals are persistent sinusoids, and assume that g and gq are scaled, such
that at each frequency the allowed input |u(jw)| < 1, the expected disturbance |d(jw)| < 1, and the



oulpuis are scaled such that the allowed control error le(jw)| < 1. The largest setpoint relative to
the largest control error 18 Rpyqag, that is, in terms of scaled variables we have |r(jw)| < Rmaz- In
most cases Rpyqp > 1.

Below we have given some “controllability” requirements which apply to the closed-loop band-
width, wp. The requirements are fundamental, although the expressions given in terms of bounds
on wp are not exact. However, in practice they must be fulfilled. A detailed derivation is given in
Part 1T of these notes.

1. Disturbances. Must require wp > wy. Here wy is the frequency at which |g4(jwa)| crosses 1
from above. Below this frequency the error will be unacceptable (|e| > 1) for a disturbance
d = 1 unless control is used. More specifically, we must for feedback control require at
frequencies lower than wg: |ge(jw)| > |ga(jw)|.

2. Commands (setpoinis). Specify directly minimum required wp. This requirement comes in
addition to the bandwidth requirement imposed by the disturbances, and is usually relatively
easy to specify.

3. Open-loop unstable real pole at s = p. Must require wg > p. We need fast conirol to stabilize
the system, and the bandwidth must approvimately be greater than 1p.

4. Input constraints, must require |g(jw)| > Rmag,Vw < wp. 'This is needed to avoid input
constraints (|u(jw)| < 1) for perfect tracking of r(jw) = Rpmae.

5. Input constraints, must require |g(jw)| > |ga(jw)|, Vw < wq.  This is needed to avoid
input constraints for perfect rejection of disturbance d(jw) = 1.

The above two conditions are requirements that the plant must satisfy in order to be able
to apply tight control in a certain frequency reange. They are independent of the controller,
and can therefore be affected only by changing the plant g(s).

In the frequency range up to the bandwidth wg there should not be any time delays, RHP-
zeros and high-order plant dynamics that need to be counteracted. We get

6. Time delay 0. Must require wp < 1/6.
7. Real RHP-zero at s = z. Must require wp < z/2.

Note that RHP-zeros close to the origin are the worst. LHP-zeros pose no fundamental
limitation, but a LHP-zero close to the origin yields an “overshoot” in the open-loop response
which may be difficult to counteract. Therefore, to simplify controller design and avoid
robustness problems, it is often best to have the LHP-zeros as far away from the origin as
possible.

The above two constraints for time delays and RHP-zeros are fundamental, but the above
relationships are rather approximate. Also, if there are combinations of both RHP-zeros and
time delays then they must be considered combined, because they all make feedback control
difficult (simply consider the overall phase lag).

8. In most practical cases: wp < wigp.

Here wigg is the frequency at which the phase of g(jw) is —180°. This condition is not a
fundamental limitation, but more of a practical limitation. In particular it applies if the
phase drops rather quickly around the frequency wygg. The condition follows since in most
cases the plant is not known sufficiently accurately to place zeros to counteract the poles at
high frequency.

If there somehow is a conflict between the above requirements then the plant is not controllable.
The above requirements provide a means of evaluating the controllability which goes beyond the
traditional use of “controllability indicators” (which merely indicates that there may be a control
difficulty). Note that the use of scaled variables is a key point in deriving most of these controlla-
bility requirements.

2.2 Controllability analysis for multivariable plants

We do not have space to go into detail about the controllability analysis of multivariable plants,
but most of the ideas presented above may be generalized, e.g., see Wolff et al. (1992). Instead we
will summarize some of the main tools which are used. All of them are based on the plant model
G(s) and the disturbance model Gg(s).



1. Compute the multivariable RHP-poles and RHP-zeros and their associated directions. Test
for functional controllability (the rank of G should equal the number of outputs).

2. Perform a frequency-dependent SVD-analysis to understand the multivariable directions.

3. Perform a frequency-dependent RGA-analysis to check for fundamental limitations due to
inherently coupled outputs. Compute the plant condition number.

4. Evaluate disturbance sensitivity. For decentralized control the use of the CLDG-matrix,
GdiagG_lGd, directly generalizes the SISO results. Here Ggiqq is a diagonal matrix consisting
of the diagonal elements of G. For the general case it is more complicated, but an SVD-analysis
of G4 and GGy yields useful information about which disturbances are difficult, and the
bandwidth requirement in certain directions.

The above tools for controllability analysis are simple indicators which are easy to compute, and
help the engineer to obtain insight into what the control problems are for the plant in question. In
some cases a more detailed analysis which includes finding the optimal controller may be desirable.
A suitable tool is the structured singular value p (which must be minimized over all controllers
to find the achievable performance for the problem). However, the use of such methods requires
a careful definition of the performance specifications and model uncertainty which is often not
available or which requires a significant effort to obtain.

Although, there has been good progress during the last few years, the area of controllability
analysis is still a very interesting area for future research.

3 Robustness - Introductory distillation column example

An idealized distillation column example will be used to introduce the reader to the adverse effects
of model uncertainty, in particular for multivariable plants. The example is taken mainly from
Skogestad et al. (1988)

Before considering the example a short introduction to robustness and uncertainty seems in
order.

3.1 Robustness and model uncertainty

A control system is robust if it is insensitive to differences between the actual system and the model
of the system which was used to design the controller. Robustness problems are usually attributed
to differences between the plant model and the actual plant (usually called model/plant mismatch
or simply model uncertainty). Uncertainty in the plant model may have several origins:

1. There are always parameters in the linear model which are only known approximately or are
simply in error.

2. Measurement devices have imperfections. This may even give rise to uncertainty on the
manipulated inputs, since the actual input is often measured and adjusted in a cascade
manner. For example, this is often the case with valves where we measure the flow. In other
cases limited valve resolution may cause input uncertainty.

3. At high frequencies even the structure and the model order is unknown, and the uncertainty
will exceed 100% at some frequency.

4. The parameters in the linear model may vary due to nonlinearities or changes in the operating
conditions.

5. In addition, the controller implemented may differ from the one obtained by solving the
synthesis problem, and one may include uncertainty to allow for controller order reduction
and implementation inaccuracies.

Other considerations for robustness include measurement and actuator failures, constraints, changes
in control objectives, opening or closing other loops, etc. Furthermore, if a control design is based
on an optimization then robustness problems may also be caused by the mathematical objective
function, that is, how well this function describes the real control problem.

In the somewhat narrow use of the term used in this paper, we shall consider robustness with
respect to model uncertainty, and assume that a fixed (linear) controller is used. Intuitively, to be
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able to cope with large changes in the process, this controller has to be detuned away from the best
response we might have achieved if the process model was exact.

