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Abstract

The purpose of this paper is to introduce the reader to multivariable frequency
domain methods including H*-design. These methods provide a direct generalization
of the classical loop-shaping methods used for SISO systems. We also aim to provide
a basic understanding of how robustness problems arise, and what analysis and design
tools are available to identify and to avoid them.

As an introduction to the robustness problems in multivariable systems we discuss
the control of a distillation column. Because of strong interactions in the plant, a
decoupling control strategy is extremely sensitive to input gain uncertainty (caused by
actuator uncertainty). These interactions are analyzed using singular value decompo-
sition (SVD) and relative gain array (RGA) methods.

We then discuss possible sources of model uncertainty, and look at the traditional
methods for obtaining robust designs, such as gain margin, phase margin and maxi-
mum peak criterions (M-circles). However, these measures are difficult to generalize
to multivariable systems. In such cases a more detailed modelling of the uncertainty
in terms of norm-bounded perturbations (A’s) is used. The frequency-domain is par-
ticularly well suited for representing non-parametric (unstructured) uncertainty. To
test for robust stability and performance in the presence of model uncertainty, the
structured singular value, g, provides a powerful tool.

The latter part of the paper is concerned with design and in particular multivariable
loop shaping of singular values of appropriately specified transfer functions. One and
two degrees of freedom controllers are considered, and the paper ends with a case
study on advanced control of high performance helicopters.
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1 Introduction

The main goal of this introduction is to answer the following question: Why use
the frequency domain (H*-norm) for defining performance and describing un-
certainty? We will also discuss the two main approaches to H*-design, namely
the loop-shaping and the signal-oriented approaches.

We use ||M || to denote the H*®-norm of a linear transfer function A (s).
For the scalar case, | M| is simply equal to the peak magnitude sup,, |M (jw)|,
where sup denotes the least upper bound, which for all practical purposes is equal
to the maximum value. For the multivariable case we, “sum up” the channels
using the singular value and we have

1Mllos = sup (M (jw) M

1.1 The loop shaping approach

This approach to control system design could also be called the classical ap-
proach, the engineering approach, the frequency domain approach or the trans-
fer function approach.

Figure 1.1: Conventional feedback control system.

Consider the conventional feedback system in Fig. 1.1 where G(s) is the
plant and C'(s) the feedback controller.

By “loop shaping” one traditionally means a design approach where one
specifies directly the shape of the magnitude of the open-loop transfer function



L = GC. However, we shall use the term in a wider sense and also allow the
specification of closed-loop transfer functions such as S = (I + GC)~'. We
use the following definition: Loop-shaping is any design method that involves
directly specifying the magnitude of one or more nominal transfer functions.
To distinguish between various approaches we will talk about “shaping L” or
“shaping S”, and so on.

Shaping L. For single-input single-output (SISO) systems the specifications
in terms of the open-loop transfer function L = GC' typically include:

i) Crossover frequency, w. (defined as |L(jw.)| = 1).
ii) System type (defined as number of integrators in L(s)).

iii) The shape of L(jw), e.g., in terms of the slope of |L(jw)| in certain fre-
quency ranges.

iv) Phase margin, PM (given by the phase of L(jw.)).

v) Gain margin, GM (given by the gain of L at the frequency where its phase
is —180°).

The first three specifications have to do with performance in terms of speed of
response and allowable tracking error. The last two specifications are included
to avoid some of the potential difficulties with feedback: 1) the closed-loop
system may become unstable, 2) noise and disturbances in a certain frequency
range close to the bandwidth frequency may get amplified.

Specifications directly on L = G'C' make the design procedure simple as it is
clear how changes in the controller affect L(s), and this approach is well suited
for non-formalized design procedure. Indeed, towards the end of this paper we
shall discuss the MacFarlane-Glover loop-shaping procedure where the initial
step in the controller design is to select a reasonable L(s).

Shaping closed-loop transfer functions. In may cases one prefers to
define specifications in terms of a closed-loop transfer function for the following
reasons: 1) The final performance we want to evaluate is that of the closed-loop
system. 2) The robustness specifications in terms of GM and PM are difficult to
generalize to MIMO systems. 3) Synthesis is difficult if the specifications are in
terms of L (one may have to resort to numerical procedures such as the Method
of Inequalities (MOT) described towards the end of the paper).

