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1 Introduction

In most process control applications, the structural issues
which precede the actual controller design are the most
important. The problem of control structure selection

involves the following decisions:

1. Selection of control objectives, actuators and mea-
surements.

2. "Control con�guration selection": Selection of con-
troller structure (e.g., pairing of actuators for decen-
tralized control.

Note that we de�ne the last step as the control con-
�guration selection, whereas the combination of the two
steps is denoted the "control structure selection".
In practice, control systems are implemented in a hier-

archical manner, with a regulatory control system at the
lowest level. The two main objectives for the regulatory
control system are

1. Take care of control tasks where fast response is
needed.

2. Make the control problem seen from the levels above
simple.

The higher levels in the control system may include a
supervisory and optimizing control system or simply the
operator. In any case, the issue of control structure se-
lection is usually most important for regulatory control.
This is because the main control objective at this level
is to facilitate good operation, that is, to implement a
simple control system that makes it easy for the opera-
tors to operate the plant. Thus, the control objectives
are not clearly de�ned at this level, and since the control
system should be simple we generally want to implement
decentralized SISO controllers.
Speci�cally, one often has extra measurements which

are not particularly important to the control of the plant
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from an overall point of view. However, at the regulatory
control level one often uses these variables as secondary

control objectives by closing local loops. Typically, such
variables may include selected temperatures and pres-
sures. The setpoints for these loops may be adjusted
from the higher levels giving rise to a cascaded control

system. E�ectively, by closing secondary control loops,
we replace the original independent variables (typically,

ows and valve positions in process control applications)
by some new independent variables (the setpoints for the
secondary control variables). The idea is then that the
control problem in terms of these new independent vari-
ables is simpler, and at least that they need not be ad-
justed so frequently, that is, the \fast control" is taken
care of by the secondary control loops implemented at
the regulatory level.
A block diagram is shown in Fig.1. Here u2 represents

the original independent variables which are used to con-
trol the secondary (\extra") outputs, yx. The setpoints
for the secondary loops yxs then become the new control
variables, ux = yxs.
In most cases it is desirable to have the secondary loops

as fast as possible. Thus, when the operator or higher
levels in the control system change ux, this results in an
almost immediate change in yx, i.e., yx � ux. Also, in this
case the tuning of the secondary loops does not matter for
the overall system (provided they are suÆciently fast).
In this paper we use distillation column control as an

application. The main control problem here is the strong
coupling between the two loops as indicated, for example,
by the large RGA-values. In the paper, we study how the
use of temperature cascades, in addition to improving the
operation, may help reduce this interaction.

2 Distillation control

Control of distillation columns is a challenging problem
due to strong interactions, ill-conditionedness, nonlinear-
ity and the large number of possible control structures.
A simple distillation column (Fig. 2) may, from a con-
trol point of view, be considered a 5 � 5 problem with
L; V;D;B and VT as the manipulated inputs (actuators)
and xD , xB (product quality), MD, MB (levels) and p
(pressure) as the controlled outputs (control objectives).



Figure 1: Block diagram with secondary loop closed.

Typical disturbances (d) include feed composition (zF ),
feed 
owrate (F ) and feed enthalpy (qF ).
In practice, distillation columns are usually controlled

in a hierarchical manner with the three loops for level
and pressure control implemented at the regulatory con-
trol level. The \conventional" distillation control con-
�guration selection problem, which addresses which of
the �ve inputs should be used for control in these three
loops, has been discussed by a number of authors (e.g.,
Shinskey, 1984, Skogestad et al., 1990). By convention,
the resulting con�guration is named by the two indepen-
dent variables which are left for composition (quality)
control, for example, the LV-con�guration uses re
ux L
and boilup V for composition control. In this paper only
the LV-con�guration is considered.
The quality control is often implemented at some

higher level or left for manual control by the operators.
However, this approach has several problems:

� Unless very fast control is used, the use of u1 = L
and u2 = V to control the y1 = xD and y2 = xB
yields a very diÆcult control problem with strong
interactions and large RGA-values.

� There is often a long delay associated with measuring
the product compositions which makes fast control

Figure 2: Typical distillation column using LV-
con�guration.

impossible.

� There is a need to close at least one loop with rel-
atively fast control in order to "stabilize" the com-
positions in the distillation column, which otherwise
behave almost as a pure "integrator".

To deal with at least the last problem one often imple-
ments a secondary temperature loop at the regulatory
control level (e.g., Kister, 1991). This loop makes it pos-
sible for the operators to operate the column when the
composition loops are not closed.

Remark. An alternative approach is to use multiple
temperature measurements along the column to estimate
the compositions (e.g., Mejdell and Skogestad, 1991ab).
This avoids the measurement delay and makes it easier to
have fast control. However, even in this case one may for
operational reasons want to close one temperature loop
at the regulatory control level as described above.