To consider the effect of model uncertainty, the uncertainty needs first to be quantified in some
way. There are several ways of doing this. One powerful method is the frequency domain (so-
called H-infinity uncertainty description) in terms of norm-bounded perturbations (A’s). With this
approach one can also take into account unknown or neglected high-frequency dynamics.

The following terms are useful:

e Nominal stability (NS). The system is stable with no model uncertainty.

¢ Nominal Performance (NP). The system satisfies the performance specifications with no model
uncertainty.

e Robust stability (RS). The system is stable for all perturbed plants about the nominal model
up to the worst-case model uncertainty.

e Robust performance (RP). The system satisfies the performance specifications for all per-
turbed plants about the nominal model up to the worst-case model uncertainty.

3.2 The distillation column model

We consider two-point (dual) composition control of a distillation column. The overhead composi-
tion of a distillation column is to be controlled at yp = 0.99 (output 1) and the bottom composition
at 2 = 0.01 (output 2), with reflux L (input 1) and boilup V (input 2) as manipulated inputs for

composition control, i.e.,
_ AyD _ AL
v=(am) »=(av)

By linearizing the steady-state model and assuming that the dynamics may be approximated by a
first order response with time constant 7 = 75 min, we derive the following linear model in terms

of deviation variables
Ny _ U1 _ L 87.8 —86.4
(y2> =G (uz)’ Gl = 757 (108.2 —109.6) (1)

Here we have scaled the inputs and outputs to be less than 1 in magnitude (this corresponds to the
outputs in 0.01 mole fraction units, and the inputs scaled relative to the feed rate). The gains are
much larger than 1 indicating no problems with input constraints, but this is somewhat deceiving
as the gain in the the low-gain direction (corresponding to the smallest singular value) is actually
just above 1.

This is admittedly a very crude model of a distillation column. Specifically, a) the parameters
may vary drastically with operating point, b) there should be a high-order lag in the transfer func-
tion from uy to ya to represent the liquid flow down to the column, and ¢) higher-order composition
dynamics should also be included. However, the model is simple and displays important features
of the distillation column behavior. The RGA-matrix for this model is at all frequencies

RGA(G) = ( 35.1 —34,1)

—-34.1 35.1 (12)

The large elements in this matrix indicate that this process is fundamentally difficult to control
(see section 4.2).

3.2.1 Interactions and ill-conditioned plants

From (11) we get
878
=1
Thus an increase in u; by only 0.01 (with us constant) yields a steady- state change in y; of 0.878,
that is, the outputs are very sensitive to changes in u;. Similarly, an increase in us by only 0.01
(with u; constant) yields y; = —0.864. Again, this is a very large change, but in the opposite
direction of that for the increase in u;.

We therefore see that changes in u; and us counteract each other, and if we increase u; and us
simultaneously by 0.01, then the overall steady- state change in y; is only 0.878 — 0.864 = 0.014.

y1(s)

11



Physically, the reason for this small change is that the compositions in the column are only weakly
dependent on changes in the internal flows (i.e., simultaneous changes in the internal flows L and
V).

Summary: Since both u; and uy affect both outputs, y1 and ys, we say that the process is
interactive. This is quantified by relatively large off-diagonal elements in G(s). Furthermore, the
process is ill-condilioned, that is, some combinations of u; and us; have a strong effect on the
outputs, whereas other combinations of u; and uy (corresponding to u; = uz) have a weak effect on
the outputs. This is quantified by the condition number; the ratio between the gains in the strong
and weak directions; which is large for this process (as seen below it is 141.7).

3.2.2 Singular Value Analysis of the Model

The above discussion shows that this distillation column is an ill- conditioned plant, where the
effect (the gain) of the inputs on the outputs depends strongly on the direction of the inputs. To
see this better, consider the SVD of the steady-state gain matrix

G=UzvT (13)

or equivalently since VT = V1!

Gv=a(G)u, Guv=o(G)u

where

Y = diag{7,0} = diag{197.2,1.39}

o _ (0707 0.708
V‘(”Q)‘(—o.ms 0.707)
oy (0625 0.781
U=(u)= (0.781 —0.625>

The large plant gain, 5(G) = 197.2, is obtained when the inputs are in the direction (Z;) =7 =

(_0(‘)?%8). From the direction of the output vector & = (0'625), we see that these inputs cause the

0.781
outputs to move in the same direction, that is, they mainly affect the average output yl—;yﬁ The
low plant gain, ¢(G) = 1.39, is obtained for inputs in the direction (Z;) = = (8:;8?). From

the output vector u = (_0(‘).7:?215) we see that the effect then is to move the outputs in different

directions, that is, to change y; —y2. Thus, it takes a large control action to move the compositions
in different directions, that is, to make both products purer simultaneously. Indeed, we see that in
this direction it may be possible that one could be limited by input constraints (corresponding to
lu| > 1). The condition number of the plant, which is the ratio of the high and low plant gain, is

¥(G) = 5(G)/a(G) = 141.7 (14)

The RGA is another indicator of ill-conditionedness, which is generally better than the condition
number, because it is scaling independent. The sum of the absolute value of the elements in the
RGA (denoted ||RGA||sum = L|RGA;;|) is approximately equal to the minimized (with respect to
input and output scaling) condition number, ¥*(G) = minp, p, v(D1GD;) where D; and Dj are
real diagonal “sacling” matrices. In our case we have || RGA||sum = 138.275 and v*(G) = 138.268.
(We note that the minimized condition number is quite similar to the condition number in this
case, but this does not hold in general.)

3.3 Control of the column
3.3.1 Decoupling control

For “tight control” of ill-conditioned plants the controller should compensate for the strong di-
rections by applying large input signals in the directions where the plant gain is low, that is, a
“decoupling” controller similar to G~ in directionality is desired. However, because of uncer-
tainty, the direction of the large inputs may not correspond exactly to the low plant-gain direction,
and the amplification of these large input signals may be much larger than expected. As shown
in the simulations below, this will result in large values of the controlled variables y, leading to

12
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Figure 3.1: Response for decoupling controller to a unit setpoint change in y; with time constant 5
min, i.e, 1 = 1/(5s+ 1). Solid line: Nominal response with no uncertainty. Dotted line: 20% gain
uncertainty as defined by Equation 16.

poor performance or even instability. Consider the following decoupling controller (or equivalently
a steady-state decoupler combined with a PI controller):

Ci(s) = "’5—10-1(3)

k1 (1 _
_ ka( +75s)(0.39942 0.31487)’ by = 0.7min=! (15)

s 0.39432 —0.31997

We have GC = 0.7/sI. In theory, this controller should counteract all the directions of the plant
and give rise to two decoupled first-order responses with time constant 1/0.7 = 1.43 min. This
is indeed confirmed by the solid line in Fig.3.1 which shows the simulated response to a setpoint
change in y;. We thus conclude that the decoupling controller satisfies the nominal performance
(NP) requirement.