Shaping S. The closed-loop sensitivity function, S = (I+GC)™1, is a very
good indicator of performance. Typical specifications in terms of S include:

i) Minimum bandwidth frequency wp (defined as the smallest frequency at

which #(S(jw)) = 0.707)



ii) Allowable tracking error at selected frequencies.

iil) System type, or if system contains no integrators, the allowed static track-
ing error, A.

iv) The shape of S over selected frequency ranges.
v) Maximum allowed peak magnitude for S, ||S(jw)||cc = Ms.

The peak specification prevents amplification of noise at high frequencies,
and also introduces a margin of robustness; typically we select M; = 2. Math-
ematically, these specifictions may be captured simply by an upper bound,
1/|wp|! on the magnitude of S, namely

a(S(jw)) < 1lwp(jw)|, Vo & JlwpSlle <1 (2)

A typical upper bound is shown in Fig. 1.2. The weight illustrated on that plot
may be represented as
s/M, +wp
i (3)
s+ wpA

and we see that |wp(jw)|™! is equal to A < 1 at low frequencies, is equal to

wp(s) =

Mg > 1 at high frequencies, and the asymptote crosses 1 at the bandwidth
frequency, wpg.

Figure 1.2: Upper bound on &(S) given by weight 1/|wp(jw)| in (3).

1Subscript P stands for performance since S is mainly used as a performance indicator



The loop shape L = wp/s yields an S which exactly matches the bound
(3) at frequencies just below the bandwidth and easily satisfies the bound at
other frequences. This L has a slope (“roll-off”) in the frequency range below
the bandwidth of about -1 on a log-log plot (-20 dB/decade). In many cases,
in order to improve performance, we may want a steeper slope for L (and S) in
some frequency range below the bandwidth, and a higher-order weight may be
selected.

Stacked requirements. The specification [|wpS]|e < 1 does not allow us
to specify an upper bound on the bandwidth or the “roll-off” of L(s) above the
bandwidth. To specify this one needs to make a specification on another transfer
function, for example, on the complementary sensitivity 7' = I — S = GCS.
Also, one may want to bound other transfer functions, to achieve robustness or
to avoid too large input signals.

As an example, one may define an upper bound, 1/|wr| on the magnitude
of T' to make sure the system behaves “nicely” at high frequencies, and an
upper bound, 1/|wy|, on the magnitude of C'S to avoid large input signals. To
combine these specifications, the “stacking approach” is usually used, resulting
in the following specification:

pr
[M|loo =supo(M(jw)) <1; M= | wrGCS (4)
N w,C'S
. i ey . . . wpS .
The “mixed-sensitivity” specification with M = o is used, for
wpGC'S

example, by Chiang and Safonov (1988, 1992) in the Matlab Robust Control
Toolbox Manual.

The “stacking procedure” is selected for mathematical convenience as it does
not allow us to exactly specify the bounds on the individual transfer functions
as was described above. For example, assume that ¢;(C') and ¢2(C) are two
real scalars (here we could have ¢1(C) = [|wpS]|e and ¢2(C) = [JwrGCS||)

and that we want to achieve
$1 <1 and ¢, <1 (5)

This is not quite the same as the “stacked” requirement

a(j;>=\/¢%+¢331 (6)

The two requirements are quite similar when either ¢; or ¢4 is small, but in
the worst case when ¢; and ¢ are equal, we get from (6) that ¢; < 0.707 and
$2 < 0.707, that is, there is a possible “error” equal to a factor /2 2 3 dB. In



general, with n stacked requirements the resulting error is at most \/n. This
inaccuracy in the specifications is something we are probably willing to sacrifice
in the interests of mathematical convenience. In any case, the specifications are
in general rather rough, and are effectively knobs for the engineer to select and
adjust until a satisfactory design is reached.

The H*-optimal controller is obtained by solving the problem

min [|M(C)]|o (7)

Provided M can be written as a linear fractional transformation (LFT) of C|
M(C) = N3 + Na1C(I — N23C)~1Nyps, the solution is easily obtained with
standard software (e.g. the Robust Control or Mu Toolboxes in Matlab). In
practice, to be able to write M as an LFT of C', one must be able to represent
M by a block diagram with the input (or output) at only one location. For
example, the M in (4) may be represented in a block diagram with a single
input entering at the output of the plant as shown in Fig.1.3.

Figure 1.3: Block digram corresponding stacked requirement in (4).

Let v9 = ming [|M(C)||oo denote the optimal H*®-norm for the problem in
(7). An important property of H®-optimal controllers is that it will yield a
flat frequency response, that is, it will yield (M (jw)) = 7o at all frequencies.
The practical implication is that, except for at most a factor \/n, the transfer
functions resulting from solving (7) will be very close to vy times the bounds
selected by the designer. This means, that the designer may almost exactly

specify the final shape of, for example, &(S), a(GC'S) or 7(C'S).