3 Closing secondary loops

General results. From Fig.1 we have with the sec-
ondary loops open (Cx = 0)

y = G1u1 +G2u2 +Gdd (1)



(Note that we may have assumed that some regulatory
loops, e.g., the pressure and level loops for distillation
columns, have been closed). Similarly, with Cx = 0, the
model for the secondary output is

yx = Gx1u1 +Gx2u2 +Gxdd (2)

Closing the secondary loops, e�ectively means that we
replace the inputs u2 by the setpoints ux = yxs, and for
the cascaded system, we get,

y = ~G1u1 + ~G2ux + ~Gdd (3)

where

~G1 = G1 �G2Cx(I +Gx2Cx)
�1Gx1 (4)

~G2 = G2Cx(I +Gx2Cx)
�1 (5)

~Gd = Gd �G2Cx(I +Gx2Cx)
�1Gxd (6)

In most cases we use decentralized control for the cas-
cade loops and Cx is a diagonal matrix. The use of the
cascade clearly changes the \e�ective" plant as seen from
the disturbances and inputs. Speci�cally, if the cascade
loops are slow (Cx ! 0) we have

~G1 = G1; ~G2 = G2Cx; ~Gd = Gd (7)

and as expected the system behaves as without the cas-
cade except that the inputs u2 are scaled by Cx. At the
other extreme, tight control of the secondary variables
(Cx !1) yields G2Cx(I +Gx2Cx)

�1
� G2G

�1

x2 and

~G1 = G1 �G2G
�1

x2Gx1; (8)

~G2 = G2G
�1

x2 ;
~Gd = Gd �G2G

�1

x2Gxd

The changes in control properties resulting from imple-
menting the secondary loops may be analyzed by use of
a number of standard measures for linear controllability
evaluation, such as RHP-zeros, RGA-analysis for inter-
actions, disturbance sensitivity and sensitivity to model
uncertainty.
In this paper we mainly use the relative gain array

(RGA or �) to look at interaction in the distillation col-
umn with an added temperature control loop. The prop-
erties of the RGA are well known (e.g., Grosdidier et
al., 1985). The most important for our purpose are: 1)
No two-way interaction is present when � = I , 2) The
RGA is independent of scaling in inputs or outputs, and
3) The rows and columns both sum up to 1. For 2 � 2
systems the RGA is especially easy to compute; because
of the third property mentioned, we only have to com-
pute the (1; 1) element of the RGA which is given by
�11 = 1=(1�Y ), Y = g12g21

g11g22
. To evaluate the disturbance

sensitivity, we consider the closed-loop disturbance gain
(CLDG) which is the appropriate measure when we use
decentralized control (Hovd and Skogestad, 1992). The
CLDG is de�ned as GdiagG

�1Gd, where Gdiag consists of
the diagonal elements of G.

Although the main part of the analysis is based on
the RGA, we also provide detailed controller designs and
simulations to con�rm the predictions.
Temperature cascade for distillation column.

We here consider composition control by manipulating
the re
ux L and boilup V (LV-con�guration), but the
following development also applies to other control con-
�gurations as well.
We want to use an internal tray temperature measure-

ment for cascade control. For a binary mixture with con-
stant pressure there is a direct relationship between tray
temperature (T ) and composition (x). In terms of devi-
ation variables we then have Ti = KTxxi, where for ideal
mixtures KTx is approximately equal to the di�erence in
pure component boiling points. The open-loop model for
the LV-con�guration may be written,0

@xD
xB
xi

1
A =

0
@ g11 g12
g21 g22
gx1 gx2

1
A� L

V

�
(9)

where xD, xB and xi are the compositions in the top,
bottom and ith tray of the distillation column.
We now implement a SISO controller from the tem-

perature Ti to the re
ux L: L = cx(Ts � Ti) (we could
have used boilup instead). Here Ts is the setpoint for the
temperature loop which becomes the new manipulated
variable instead of L. In terms of the general problem
discussed above this corresponds to selecting u1 = V ,
u2 = L, ux = Ts, yx = Ti and y = [xB xD]

T . We can
now write the linear equations relating the top and bot-
tom compositions to the new set of manipulated variables
as �

xD
xB

�
= ~G

�
Ts
V

�
; (10)

~G =

� g11cx
1+gx1cxKTx

g12 �
g11gx2cxKTx

1+gx1cxKTx

g21cx
1+gx1cxKTx

g22 �
g21gx2cxKTx

1+gx1cxKTx

�

The RGA for ~G can now be computed to study the inter-
action properties of the column for di�erent temperature
loop gains cx,