3.3.2 Robustness of decoupling control

We also note that this simple design yields an infinite gain margin (GM) and a phase margin (PM)
of 90° in both channels. For multivariable systems such margins are however misleading as we shall
see in the following.
To be specific consider the case with 20% error (uncertainty) in the gain in each input channel
(“diagonal input uncertainty”):
U = 1.2u16, Ug = 0.8U26 (16)

Note that this expression is in terms of deviation variables. Here u; and us are the actual changes
in the manipulated flow rates, while u;, and u,, are the desired changes (what we believe the inputs
are) as specified by the controller. It is important to stress that this diagonal input uncertainty,
which stems from our inability to know the exact values of the manipulated inputs, is always
present. Note that the uncertainty is on the change in the inputs (flow rates), and not on their
absolute values. A 20% error is reasonable for process control applications (some reduction may
be possible, for example, by use of cascade control using flow measurements, but there will still
be uncertainty because of errors in measurement sensitivity). Anyway, the main objective of this
paper is to demonstrate the effect of uncertainty, and its exact magnitude is of less importance.

It is straightforward to see that the uncertainty in (16) does not by itself yield instability, thus
we have robust stability (RS) for the decoupling controller. However, whereas for SISO systems we
generally have that NP and RS imply robust performance (RP) this is often not the case for MIMO
systems.
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Figure 3.2: Response for PID controller.

This is clearly shown from the dotted lines in Fig.3.1 which shows the response with the uncer-
tainty in (16). It differs drastically from the nominal response represented by the solid line, and
even though it is stable the response is clearly not acceptable; it is no longer decoupled, and y; (¢)
and ya(t) reach a value of about 2.5 before settling at their desired values of 1 and 0. Thus RP is
not satisfied for the decoupling controller.

There is a simple reason for the observed poor response to the setpoint change in 4. To
accomplish this change, which occurs mostly in the “bad” direction corresponding to the low plant
gains, the inverse-based controller generates large changes in u; and wy, while trying to keep the
u1 — ug very small. However, uncertainty with respect to the actual values of u; and us makes it
impossible to make them both large while at the same time keeping their difference small — the
result is an undesired large change in the actual value of u; — u2, which subsequently results in
large changes in y; and y» because of the large plant gain in this direction.

Remark. The system satisfied RS because the uncertainty only occurs at the input to the plant.
In practice, with for example a small time delay added to one of the outputs, this controller would
give an unstable response.

3.3.3 A robust controller: Single-loop PID

Unless special care is taken, most multivariable design methods (MPC, DMC, QDMC, LQG,
LQG/LTR, DNA/INA, IMC, etc.) yield similar inverse-based controllers, and do not generally
yield acceptable designs for ill-conditioned plants. This follows since they do not explicity take
uncertainty into account, and the optimal solution is then to use a controller which tries to remove
the interactions by inverting the plant model.

The simplest way to make the closed-loop system insensitive to input uncertainty is to use a
simple controller, for example two single-loop PID controllers, which does not try to make use of
the details of the directions in the plant model. The problem with such a controller is that little or
no correction is made for the strong interactions in the plant, and then even the nominal response
(with no uncertainty) is relatively poor. This is shown in Fig.3.2 where we have used the following
PID controllers (Lundstrém et al., 1991)

y1—ur:  Ke=1.62;77 =41 min; p = 0.38 min 1
yo —ug: K,=-0.39;77 = 0.83 min; 7p = 0.29 min (18)

The controller tunings yield a relatively fast response for ys, and a slower response for y;. As seen
from the dotted line in Fig.3.2 the response is not very much changed by introducing the model
error in Eq.16.
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Figure 3.3: Response for p-optimal controller.

In Fig.3.3 we show the response with the p-optimal controller (see Lundstrém et al., 1991)
which is designed to optimize the worst-case response (robust performance) as discussed towards
the end of this paper. Although this is a multivariable controller, we note that the response is not
too different from that with the simple PID controllers, although the response settles faster to the
new steady-state.

3.3.4 Limitations with the example: Real columns

It should be stressed again that the column model used above is not representative of a real column.
In a real column the liquid lag, 61, from the top to the bottom, makes the initial response less
interactive and the column is easier to control than found above. It turns out that the important
parameter to consider for controllability is not the RGA at steady-state (with exception of the
sign), but rather the RGA at frequencies corresponding to the closed-loop bandwidth. For a model
of a real distillation column the RGA is large at low frequencies (steady-state), but it drops at high
frequencies and the RGA-matrix becomes close to the identity matrix at frequencies greater than
1/6r.

Thus, since the interactions are much less at high frequencies, control is simple, even with single-
loop PI or PID controllers, if we are able to achieve very tight control of the column. However, if
there are significant measurement delays (these are typically 5 min or larger), then we are forced to
operate at a low bandwidth, and the responses in Figs.3.1-3.3 are more representative. Furthermore,
it holds in general that one should not use a steady-state decoupler if the steady-state RGA-elements
are large (typically larger than 5).

4 Tools for robustness analysis

In this section we will first introduce some simple tools, such as the frequency-dependent RGA, to
understand the poor responses observed in the distillation example in the last section. Then we
consider more general methods, which allow for a detailed description of the model uncertainty.
This leads into a discussion of the structured singular value, x4, as an analysis tool for evaluating
whether a system satisfies robust stability (RS) and robust performance (RP). Readers who want
to learn more about p are referred to Doyle (1982), Doyle at al. (1982), Skogestad et al. (1987), or
to the texts by Morari and Zafiriou (1989) and Maciejowski (1989).
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4.1 Simple tools for robustness analysis
4.1.1 SISO systems

For single-input-single-output (SISO) systems one has traditionally used gain margin (GM) and
phase margin (PM) to avoid problems with model uncertainty. Consider a system with open-loop
transfer function g(s)c(s), and let ge(jw) denote the frequency response. The GM tells by what
factor the loop gain |ge(jw)| may be increased before the system becomes unstable. The GM is
thus a direct safeguard against steady-state gain uncertainty (error). Typically we require GM >
1.5.

The phase margin tells how much negative phase we can add to ge(s) before the system becomes
unstable. The PM is a direct safeguard against time delay uncertainty: If the system has a crossover
frequency equal to w,, (defined as |ge(jw.)| = 1), then the system becomes unstable if we add a
time delay of § = PM/w.. For example, if PM = 30° and w, = 1 rad/min, then the allowed time
delay error is § = (30/57.3)[rad]/1[rad/min] = 0.52 min.