Remark. For cases where M cannot be written as an LFT of C'| which is
a special case of the Hadamard-weighted H*-problem studied by van Diggelen
and Glover (1991, 1992), the solution to the H*-problem in (7) remains in-
tractable. Van Diggelen and Glover (1991,1992) do, however, present a solution
for a similar problem where the Frobenius norm is used instead of the singular
value to “sum up the channels” in the H*-norm.

Summary. The classical loop-shaping approach to controller design involves
direct specifications of how the final solution should be in terms of the magnitude
frequency response. It requires the engineer to be able to formulate bounds
that lead to acceptable robustness and closed-loop performance. This approach
is often preferred because it has few adjustable design parameters (knobs) and
directly involves the engineer in the design. We shall return with a more detailed
discussion on the physical significance of some transfer functions which the
engineer may want to bound in Section 5.1.

1.2 The signal-oriented approach

The signal-oriented approach is very general, and may be more appropriate
for multivariable problems in which a number of objectives must be taken into
account simultaneously. Here we define the plant, including possibly the model
uncertainty, define the class of external signals affecting the system and define
the norm of the “error signals” we want to keep small. Direct bounds on selected
transfer functions, such as the closed-loop bandwidth, cannot be specified in
this case. On the other hand, one may argue that the concept of bandwidth is
difficult to use for complex systems.

The “modern” state space methods from the 60’s, such as LQG control, are
based on the signal-oriented approach. Here the input signals are assumed to be
stochastic (or alternatively impulses in a deterministic setting) and the output
signals are measured in terms of the 2-norm. These methods may be generalized
to include frequency dependent weights on the signals leading to what is called
the Wiener-Hopf or Hy-norm design method.

Sinusoidal signals and the H*-norm. We may also consider the system
response to persistent sinusoidal signals of varying frequency. This leads to the
signal- oriented H*®-norm approach used, for example, by Doyle et al. (1987)
in their space-shuttle application. A signal-oriented problem specification with
disturbances, commands and noise, and with bounds on both the input and
outputs is shown in Fig. 1.4. The overall performance objective is that || F||eo <
1. For more details the reader is referred to Lundstrom et al. (1991).

The H®-norm may be interpreted in other ways, such as the induced 2-norm
from inputs to outputs. In any event, as far as signals are concerned



Figure 1.4: Typical block diagram for signal-oriented approach to H®-
performance.

there does not seem to be an overwhelming case for using the H®-norm
rather than the more traditional Ha-norm (LQG). When we begin to consider
issues of model uncertainty, however, the frequency domain approaches such as
H® are preferred.

Model uncertainty. The traditional method of dealing with robustness
and model uncertainty within the framework of “optimal control” (LQG) has
been to introduce uncertain signals (noise and disturbances). One particular
approach is loop transfer recovery (LTR) where unrealistic noise is added specif-
ically to obtain a robust design. Of course, one may say that model uncertainty
generates some sort of disturbance, but this disturbance depends on the other
signals in the system and thus introduces an element of feedback. Therefore
there is a fundamental difference between these two sources of “uncertainty” (at
least for linear systems): model uncertainty may introduce instability, whereas
signal uncertainty can not.

A more direct way to handle robustness issues within the signal approach,
is to model the uncertainty explicitly. It appears that the frequency domain is
very well suited for describing model uncertainty, and in particular for describing
non-parametric uncertainty, resulting, for example, by using a simplified low-
order model of a high-order plant. Indeed, Owen and Zames (1991) make the
following observation in a recent paper: “The design of feedback controllers in
the presence of nonparametric and unstructured uncertainty ... s the raison
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d’étre for H*® feedback optimization, for if disturbances and plant models are
clearly parameterized H*® -methods seem to offer no clear advantages over more
conventional state-space and parametric methods.”

If the H*-norm is selected for the uncertainty, then, again for mathematical
convenience, one may also want to select the H*-norm for performance. This
leads to a robust performance (RP) problem, for which there exists a very effi-
cient analysis tool, namely the structured singular value, y. But, for controller
synthesis there are difficulties: the p-synthesis problem, in its full generality,
is not yet solved mathematically; where solutions exist the controllers tend to
be high order; the available algorithms may not always converge and design
problems are sometimes difficult to specify directly.