�11( ~G) =

 
1�

g21g12 �
g21g11gx2cxKTx

1+gx1cxKTx

g11g22 �
g21g11gx2cxKTx

1+gx1cxKTx

!
�1

(11)

We have the two limiting cases,

cx = 0 : �11( ~G) = (1�
g12g21
g11g22

)�1 = �11(G) (12)

cx =1 : �11( ~G) = (1�
g21(g12gx1 � g11gx2)

g11(g22gx1 � g21gx2)
)�1 (13)

As expected, with suÆciently slow temperature cascade
controllers the RGA is unchanged.
Ideally, we would like no two-way interaction. Setting

�11 = 1:0 and solving Eq. 11 for cx yields the following
\optimal" feedback controller,

c�x = K�1

Tx

�
g12

g11gx2 � g12gx1

�
(14)



The \optimal" loop transfer function for the temperature
loop is then given by,

L� = c�xKTxgx1 = �(1�
g11gx2
g12gx1

)�1 = �11(G
s)� 1 (15)

where

Gs =

�
g11 g12
gx1 gx2

�
(16)

Thus the optimal loop gain is essentially equal to the
RGA involving xD and xi as outputs. We note that when
xD and xi are strongly coupled (in terms of the RGA)
then the loop gain should be large. Also, the bandwidth
of the cascade loop should be approximately equal to the
frequency where this RGA approaches 1. Since for the
LV-con�guration the shapes of the open-loop gains (e.g.
gx1) and the RGA as a function of frequency are similar
(they break o� at the dominant time constant, e.g., see
Skogestad et al. (1990)), it seems that a simple propor-
tional controller should be close to the optimal choice.
Thus, in the example below we will only consider the
steady-state value of �11( ~G) and assume that cx is a P
controller.

4 Distillation example

We consider as an example the high-purity binary distil-
lation column studied by Skogestad and Mejdell (1991a).
The basic data are given below:

#Trays xD 1� xB zF L=F Mi=F [min]
41 :99 :99 :5 2:71 0:5

We use a 82nd order model which includes liquid 
ow
dynamics, and the resulting liquid lag from the top to
the bottom of the column is about �L = 1:5 min. The
steady-state RGA-value of the model is �11(G) = 35:5
and approaches 1 at frequency 1=�L (also see �g. 4 with
Kc = 0).

Selection of tray for temperature sensor. There are sev-
eral e�ects that must be taken into account when choos-
ing where to install the temperature sensor: 1) When
using a secondary loop involving re
ux as the input, it
should be placed in the top part of the column to min-
imize the process delay due to the liquid 
ow dynam-
ics. 2) The interaction properties as expressed by the
optimal loop gain in eq.15 will depend on the location.
When re
ux is used for the secondary temperature loop,
placing the temperature close to the top will lead to an
in�nite loop gain and it will drop down to a value of
�11(G) � 1 = 34:5 with the measurement located at the
bottom of the column. 3) The temperature measurement
should be sensitive such that it may be distinguished from
noise (this consideration is probably the most important).
Figure 3 depicts di�erent column temperature pro�les

as a function of operating conditions. To get high sen-
sitivity (point 3 above) we have chosen to control the

Figure 3: Steady-state column temperature pro�le at dif-
ferent operating points. (Bottom is Tray 1)

temperature at tray 34 (tray 8 counted from the top) for
the remaining analysis.
The model in Eq.9 then becomes, at steady-state,0

@xD
xB
x8

1
A =

0
@ :8754 �:8618
1:0846 �1:0982
6:3912 �6:3051

1
A� L

V

�
(17)

We get �11( ~G
s(0)) = 477:9, and since for our example

KTx = �13:5, (15) tells us we will obtain no two-way
interaction at steady-state (�11( ~G(0)) = 1) with a P-
controller with gain Kc = �5:53. Frequency-dependent
RGA-plots for the column, �( ~G(j!)), with various gains
for the temperature cascade are shown in �gure 4. We
note that with Kc = �5:53 the RGA is close to 1:0 at
most frequencies (and not only at steady-state), con�rm-
ing that a simple P-controller is close to the optimal.