Mazimum peak criterions. In practice, we do not have pure gain and phase errors. For example,
in a distillation column the time constant will usually increase when the steady-state gain increases.
A more general way to specify stability margins is to require the Nyquist locus of ge(jw), to stay
outside some region of the -1 point (the “critical point”) in the complex plane. Usually this is done
by considering the maximum peak, M; of the closed-loop transfer function 7' or the peak M, of
the sensitivity function. The reader may be familiar with M-circles drawn in the Nyquist plot or
in the Nichols chart. Typically, we require that M, and M, are less than 2 (6 dB). 1/M, is simply
the minimum distance between ge(jw) and the -1 point. In most cases the values of M; and M,
are closely related, especially when the peak is large, There is a close relationship between M;/M,
and PM and GM. Specifically, for a given M, we are guaranteed
M, 1

1
> in(—)>—
AL PM > 2arcsin( ) > 7, [rad] (19)

M >
GM 2 2M,

For example, with M, = 2 we have GM > 2 and PM > 29.0° > 1/M, [rad] = 28.6°. Similarly, for
a given value of M; we are guaranteed GM > 1+ ML‘ and PM > 2arcsin(217‘) > Mit

4.1.2 MIMO systems

It is difficult to generalize GM and PM to MIMO systems. On the other hand, the maximum peak
criterions may be generalized easily. The most common generalization is to replace the absolute
value by the maximum singular value, for example, by considering

M; = maxo(T(jw)); T =GC(I+ GC)™t (20)

Even though we may easily generalize the maximum peak criterion to multivariable systems, it is
often not useful for the following three reasons:

1) In contrast to the SISO case, it may be not sufficient to look at only the transfer function 7'.
Specifically, for SISO systems GC = C@G, but this does not hold for MIMO systems. This means
that although the peak of T' (in terms of &(T'(jw)))) is low, the peak of Tt = CG(I + CG)~! may
be large.

2) The singular value may be a poor generalization of the absolute value. There may be cases
where the maximum peak criterion , eg. in terms of (1", is not satisfied, but in reality the system
may be robustly stable. The reason is that the uncertainty generally has “structure”, whereas the
use of the singular value assumes unstructured uncertainty. As shown below one should rather use
the structured singular value, i.e. p(T).

3) In contrast to the SISO case, the response with model error may be poor (RP not satisfied),
even though the stability margins are good (RS is satisfied) and the response without model error
is good (NP satisfied). For example, recall the distillation example above where for the decoupling
controller GC(s) = CG(s) = 0.7/sI, and the values of M; and M, are both 1. Yet, the response
with only 20% gain error in each input channel is extremely poor. To handle such effects in general
one has to define the model uncertainty and compute the structured singular value for RP.

The conclusion of this section is that most of the tools developed for SISO systems, and also
their direct generalizations such as the peak criterions, are not sufficient for MIMO systems. A
more detaile analysis based on the structured singular value is discussed below.
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4.2 The RGA as a simple tool to detect robustness problems
4.2.1 RGA and input uncertainty

We have seen that a decoupler performed very poorly for the distillation model. To understand this
better consider the loop gain GC. The loop gain is an important quantity because it determines
the feedback properties of the system. For example, the transfer function from setpoints, r, to
control error, e = y —r, is given by e = —Sr = —(I 4+ GC)~1r. We therefore see that large changes
in GC' due to model uncertainty will lead to large changes in the feedback response. Consider the
case with diagonal input uncertainty, Ar. Let A; and A, represent the relative uncertainty on the
gain in each input channel. Then the actual (“perturbed”) plant is

Gow) =G+ A ar= (4 0 (21)

Note that A; is not normalized to be less than 1 in this case. The perturbed loop gain with model
uncertainty becomes

GyC = G(I+ Af)C = GC + GALC (22)

If a diagonal controller C(s) (eg., two PI’s) is used then we simply get (since Ay is also diagonal)
GpC = GC(I + Ay) and there is no particular sensitivity to this uncertainty. On the other hand,
with a perfect decoupler (inverse- based controller) we have

C(s) = k(s)G™(s) (23)

where k(s) is a scalar transfer function, for example, k(s) = 0.7/s, and we have GC = k(s)I where
I is the identity matrix, and the perturbed loop gain becomes

G,C = G(I+ Af)C = k(s)(I + GAIG™Y) (24)

For the distillation model (11) studied above the error term becomes

(25)

GAG-! = (35.1A1 —34.1A, —27.7A; + 27.7A2>

43.2A1 —43.2A —34.1A 4+ 35.1A,

This error term is worse (largest) when A; and A, have opposite signs. With A; = 0.2 and
Ay = —0.2 as used in the simulations (Eq.16) we find

(26)

GA,G-! = (13.8 —11.1>

172 -13.8

The elements in this matrix are much larger than one, and the observed poor response with uncer-
tainty is not surprising.

The observant reader may have noted that the RGA-elements appear on the diagonal in the
matrix GA;G~! in (25). This turns out to be true in general as diagonal elements of the error
term prove to be a direct function of the RGA (Skogestad and Morari, 1987)

(GAG™Y)ii = Z7_1 i (G)A,; (27)

Thus, if the plant has large RGA elements and an inverse-based controller is used, the overall
system will be extremely sensitive to input uncertainty.

Control implications. Consider a plant with large RGA-elements in the frequency-range corre-
sponding to the closed-loop time constant. A diagonal controller (eg., single-loop PI’s) is robust
(insensitive) with respect to input uncertainty, but will be unable to compensate for the strong
couplings (as expressed by the large RGA- elements) and will yield poor performance (even nomi-
nally). On the other hand, an inverse-based controller which corrects for the interactions may yield
excellent nominal performance, but will be very sensitive to input uncertainty and will not yield
robust performance. In summary, plants with large RGA-elements around the crossover-frequency
are fundamentally difficult to control, and decouplers or other inverse-based controllers should
never be used for such plants (The rule is never to use a decoupling controller for a plant with large
RGA-elements). However, one-way decouplers may work satisfactorily.
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4.2.2 RGA and element uncertainty/identification

Above we introduced the RGA as a sensitivity measure with respect to input gain uncertainty. In
fact, the RGA is an even better sensitivity measure with respect to element-by-element uncertainty
in the matrix.

Consider any complex matrix G' and let A;; denote the ij’th element in it’s RGA-matrix. The
following result holds (Hovd and Skogestad, 1992):

The (complez) matrizc G becomes singular if we make a relative change =1/X;; in dts ij-th
element, that is, if a single element in G is perturbed from g;; to gpi; = gij(1 — % .

Thus, the RGA-matrix is a direct measure of sensitivity to element—by-elementJuncertainty and
matrices with large RGA-values become singular for small relative errors in the elements.

Example. The matrix G in (11) is non-singular. The 1,2-element of the RGA is A15(G) = —34.1.
Thus the matrix G becomes singular if g;3 = —86.4 is perturbed to gp12 = —86.4(1 —1/(—34.1)) =
—88.9.