1.3 Combined approaches

The loop shaping approach and the signal approach above may, of course, be
combined. One such approach is “loop-shaping with uncertainty” as used, for
example, by Skogestad et al (1988). Here performance is specified in terms of
an upper bound on the sensitivity S, leading to the specification [|wpS||eo <
1. One then takes a “worst-case” approach and requires that this bound 1s
satisfied for all plants as defined by the uncertainty description. For the case
of input uncertainty of relative magnitude wy this leads to the following robust
performance analysis condition (see Eq.48)

(8)

RP iff p(N(jw)) <1, Vw; N:(“’ICSC’ w,cs>

prG pr

where p is the structured singular value computed with respect to a special
block-diagonal structure. This is similar to the H*-condition in (4), but in (8)
the bounds on the transfer functions are specified indirectly, and it is not clear
what nominal transfer functions C'SG, C'S, SG and S are allowed. Specifically,
recall that the H*-optimal controller would essentially result in a controller
which matches all the bounds at all frequencies (except for at most a factor
v/1). On the other hand, the y-optimal design, may result in a design where, for
example, &(wpS) is very small at some frequency and large at another frequency.
It is therefore not clear from the specifications what the final (nominal) design
will be.

However, the p-approach does have definite advantages since we do know
that the worst-case sensitivity function S, (p stands for perturbed) will exactly
satisfy our requirements, i.e., for all possible perturbed plants [|wpSp|lec < 1.
Whereas for the H*-problem we only specify nominal transfer functions and
must make sure by specifying these carefully that robustness is achieved. When

11



applied to design, the approach (8) has the usual problems associated with
p-synthesis: computational difficulties, high-order controllers, and the indirect
specification of individual transfer functions . From the above discussion then, it
follows that p-analysis may be very useful for checking the robustness of designs
obtained, for example, by an H*® design procedure.

Another “combined approach” is the the “Glover-McFarlane loop-shaping
procedure”. 1In this, one first specifies the desired open-loop shape L(s) for
performance using simple pre- and post- compensators. One then “robustifies”
this design by considering a particular robust stability condition, which involves
solving an H*-problem. This procedure is further described in Section 5 and
used in the design example in Section 6.

1.4 Summary

We have considered two alternative approaches to controller design: the loop-
shaping approach and the signal approach. In both cases we find the frequency-
domain to be the natural setting. The loop-shaping approach, with direct spec-
ifications on bandwidth etc, 1s directly based in the frequency domain so here
there is no alternative. For the signal-oriented approach there are a variety of
ways to define the signals. The reason why the frequency-domain (H*-norm)
is again preferred is that it is very well suited to handling unstructured model
uncertainty.

In a practical design situation, the above two approaches may be combined.
For example, one may design the controller (Step B below) by some loop-shaping
approach (involving H*-synthesis) and then analyze the solution (Step C be-
low) using a signal-oriented approach with model uncertainty explicitly included
(involving p-analysis).

This paper is concerned with analysis and design of control systems for
industrial plants. In this case the designer must usually go through the following
steps:

Step A. Controllability analysis: This is where the plant is analysed and we
discover what closed-loop performance can be expected, what the limita-
tions are, how good the control might be.

Step B. Controller design: This is where the design problem is formulated and
the controller synthesized.

Step C. Control system analysis: This is where the feedback control system is
assessed by analysis and simulation to judge how well it might behave in
practice.

12



With the above steps in mind, the following topics are covered in the remainder
of this paper.

Section 2: Analysis of the plant - controllability

Section 3: Robustness problems - Introductory distillation example
Section 4: Tools for robustness analysis

Section 5: Robust control system design

Section 6: A case study.

1.5 Notation

G - nominal plant model

M - matrix used to test for robust stability (section 1-4) or coprime factor of G
(section b)

RGA - matrix of relative gains, = G' % (G_l)T where X represents element-by-
element multiplication.

s - Laplace variable (s = jw yields the frequency response)

S = (I +GC)™1 - sensitivity function

T = GC(I + GC)™! - closed-loop transfer function

Tr = CG(I + CG)™! - closed-loop transfer function from the plant input

w and W; - frequency-dependent weighting functions

Greek letters

A - overall perturbation block used to represent uncertainty
Ay - perturbation block for input uncertainty

¥(A) = ¢(A)/a(A) - condition number of matrix A

u(A) - structured singular value of matrix A

w - frequency [rad/s or rad/min]

7(A) - maximum singular value of matrix A

o(A) - minimum singular value of matrix A

Subscripts
p - perturbed (with model uncertainty)
P - performance

13



2 Analysis of the plant - Controllability

Before attempting to start any controller design one should have some idea of
how easy the plant actually is to control. Is it a difficult control problem? In-
deed, does there even exist a controller which meets the required performance
objectives? It appears that the frequency-domain is very well suited for answer-
ing such problems in a general setting. One reason for this is the very useful
idea of “bandwidth” which is a purely frequency-domain concept. The concept
of right half plane (RHP) zeros is also of fundamental importance in answering
questions of the kind.