The loop gain L = KcKTxgx1 for the cascade loop with
the \optimal" controller gainKc = 5:53 is shown in Fig.5.
The loop gain crosses 1 in magnitude at frequency wc =
3:0rad=min, which is the approximate bandwidth of that
loop. Due to valve dynamics, measurement dynamics, a
liquid lag of about 0.3 min from the top to tray 8, etc.
it seems that the closed-loop bandwidth must be about
1 rad/min or less. Thus in practice, the controller gain



Figure 4: E�ect on the frequency-dependent RGA,
�11( ~G(j!)), of varying gain in secondary loop, cx = Kc.

should be reduced by a factor of about 3.0, and we will
use a controller gain Kc = 1:84 in the following.1 This
will not have much e�ect on the \decoupling e�ect" of the
secondary loop, as we note from Fig. 4 that the RGA-plot
is rather insensitive to the value of Kc.
No RHP-zeros are obtained for the resulting \open-

loop" system ~G(s) for any value of Kc.
The \open-loop" disturbance-rejection properties are

also improved through use of the temperature cascade.
This is seen from Figure 6 which shows the Closed-Loop
Disturbance Gain, CLDG =GdiagG

�1Gd, as a function
the secondary controller gain, Kc, for the most diÆcult
disturbance (e�ect of F on xB). Note that in this plot the
outputs have been scaled such that an output of magni-
tude 1 corresponds to 0.01 mole fractions units. Similar
results are obtained from Fig. 7 which shows a simulation
of a step change in the same disturbance. We thus �nd
that closing the secondary loop strongly reduces the sen-
sitivity of the bottom composition to disturbances. The
reason is of course that the compositions inside the col-
umn are strongly coupled, and �xing the composition at

1Alternatively, we might have introduced dynamics into cx to

avoid instability. For example, since with in�nite gain the RGA at

steady-state is 0.925, which is very close to 1, we might have used

a PI controller.

Figure 5: Loop gain for secondary temperature loop with
Kc = 5:53.

one point2 results in small changes also at other locations.
This is important because there is then less need to use
fast control in the primary composition loops, and fast
control in the primary loops are often impossible because
of long measurement delays.
Closed loop simulations with also the two primary com-

position loops closed are shown in �gure 8. A measure-
ment delay of 6 minutes for the compositions is used in
both loops. For the original plant without the secondary
temperature loop (dotted lines) we use PID tunings from
Skogestad and Lundstr�m (1990):

Loop K �I �D
xD 0:14 16:6 3:17
xB 0:12 14:3 3:54

(18)

For the case with a secondary temperature loop (solid
lines) we use PID tunings based on the Ziegler-Nichols
tuning rule but with the proportional gain reduced by a
factor two:

Loop K �I �D
xD 3:71 6:28 1:57
xB 0:56 6:98 1:75

(19)

2For a binary separation, temperature is a direct measure of

composition.



Figure 6: Improved disturbance rejection with tempera-
ture cascade. Plot shows CLDG for e�ect of disturbance
in feed 
ow on xB .

We see from these simulations that the secondary tem-
perature loop provides for much better control of the top
composition, xD , with somewhat less improvement for
the bottom composition, xB . This is as expected since
the temperature sensor is located towards the top (stage
8 from the top) and its setpoint is determined by the
xD-controller. In e�ect we have achieved a one-way de-
coupling: With u1 = V and u2x = Ts as the new inputs,
we �nd that u1 has an e�ect on y1 = xB , but very little
e�ect on y2 = yD, whereas u2x has an e�ect on y1 and
somewhat less e�ect on y2.

Including the secondary loop gives larger input signals
(changes in re
ux and boilup) than for the original plant,
but without being close to violating the constraints (L =
0, V = 0).

5 Discussion

1. We note from the simulations that the feed 
ow dis-
turbance has a rather large e�ect on xB even with the
secondary loop closed. The reason is that it takes some
time before the temperature sensor near the top sees this
disturbance. To improve this response the temperature

Figure 7: Improved disturbance rejection with tempera-
ture cascade. Plot shows response in xB to disturbance
in F .

sensor should be located in the bottom part of the col-
umn. However, in this case the top composition would
become more sensitive to disturbances. The obvious con-
clusion is to place the temperature sensor in the top part
(and close this loop using L) if the top composition is
most critical, or place it in the bottom (and close this
loop with V ) if the bottom composition is most critical.

2. If large variations in the operating point of the col-
umn is expected one may choose to use the weighted av-
erage of several tray temperatures for the temperature
measurement. This will avoid the problem of an insensi-
tive measurement if the temperature pro�le becomes 
at
at the selected tray location. The outer cascade which
contains integral action will in any case reset the setpoint
of the average temperature to its correct value.

3. The use of \weighted average temperature" is in-
deed very similar to the static composition estimator of
Mejdell. But, as noted before, even with such an estima-
tor, it may be a good idea to implement an independent
inner temperature cascade.

4. The reason why the temperature cascade reduces
interaction is essentially as follows. The distillation col-
umn is actually quite decoupled at high frequencies due
to the 
ow dynamics. Therefore, if one can close one loop



Figure 8: Response to a setpoint change in xD.

with suÆciently high gain, one can at least make the sys-
tem one-way interactive and reduce the RGA. It is then
possible to implement advanced controllers on top of this
without regard for the robustness problems which follow
when the RGA is large.
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