The result above is primarily an important algebraic property of the RGA, but it also has some
important control implications:

1) Consider a plant with transfer matrix G(s). If the relative uncertainty in an element at a
given frequency is larger than |1/X;;(jw)| then the plant may be singular at this frequency. This
is of course detrimental for control performance. However, the assumption of element-by-element
uncertainty is often poor from a physical point of view because the elements are usually always
coupled in some way. In particular, this is the case for distillation columns: We know that the
elements are coupled such that the model will not become singular due to small individual changes
in the elements. The importance of the result above as a “proof” of why large RG A-elements imply
control problems is therefore not as obvious as it may first seem.

2) However, for process identification the result is definitely useful: Models of multivariable
plants, G(s), are often obtained by identifying one element at the time, for example, by using step
or impulse responses. From the result above it is clear this method will most likely give meaningless
results (eg., the wrong sign of the steady-state RGA) if there are large RGA- elements within the
bandwidth where the model is intended to be used. Consequently, identification must be combined
with first principles modelling if a good multivariable model is desired in such cases.

Example. Assume the true plant model is

oo (878 —86.4
= 1082 —109.6

By extremely careful identification we obtain the following model:
87 —88
Gp = (109 —108)
This model seems to be very good, but is actually useless for control purposes since the determinant
of G and the RGA-elements have the wrong sign (the 1,1-element in the RGA is —47.9 instead of
+35.1). A controller with integral action based on G}, would yield an unstable system.

To learn more about the RGA the reader is referred to Hovd and Skogestad (1992) where
additional references can be found.

4.3 Advanced tools for robustness analysis: p

So far in this paper we have pointed out the special robustness problems encountered for MIMO
plants, and we have used the RGA as our main tool to detect these robustness problems. We
found that plants with large RGA- elements are 1) fundamentally difficult to control because of
sensitivity to input gain uncertainty, and decouplers should not be used, and 2) very difficult to
identify because of sensitivity to element-by-element uncertainty.

We have not yet addressed the problem of analyzing the robustness of a given system with plant
G(s) and controller C(s). In the beginning of this section we mentioned that the peak criterions in
terms of M were useful for robustness analysis for SISO systems both in terms of stability (RS) and
performance (RP). However, for MIMO systems things are not as simple. We shall first consider
uncertainty descriptions and robust stability and then move on to performance. The calculations
and plots in the remainder of this paper refer to the simple distillation model (11), using as a
controller a steady-state decoupler plus PI-control.
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Figure 4.1: Uncertainty represented as linear fractional transformation (LFT).

4.3.1 Uncertainty modelling

Before considering how to analyze uncertain systems, we will consider the H*®-approach to mod-
elling plant uncertainty.

Linear Fractional Transformations (LFT) provide a general framework for modelling uncertainty
(Doyle, 1984). A LFT may be written in the following form (see Fig. 4.1)

z = Fy(P,A)w = (Pos + Py A(I — P11 A) " Pro)w (28)
Here Psj is the nominal mapping from w to z and A is a H*°-norm bounded perturbation,
1Alleo = sup 7(A(jw)) < 1 (29)

Several sources of uncertainty may be combined and then A = diag{A;} is a block-diagonal matrix
with perturbation blocks A, Ay etc. These blocks may represent parametric uncertainty, in which
case they are scalars A; , possibly repeated, or they may represent unstructured uncertainty in
which case they may be matrix-valued.

Each of these perturbations is bounded in terms of its H*®-norm. For parametric uncertainty
this is actually not very convenient as it would allow for complex variations in the parameter,
|A;] < 1. Therefore for parametric uncertainty we generally restrict A; to be real. Thus, it clear
that the frequency domain does not offer any advantage for parametric uncertainty. On the other
hand, the frequency bounds come in nicely when handling non-parametric uncertainty such as
neglected dynamics. Also, it is very convenient for lumping several sources of uncertainty, although
this must be done with some care to avoid being too conservative (when the uncertainty description
allows unrealistic plants).

For unstructured uncertainty we have to make a choice of where to place the perturbation
representing the uncertainty in question. Some alternatives are shown in Fig.4.2. These may all be
represented by the LFT in Eq. (28).

There is no definite rule on which unstructured uncertainty to use, but the following may
be useful: 1) Use the multiplicative (relative) uncertainty to represent neglected and uncertain
dynamics occuring between the plant and the controller (e.g., neglected or uncertain actuator and
measurement dynamics). 2) Use the “feedforward” (additive) forms when the zero uncertainty
is large (in particular if a zero may go from the LHP to RHP) 3) Use the “feedback” (inverse
additive) forms when the pole uncertainty is large (in particular if a pole may cross the jw-axis).
One particular combination of the feedforward and feedback forms, which appears to be useful,
is the coprime uncertainty used in the Glover-McFarlane loop shaping procedure described in the
next section.

However, care must be taken when representing uncertainty in an unstructured form. For ex-
ample, for our distillation column example, it may be tempting to add some unstructured additive
uncertainty to the plant. It turns out that this uncertainty description would be extremely con-
servative for this plant as the sign of the plant (represented by the sign of det G(s) or by the signs
in the RGA-matrix) is extremely sensitive to such changes. In practice, as noted earlier, this kind
of uncertainty does not occur for distillation columns as there are strong couplings between the
elements in G(s).

Two examples illustrate the usefulness of the general uncertainty description given above.

Neglected dynamics. Assume that the real set of plants is something like

Real plant: ¢’ = ke % &' €[0.8k, 1.2k (30)

where k is the nominal (“average”) gain, and we allow for gain variations of 4+:20%. To simplify
the controller design we want to use a simple nominal model with no delay, i.e.,

Nominal model : g ==k (31)
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Figure 4.2: Alternative ways of representing unstructured uncertainty. (a) Additive uncertainty,
(b) Multiplicative input uncertainty, (¢) Multiplicative output uncertainty, (d) Inverse additive un-
certainty, (&) Inverse multiplicative input uncertainty, (f) Inverse multiplicative output uncertainty.

The uncertainty in the gain may be handled directly as parametric uncertainty, but the neglected
delay must clearly be represented in a non-parametric manner. In order to simplify the uncertainty
description we choose to lump together gain variations and the neglected delay as unstructured
multiplicative (relative) uncertainty:

Set of possible models : g,(s) = k(1 + wrAr); |Ar(jw)| <1, Vw (32)

Here Ay is a complez scalar. The modelled set g, must include the real set of plants g'(s). Let 7y
represent the relative uncertainty in the gain. Then the following approximation for the weight is
derived using a first-order Pade-approximation
6
gp — ¢ —9s 1-— -2-5
=(1+ry)e —1=a~(1+r -1 33
L = (14m) (s, (33)

Since it is only the magnitude that matters we make this expression minimum phase and derive
the following simple weight
L+ (5 + 5)0s

1+ %93
The weight is somewhat optimistic (too small) at intermediate frequencies. In our case with ry = 0.2
the magnitude of the weight is ry = 0.2 at low frequencies, crosses 1 at about frequency 1/6 and
approaches 2(1 + r/2) = 2.2 at high frequencies.