In this paper the term “controllability” (of a plant) has the meaning of “in-
herent control characteristics of the plant” or maybe better “achievable perfor-
mance” (irrespective of the controller). This usage is in agreement with most
persons intuitive feeling about the term, and was also how the term was used
historically in the control literature. For example, Ziegler and Nichols (1943)
define controllability as “the ability of the process to achieve and maintain the
destred equilibrium value”.

Unfortunately, in the 60’s Kalman defined the term “controllability” in the
very narrow meaning of “state controllability”. This concept is of interest for
realizations and numerical calculations, but as long as we know that all the
unstable modes are both controllable and observable, it has almost no practical
significance.

It would be desirable to have a more precise definition of controllability, but
on the other hand this is difficult and probably not useful. An exact definition
would require selection of a certain norm to measure the control error, and would
also require a detailed specification of all external signals such as noise, reference
signals and disturbances. Indeed, Ziegler and Nichols (1943) note in their paper
that although they “took the area under a recovery curve as one measure of
controllability ... this is only one of many possible bases for comparison of
control results”. They also stress that it is difficult to narrow controllability
down to one single attribute of the plant. They say: “Unfortunately, the authors
are not able to give a formula for controllability. It appears that when such a
factor is devised it will consist of several factors. One might be called the
“recovery factor” | the ability of the process to recover from the maximum change
in demand or load. Another, a “load factor” must take into account the point
in the process at which the disturbance occurs”. Later in the paper they state
that the total integrated control error, [ |e(¢)|dt, is equal to: (Load Factor) -
(Recovery Factor).

Essentially, the “recovery factor” depends on the process model, g(s), and
recovery is poor (and thus the recovery factor is large) if it contains large time
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delays or if the plant gain is small. The “load factor” expresses the effect of
the disturbances and thus depends on the disturbance model, g4(s). These
concepts are very similar to the ideas summarized below in terms of upper and
lower bandwidth limitations.

2.1 Summary of controllability results for SISO plants

Consider the control system in Fig. 1.1 for the case when all blocks are scalar.
The control error e = y — r may be written

e(s) = g(s)u(s) + ga(s)d(s) — 7(s) (9)

We assume that the signals are persistent sinusoids, and assume that g and g4
are scaled, such that at each frequency the allowed input |u(jw)| < 1, the ez-
pected disturbance |d(jw)| < 1, and the outputs are scaled such that the expected
reference signal |r(jw)| < 1.

Below we have given some “controllability” requirements which apply to the
closed-loop bandwidth, wg. The requirements are fundamental, although the
expressions given in terms of bounds on wp are not exact. However, in practice

they must be fulfilled.

i) Disturbances. Must require wp > wq. Here wq is the frequency at which
|ga(jwa)| crosses 1 from above. Below this frequency the error will be
unacceptable (|e] > 1) for a disturbance d = 1 unless control is used. More
specifically, we must for feedback control require at frequencies lower than

war |ge(jw)| > ga(iw)|-

il) Commands (setpoints). Specify directly minimum required wp. This re-
quirement comes in addition to the bandwidth requirement imposed by
the disturbances, and is usually relatively easy to specify.

iii) Open-loop unstable pole at s = p. Must require wp > 1/|p|. We need
fast control to stabilize the system, and the bandwidth must approzimately
be greater than 1/|p| where |p| is the distance of the RHP-pole from the
origin.

iv) Input constrainis, must require |g(jw)| > 1,Vw <wp. This is needed to
avoid input constraints (Ju(jw)| < 1) for perfect tracking of r(jw) = 1.

v) Input constraints, must require |g(jw)| > |ga(jw)], Yw < wq. This
is needed to avoid input constraints for perfect rejection of disturbance

d(jw) = 1.

15



The above two conditions are requirements that the plant must satisfy in
order to be able to apply tight control in a certain frequency reange. They
are independent of the controller, and can therefore be affected only by
changing the plant g(s).

In the frequency range up to the bandwidth wg there should not be any
time delays, RHP-zeros and high-order plant dynamics that need to be
counteracted. We get

vi) Time delay 0. Must require wp < 1/6.

vii) RHP-zero at s = z. Must require wp < |z|.