Note that even though the uncertainty weight only has 1 state it will allow for an infinite number
of plants of arbitrary high order. On the other hand, (32) is not an exact representation of the
original set of plants ¢’(s) (and oddly shaped complex region would be exact but not a disc) and
may be conservative for that reason. For a scalar case it is probably not very conservative as the
delay is generally the “worst case”. However, in the multivariable case this may not always be true.

Pole variations represented as parametric uncertainty. Consider the set of plants ¢’ =
1/(s + a') where —1 < o’ < 3. This may be exactly represented as

1
s+a+240°
where A is a real scalar perturbation. This is in fact an inverse additive uncertainty (see Fig.4.2)

with nominal model g(s) = 1/(s + a) and w;, = 2. Note also that poles crossing from the left to
the right half plane may be modelled tightly with this uncertainty.

wr(s) = (34)

gp = ya=1, |A|51 (35)
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Figure 4.3: Multiplicative input uncertainty.
U _ YA
» M

Figure 4.4: General block diagram for studying robust stability and robust performance.

4.3.2 Conditions for Robust stability

By Robust Stability (RS) we mean that the system is stable for all possible plants as defined by
the uncertainty set (using the A’s as discussed above). This is a “worst case” approach, and for
this reason one must be careful about not including unrealistic or impossible parameter variations.
With this caution in mind, it turns out that the H*-norm (for completely unstructured uncertainty)
and the structured singular value (for diagonally structured uncertainty) provide an exact way of
analyzing robust stability,

As an example, consider the the case with multiplicative input uncertainty shown in Fig. 4.3. We
assume that the system without uncertainty (A = 0) is stable (we have NS). Instability may then
only be caused by the “new” feedback paths caused by the A-block. Therefore, to test for robust
stability (RS) we rearrange the feedback system with uncertainty into the standard form in Fig.4.4
with the two blocks A and M. Here the interconnection mairiz M is the transfer function from
the output,ua, to the input, ya, of the A-block. For the case of multiplicative input uncertainty
we have A = A and obtain M = wC (I + GC)™1G = wiTy = wyCSG (the negative sign has been
dropped as it does not matter). To test for stability we make use of the “small gain theorem”.
Since the A-block is normalized to be less than 1 at all frequencies, this theorem says that the
system is stable if the M-block is less than 1 at all frequencies. Robust stability is then satisfied if

F(M) = 5(wiTr(jw)) < 1, VY (36)

Unstructured uncertainty. One crucial point is that this condition is also necessary (it is clearly
sufficient) for RS provided we allow for all A’s satisfying 6(A) < 1,Vw. That is, we have for the
general block diagram in Fig.4.4:

RSV [|Allo €1 iff || M]|loe <1 (37)

The same robust stability condition applies for each of the six forms of unstructured uncertainty
shown in Fig. 4.2 when we use

M, =WaCS, My=WiCSG, M,=WoGCS (38)

Mg = SGW;a, M.= (I—l— CG)_1VV51, Mf = SW;o (39)

However, even though (37) is mathematically correct it will generally be conservative for the
following two reasons: 1) It allows for A to be complex, 2) It allows for A to be a full matrix.

It is actually the second point which is the main problem in most cases. However, before
discussing it we shall introduce the coprime uncertainty description which will be used in the next
section.
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Figure 4.5: Coprime uncertainty description

Coprime uncertainty description. Consider the uncertainty description in Fig.4.5 where the
nominal plant is G = M~IN (note that the M in that figure denotes one coprime factor of the
plant and not the interconnection matrix). This uncertainty description is rather general, as it
allows for both zeros and poles crossing into the right half plane, and has proved to be very useful
in applications. To test for RS we rearrange the block diagram to match Fig.4.4 with

AN C g
A=<AM); MRSZ(I>(I+GC) ‘M-! (40)
where Mgg is the interconnection matrix. We get

Ay

s | &

” <1 iff ||Mgs|le <1 (41)
(e}

The reason why we get a tight condition (if and only if) in terms of the H*-norm even though we
have two uncertainty blocks is that the blocks enter into the same point in the block diagram, and

the unceratinty (ﬁN) becomes a “full” matrix.
M

Structured uncertainty. We will now consider the general case where (37) does not provide a
tight bound because we have several A-blocks caused by individual sources of uncertainty.

For example, if the input uncertainty represents neglected dynamics in the the individual chan-
nels then the set of possible plants is given by

Gp(s) = G(I+wrAy); Ar= (Aol AOZ) (42)

where A; represents the independent uncertainty in each input channel such that the overall Ay
is a diagonal matrix (it has “structure”). ((42) is identical to Eq.(21), except that w; yields the
magnitude, since A; is now normalized to be less than 1.) In this case the interconnection matrix
M = WrCSG is the same as M, in (38), but the uncertainty Ay is now a diagonal rather than a
full matrix.

Location of uncertainty. Also, for multivariable plants it makes a difference whether the uncer-
tainty is at the input or the output of the plant. Thus, we may want to consider combined input
and output uncertainty. This may be represented in the general form in Fig.4.4 with M as 2 x 2
block matrix and A = diag{Ar, Ao}. Again, we note that A has a diagonal structure and (37) is
conservative.

Improved condition for structured uncertainty. To improve the tightness of condition (37) we
first note that the issue of stability should be independent of scaling. We then have the improved
condition

RS if g}irﬁ o(DMD™) < 1,Vw (43)
w
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Figure 4.6: p-plots for distillation example with decoupling controller.

where D is a real block-diagonal scaling matrix with structure corresponding to that of A, such
that AD = DA. A further refinement of this idea led to the introduction of the structured singular
value, u(M) (Doyle, 1982). We have (essentially this is the definition of p)

RS V structured A iff pa(M) < 1 (44)

This 1s a tight condition provided the uncertainty description is tight. Note that for computing p
we have to specify the block-structure of A and also if A is real or complex. Today there exists very
good software for computing 2 when A is complex. The most common method is to approximate
i by a “scaled” singular value as introduced in (43):

pa(M) < ming(DMD™) (45)

This upper bound is exact when A is complex and has three or fewer “blocks”, and the largest
deviation found so far for more blocks is 10-16% (Doyle, 1982) but it is usually within 3-4%.

Distillation example revisited. Consider the distillation example from the previous section
and consider multiplicative input uncertainty in each of the two input channels

09s 5s+1
05s+1  05s+1

With reference to (34) we see that this corresponds to 20% gain error and a neglected time delay of
about 0.9 min. The weight levels off at 2 (200% uncertainty) at high frequency. The dotted line in
Fig.4.6 shows u(M) = pu(w;Tr) for RS with this uncertainty using the decoupling controller. The
p-plot for RS shows the inverse of the margin we have with respect to our stability requirement. For
example, the peak value of pa,(M) as a function of frequency is about 0.53. This means that we
may increase the uncertainty by a factor 1/p = 1.89 before the worst-case model yields instability.
This means that we tolerate about 38% gain uncertainty and a time delay of about 1.7 min before
we get instability.

Remark: For the decoupling controller we have GC' = 0771, and Tr =T = %I. For this
particular case it turns out that the structure of A does not matter, and we get ,uA(M) =o(wrly) =
|0'2W?_§E'f437n|' However, in other cases it may be critical to use the right structure, e.g., see
Fig. 16 in Skogestad et al. (1988).

’U)I(S) =02+

(46)

4.3.3 Conditions for Robust Performance

An additional bonus of using the H*®-norm both for uncertainty and performance is that the
robust performance (RP) problem may be recast as a special case of the RS-problem (Doyle et
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than 0.37 after 20 minutes, less than 0.13 after 40 minutes, and less than 0.02 after 80 minutes,
and with no large overshoot or oscillations in the response.

Conclusion. The structured singular value, p, provides an excellent tool for analyzing the
robustness of control systems. Within the H*-framework 1t is possible to consider most sources of
model uncertainty, including parametric and unstructured uncertainty, and with help of u one can
essentially directly pick out the worst-case plant and see if it satisfies the specifications for RS or
RP. However, for a number of reasons p seems to be best suited for analysis, i.e, to answer “what
if” questions. It may also be suited for evaluating the upper bound on achievable performance, i.e.,
as a kind of ultimate controllability tool. However, for actual controller design it seems like simpler
methods, as the ones described in the next section, are more appropriate.

5 Robust Control System Design

In this section, we will focus on a loop shaping methodology for the design of robust multivariable
control systems.

The classical loop shaping approach to control system design has been applied to industrial
systems over several decades. For single-input single-output systems and loosely coupled systems,
the approach has worked well. But for truly multivariable systems it has only been in the last
decade that a reliable generalization of the approach has emerged. Multivariable loop shaping is
based on the idea that a satisfactory definition of gain (range of gain) for a matrix transfer function
is given by the singular values of the transfer function. By multivariable loop shaping, therefore,
we mean the shaping of singular values of appropriately specified transfer functions.

5.1 Trade-offs in multivariable feedback design

In February 1981, the IEEE Transactions on Automatic Control published a Special Issue on Linear
Multivariable Control Systems, the first six papers of which were on the use of singular values in the
analysis and design of multivariable feedback systems. The paper by Doyle and Stein (1981) was
particularly influential: it was primarily concerned with the fundamental question of how to achieve
the benefits of feedback in the presence of unstructured uncertainty, and through the use of singular
values it showed how the classical loop shaping ideas of feedback design could be generalized to
multivariable systems. To see how this was done, consider the one degree of freedom configuration
shown in figure 5.1.

d

U

Figure 5.1: One degree of freedom feedback configuration
The plant G and controller C' interconnection is driven by reference commands r, output dis-
turbances d, and measurement noise n. y are the outputs to be controlled, and u are the control

signals. In terms of the sensitivity function S = (I + GC)~! and the closed-loop transfer function
T =GC(I+GC)™! = I— 8, we have the following important relationships:

y(s) = T(s)r(s) + S(s)d(s) — T(s)n(s) (51)
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u(s) = C(5)5(s)[r(s) — n(s) — d(s)] (52)

These relationships determine several closed-loop objectives, in addition to the requirement that
C stabilizes G; namely:

1. For disturbance rejection make (S) small.
For noise attenuation make ¢(7") small.

For reference tracking make 6(T) = o(T) = 1.

> W N

For control energy reduction make &(C.S) small.

If the unstructured uncertainty in the plane model G is represented by an additive perturbation
ie. Gp = G+ A, then a further closed-loop objective is (recall (38)):

5. For robust stability make &(CS) small.

Alternatively, if the uncertainty is modelled by a multiplicative output perturbation such that
Gp = (I + A)G, then we have:

6. For robust stability make &(7T") small.

The closed-loop requirements 1 to 6 cannot all be satisfied simultaneously. Feedback design is
therefore a trade-off over frequency of conflicting objectives. This is not always as difficult as it
sounds because the frequency ranges over which the objectives are important can be quite different.
For example, disturbance rejection is typically a low frequency requirement while noise mitigation
is often only relevant at higher frequencies.

In classical loop-shaping, it is the magnitude of the open-loop transfer function GC which is
shaped, whereas the above design requirements are all in terms of closed-loop transfer functions.
However, it is relatively easy to convert the closed-loop requirements into the following open-loop
objectives:

1. For disturbance rejection make o(GC) large.
2. For noise attenuation make 6(G'C) small.

3. For reference tracking make o(GC) large.

4. For control energy reduction make &(C') small.
5 & 6. For robust stability make &(C') small.

Typically, requirements 1 and 3 are important at low frequencies, while 2, 4, 5 and 6 are high
frequency conditions as illustrated in Figure 5.2.

To shape the gains (singular values) of GC by selecting C is a relatively easy task but to do
this in a way which also guarantees closed-loop stability is in general non-trivial. Doyle and Stein
(1981) suggested that an LQG controller could be used in which the regulator is designed using a
“sensitivity recovery” procedure of Kwakernaak (1969) to give desirable properties (gain and phase
margins) in GC. They also gave a dual “robustness recovery”procedure for designing the filter in
an LQG controller to give desirable properties in CG. Recall that CG is not in general equal to
GC which implies that stability margins vary from one break point to another in a multivariable
system. Both these loop transfer recovery procedures had problems:

e they were unsuitable for directly achieving specified loop shapes
e the gauranteed stability margins were only gauranteed as limiting properties in the design

e in the limit the controllers effectively inverted the plant and so the procedure broke down for
nonminimum phase systems.

It was not until 1990, that a satisfactory loop shaping design procedure was developed by McFarlane

and Glover (1990). This will be described in section 5.3, but first it will be necessary to consider a
related robust stablization problem.
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Figure 5.2: Design tradeoffs for the multivariable loop transfer function GC

5.2 Robust Stabilization

As previously discussed in this paper, gain and phase margins are unreliable indicators of robust
stability for multivariable systems because they do not take account of the coupling between loops.
In section 4, several uncertainty descriptions were presented in which the uncertainty was captured
by a norm bounded perturbation. Robustness levels could then be quantified in terms of the
maximum singular values of various closed-loop transfer functions.

For example, in the feedback configuration of figure 5.1, if G is replaced by G, = G + A,
where G[A(jw)] < e(w), then the closed-loop remains stable if #[C(jw)S(jw)] < e~ !(w) for all
w. A design objective, for robust stabilization, might therefore be to find a C which stabilizes G
and minimizes ||C'S||,,. A more general uncertainty description, which allows for both poles and
zeros crossing into the RHP, is the coprime uncertainty description used by Glover and McFarlane
(1989). This leads to an attractive robust stabilization problem formulated in an H® framework.
The main results are summarized below.