Note that RHP-zeros close to the origin are the worst. LHP-zeros pose
no fundamental limitation, but a LHP-zero close to the origin yields an
“overshoot” in the open-loop response which may be difficult to counter-
act. Therefore, to simplify controller design and avoid robustness prob-
lems, it is often best to have the LHP-zeros as far away from the origin as
possible.

The above two constraints for time delays and RHP-zeros are fundamen-
tal, but the above relationships are rather approximate. Also, if there are
combinations of both RHP-zeros and time delays then they must be con-
sidered combined, because they all make feedback control difficult (simply
consider the overall phase lag).

viii) In most practical cases: wp < wisp.

Here wigg is the frequency at which the phase of g(jw) is —180°. This
condition is not a fundamental limitation, but more of a practical limi-
tation. In particular it applies if the phase drops rather quickly around
the frequency wigg. The condition follows since in most cases the plant is
not known sufficiently accurately to place zeros to counteract the poles at
high frequency.

2.2 Controllability analysis for multivariable plants

We do not have space to go into detail about the controllability analysis of
multivariable plants, but most of the ideas presented above may be generalized,
e.g., see Wolff et al. (1992). Instead we will summarize some of the main
tools which are used. All of them are based on the plant model G(s) and the
disturbance model Gg4(s).
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i) Compute the multivariable RHP-poles and RHP-zeros and their associated
directions. Test for functional controllability (the rank of G should equal
the number of outputs).

ii) Perform a frequency-dependent SVD-analysis to understand the multi-
variable directions.

iii) Perform a frequency-dependent RGA-analysis to check for fundamental
limitations due to inherently coupled outputs. Compute the plant condi-
tion number.

iv) Evaluate disturbance sensitivity. For decentralized control the use of the
CLDG-matrix, degG_lGd, directly generalizes the SISO results. Here
G diag 1s a diagonal matrix consisting of the diagonal elements of G. For
the general case it is more complicated, but an SVD-analysis of G4 and
G~ G4 yields useful information about which disturbances are difficult,
and the bandwidth requirement in certain directions.

The above tools for controllability analysis are simple indicators which are
easy to compute, and help the engineer to obtain insight into what the control
problems are for the plant in question. In some cases a more detailed analysis
which includes finding the optimal controller may be desirable. A suitable tool
is the structured singular value p (which must be minimized over all controllers
to find the achievable performance for the problem). However, the use of such
methods requires a careful definition of the performance specifications and model
uncertainty which is often not available or which requires a significant effort to
obtain.

Although, there has been good progress during the last few years, the area
of controllability analysis is still a very interesting area for future research.

3 Robustness - Introductory distillation column
example

An 1dealized distillation column example will be used to introduce the reader to
the adverse effects of model uncertainty, in particular for multivariable plants.
The example is taken mainly from Skogestad et al. (1988)

Before considering the example a short introduction to robustness and un-
certainty seems in order.
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3.1 Robustness and model uncertainty

A control system is robust if it is insensitive to differences between the actual
system and the model of the system which was used to design the controller.
Robustness problems are usually attributed to differences between the plant
model and the actual plant (usually called model/plant mismatch or simply
model uncertainty). Uncertainty in the plant model may have several origins:

i) There are always parameters in the linear model which are only known
approximately or are simply in error.

ii) Measurement devices have imperfections. This may even give rise to un-
certainty on the manipulated inputs, since the actual input is often mea-
sured and adjusted in a cascade manner. For example, this is often the
case with valves where we measure the flow. In other cases limited valve
resolution may cause input uncertainty.

iii) At high frequencies even the structure and the model order is unknown,
and the uncertainty will exceed 100% at some frequency.

iv) The parameters in the linear model may vary due to nonlinearities or
changes in the operating conditions.

v) In addition, the controller implemented may differ from the one obtained
by solving the synthesis problem, and one may include uncertainty to allow
for controller order reduction and implementation inaccuracies.

Other considerations for robustness include measurement and actuator failures,
constraints, changes in control objectives, opening or closing other loops, etc.
Furthermore, if a control design is based on an optimization then robustness
problems may also be caused by the mathematical objective function, that is,
how well this function describes the real control problem.

In the somewhat narrow use of the term used in this paper, we shall consider
robustness with respect to model uncertainty, and assume that a fixed (linear)
controller is used. Intuitively, to be able to cope with large changes in the
process, this controller has to be detuned away from the best response we might
have achieved if the process model was exact.