5.2.1 Normalized coprime factorization

The plant model
G=M"'N, (53)

is a normalized left coprime factorization (LCF) of G if M, N € RH, (the set of stable real rational
transfer function matrices) and M M*+ N N* = I where for a real rational function of s, X* denotes

XT (—s).
G(s)=D+C(sI-A)"'B= [%‘%] (54)

With the notation
a state-space realization of a normalized coprime factorization of G is given (Vidyasagar, 1988) by

s [ A+HC|B+HD H
[N M]= [ R-172C | R-IZD R-172 ] (55)
where
H=—(BDT 4+ ZCT)R™! (56)
R=1+DD* (57)
and the matrix Z > 0 is the unique stabilizing solution to the algebraic Riccati equation (ARE)
(A-BS™'DTC)Z + Z2(A-BS'DTC)T — ZCTR™'CZ+ BS™'BT =0 (58)
where
S=1+D"D. (59)
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5.2.2 Perturbed plant model
A perturbed model G can be defined as

Gp = (M + Ay)" (N + An) (60)

where Ay, Ay € RHo, and H ﬁﬂl\; ‘ < 1, as illustrated in figure 5.3.

A Apm

v

A

4
=

Figure 5.3: Perturbed plant model and controller

5.2.3 Robust stabilization

The robust stability condition for the class of perturbed models defined by (59) was derived previ-

ously in (41). For ~

Ay < 1 we have

oQ

RS iff &

[?] (I+co)y*M™t| <1 (61)

(o]

A reasonable objective is therefore to find the stabilizing controller that minimizes 4 and thus
allows for the largest perturbations. This is the problem of robust stabilization of normalised
coprime factor plant descriptions as introduced by Glover and McFarlane (1989). The minimum
value of v for all stabilizing controllers C is

. ¢ —1pr-1
= inf I+GC)y™"M 62
" ¢ stabilising [I] ( ) o (62)
and is given in Glover and McFarlane (1989) by
-1/2

wo=(1-1NMI5) (63)

where || - || denotes the Hankel norm. From (Glover and McFarlane, 1989)
IV, M1 = Amax (ZX (I +2X)71) (64)

where Amax(.) represents the maximum eigenvalue, and X > 0 is the unique stabilizing solution of
the ARE

(A-BS'DTC)"X + X(A-BS™'DTC)~ XBS™*BTX + CTR™'C =0. (65)
Hence, it can be shown that

vo = (14 Amax(ZX)M2. (66)
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A controller which achieves v, is given in (McFarlane and Glover, 1990) by

o= [ A+ BF +43(Q7)"'2C"(C + DF) | (QT)"'£CT

BTX I —D7 ! (67)
where
F=-5"YDTC+ BTX), (68)
and
Q=(1-)I+XZ (69)

The above results on robust stabilization are particularly attractive because the optimal v and
the corresponding optimal controller can be found without an iterative search on 7 which is normally
required to solve H* problems.

In the next section, it is shown how the robust stabilization problem can be used in conjunction
with the ideas of Doyle and Stein on singular value loop shaping to arrive at a reliable multivariable
loop shaping design procedure.

5.3 Loop shaping design

Robust stabilization alone is not much used in practice because the designer is not able to specify
the desired performance requirements. To do this McFarlane and Glover (1990) proposed pre- and
post-compensating the plant to shape the open-loop singular values prior to robust stabilization of
the “shaped”plant.
If Wy and Wy are the pre- and post-compensators respectively, then the shaped plant Gy is
given by
Ggs = WaGWy (70)
as shown in figure 5.4. The controller C is synthesised by solving the robust stabilization problem

of section 5.2 for the shaped plant G with a normalized left coprime factorization Gy = M 1N,.
The feedback controller for the plant G is then C' = —W;C,Ws,.

=
Q)
s

|
\!
n

Figure 5.4: The shaped plant and controller

The above procedure contains all the essential ingredients of classical loop shaping, and can
be easily implemented using reliable algorithms in, for example, Matlab. Skill is required in the
selection of weights, but experience on real applications has shown that robust controllers can be
designed with relatively little effort by following a few simple guidelines. Hyde (1991) offers a step
by step procedure for weights selection developed during his Ph.D work with Glover on the robust
control of VSTOL aircraft. These guidelines are summarised below in subsection 5.3.1. Successful
application of the procedure has also been reported by Postlethwaite and Walker (1992) in their
work on advanced control of high performance helicopters some of which will be described in section

6.
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Figure 5.5: A practical implementation of the loop shaping controller

5.3.1 A loop shaping design procedure

The following procedure is a summary of that found in (Hyde, 1991):

1.

6

Scale the outputs so that the same amount of cross coupling into each of the outputs is equally
undesirable.

. Scale the inputs to reflect the relative actuator capabilities or expected usage. This may

involve a few iterations based on the control signals which result from successive designs.

. The inputs and outputs should be ordered so that the plant is as diagonal as possible. The

relative gain array can be useful here.

. Select the elements of diagonal pre- and post-compensator weights W7 and W, so that the roll

off rates of the singular values are approximately 20 dB/decade at the desired bandwidths.
Some trial and error is involved here.

Wy is often chosen as a constant reflecting the relative importance of the outputs to be
controlled while W contains the dynamic shaping.

Integral action (for steady-state accuracy) and high frequency roll off (for noise attenuation
and robustness) should be placed in W; if desired.

Sometimes it is found useful to “align ”the singular values at the desired bandwidth using a
further constant weight W, cascaded with W;. This is effectively a decoupler and should not
be used if the plant is ill-conditioned.

Robust stabilization of the shaped plant is carried out as described in section 5.2. If the
optimal gamma, vy, is less than about 4, then the design is usually successful. That is, the
shape of the open-loop singular values will not have changed much after robust stabilization.
A large value of v indicates that the specified singular value shapes are incompatible with
robust stability requirements.

. Analysis of the design may prompt further modifications of the weights if all the specifications

are not met.

. When implementing the controller, the configuration shown in figure 5.5 has been found useful

when compared with the conventional set up in figure 5.1. This is because the references do
not directly excite the dynamics of C; which can result in large amounts of overshoot (classical
derivative kick). The prefilter ensures a steady state gain of 1 between r and y.

Conclusions

The paper has provided an introduction to frequency domain methods for the analysis and design
of multivariable control systems. Particular attention was given to H* methods and to problems of
robustness which arise when plant models are uncertain, which is always the case. The additional
problems associated with the control of ill-conditioned plants were also considered.

The relative gain array, the singular value decomposition and the structured singular value were
shown to be invaluable tools for analysis.

For multivariable design, emphasis was given to the shaping of the singular values of the loop
transfer function. The technique of McFarlane and Glover was considered in detail.
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