To consider the effect of model uncertainty, the uncertainty needs first to
be quantified in some way. There are several ways of doing this. One powerful
method is the frequency domain (so-called H-infinity uncertainty description) in
terms of norm-bounded perturbations (A’s). With this approach one can also
take into account unknown or neglected high-frequency dynamics.

The following terms are useful:
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e Nominal stability (NS). The system is stable with no model uncertainty.

e Nominal Performance (NP). The system satisfies the performance specifi-
cations with no model uncertainty.

¢ Robust stability (RS). The system is stable for all perturbed plants about
the nominal model up to the worst-case model uncertainty.

¢ Robust performance (RP). The system satisfies the performance specifica-
tions for all perturbed plants about the nominal model up to the worst-case
model uncertainty.

3.2 The distillation column model

We consider two-point (dual) composition control of a distillation column. The
overhead composition of a distillation column is to be controlled at yp = 0.99
(output 1) and the bottom composition at zp = 0.01 (output 2), with reflux L
(input 1) and boilup V (input 2) as manipulated inputs for composition control,

. AyD w= AL
Y=\azg )’ " \av

By linearizing the steady-state model and assuming that the dynamics may be

le.,

approximated by a first order response with time constant 7 = 75 min, we derive
the following linear model in terms of deviation variables

n\ _ (m o 1 (818 —864
<y2>_G<u2>’ ¢ = 5 <108.2 —109.6> (10)

Here we have scaled the inputs and outputs to be less than 1 in magnitude
(this corresponds to the outputs in 0.01 mole fraction units, and the inputs
scaled relative to the feed rate). The gains are much larger than 1 indicating
no problems with input constraints, but this is somewhat deceiving as the gain
in the the low-gain direction (corresponding to the smallest singular value) is
actually just above 1.

This is admittedly a very crude model of a distillation column. Specifically,
a) the parameters may vary drastically with operating point, b) there should be
a high-order lag in the transfer function from u; to y, to represent the liquid
flow down to the column, and c) higher-order composition dynamics should
also be included. However, the model is simple and displays important features
of the distillation column behavior. The RGA-matrix for this model is at all
frequencies

(11)

RGA(G) = ( 35.1 —34.1)

—-34.1 35.1
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The large elements in this matrix indicate that this process is fundamentally
difficult to control (see section 4.2).

3.2.1 Interactions and ill-conditioned plants

From (10) we get
87.8
0 = 753 1)

Thus an increase in u; by only 0.01 (with us constant) yields a steady- state
change in y; of 0.878, that is, the outputs are very sensitive to changes in u;.
Similarly, an increase in us by only 0.01 (with u; constant) yields y; = —0.864.
Again, this is a very large change, but in the opposite direction of that for the
increase in uj.

We therefore see that changes in u; and uy counteract each other, and if we
increase u; and us simultaneously by 0.01, then the overall steady- state change
in y; is only 0.878 — 0.864 = 0.014. Physically, the reason for this small change
is that the compositions in the column are only weakly dependent on changes
in the internal flows (i.e., simultaneous changes in the internal flows L and V).

Summary: Since both u; and wuy affect both outputs, y; and ys, we say
that the process is interactive. This is quantified by relatively large off-diagonal
elements in G(s). Furthermore, the process is ill-conditioned, that is, some
combinations of u; and us have a strong effect on the outputs, whereas other
combinations of u; and ug (corresponding to u; & u3) have a weak effect on
the outputs. This is quantified by the condition number; the ratio between the
gains in the strong and weak directions; which is large for this process (as seen
below it is 141.7).

3.2.2 Singular Value Analysis of the Model

The above discussion shows that this distillation column is an ill- conditioned
plant, where the effect (the gain) of the inputs on the outputs depends strongly
on the direction of the inputs. To see this better, consider the SVD of the
steady-state gain matrix

G=UxvT (12)

or equivalently since VT = V1
Gv=d(G)u, Guv=c(Gu

where

Y = diag{o,c} = diag{197.2,1.39}
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_ 0.707  0.708
V=(v= (—0.708 0.707)

i 0.625 0.781
U=(uy= <0.781 —0.625)

The large plant gain, 6(G) = 197.2, is obtained when the inputs are in the

direction (Z;) =0 = (_(JJ%S). From the direction of the output vector u =
(8:%?), we see that these inputs cause the outputs to move in the same direction,

that is, they mainly affect the average output y%yl The low plant gain,
o(G) = 1.39, is obtained for inputs in the direction (Z:) =v = (g:;gg). From
the output vector u = (_06?2215) we see that the effect then is to move the outputs
in different directions, that is, to change y; — y2. Thus, it takes a large control
action to move the compositions in different directions, that 1s, to make both
products purer simultaneously. Indeed, we see that in this direction it may
be possible that one could be limited by input constraints (corresponding to
|u] > 1). The condition number of the plant, which is the ratio of the high and
low plant gain, is

1(G) = 7(G)/a(G) = 141.7 (13)

The RGA is another indicator of ill-conditionedness, which is generally better
than the condition number, because it is scaling independent. The sum of the
absolute value of the elements in the RGA (denoted ||RGA||sum = Z|RGAij|)
is approximately equal to the minimized (with respect to input and output
scaling) condition number, v*(G) = minp, p, y(D1GD5) where D; and D5 are
real diagonal “sacling” matrices. In our case we have ||RGA||sum = 138.275
and v*(G) = 138.268. (We note that the minimized condition number is quite
similar to the condition number in this case, but this does not hold in general.)

3.3 Control of the column
3.3.1 Decoupling control

For “tight control” of ill-conditioned plants the controller should compensate
for the strong directions by applying large input signals in the directions where
the plant gain is low, that is, a “decoupling” controller similar to G~! in direc-
tionality i1s desired. However, because of uncertainty, the direction of the large
inputs may not correspond exactly to the low plant-gain direction, and the am-
plification of these large input signals may be much larger than expected. As
shown in the simulations below, this will result in large values of the controlled
variables y, leading to poor performance or even instability. Consider the fol-
lowing decoupling controller (or equivalently a steady-state decoupler combined
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with a PI controller):

k k(1 . 0.
Or(s) = Fa() = 1(14755) (0 39942 —0.31487
S

0.39432 —0.31997) k1 =07min”™!
(14)
We have GC' = 0.7/sI. In theory, this controller should counteract all the
directions of the plant and give rise to two decoupled first-order responses with
time constant 1/0.7 = 1.43 min. This is indeed confirmed by the solid line in
Fig.3.1 which shows the simulated response to a setpoint change in y;. We thus
conclude that the decoupling controller satisfies the nominal performance (NP)
requirement.

S

Figure 3.1: Response for decoupling controller to a unit setpoint change in y;
with time constant 5 min, i.e, r; = 1/(5s + 1). Solid line: Nominal response

with no uncertainty. Dotted line: 20% gain uncertainty as defined by Equation
15.

3.3.2 Robustness of decoupling control

We also note that this simple design yields an infinite gain margin (GM) and
a phase margin (PM) of 90° in both channels. For multivariable systems such
margins are however misleading as we shall see in the following.
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To be specific consider the case with 20% error (uncertainty) in the gain in
each input channel (“diagonal input uncertainty”):

Uy = 1.2u16, Uy = O.SUQC (15)

Note that this expression is in terms of deviation variables. Here u; and uq
are the actual changes in the manipulated flow rates, while u;, and us. are the
desired changes (what we believe the inputs are) as specified by the controller.
It is important to stress that this diagonal input uncertainty, which stems from
our inability to know the exact values of the manipulated inputs, is elways
present. Note that the uncertainty is on the change in the inputs (flow rates),
and not on their absolute values. A 20% error is reasonable for process control
applications (some reduction may be possible, for example, by use of cascade
control using flow measurements, but there will still be uncertainty because of
errors in measurement sensitivity). Anyway, the main objective of this paper
i1s to demonstrate the effect of uncertainty, and its exact magnitude is of less
importance.

It is straightforward to see that the uncertainty in (15) does not by itself
yield instability, thus we have robust stability (RS) for the decoupling controller.
However, whereas for SISO systems we generally have that NP and RS imply
robust performance (RP) this is often not the case for MIMO systems.

This is clearly shown from the dotted lines in Fig.3.1 which shows the re-
sponse with the uncertainty in (15). Tt differs drastically from the nominal
response represented by the solid line, and even though it is stable the response
is clearly not acceptable; it is no longer decoupled, and y;(¢) and ya(¢) reach a
value of about 2.5 before settling at their desired values of 1 and 0. Thus RP s
not satisfied for the decoupling controller.

There is a simple reason for the observed poor response to the setpoint
change in y;. To accomplish this change, which occurs mostly in the “bad”
direction corresponding to the low plant gains, the inverse-based controller gen-
erates large changes in u; and us, while trying to keep the u; — us very small.
However, uncertainty with respect to the actual values of u; and us makes it
impossible to make them both large while at the same time keeping their dif-
ference small — the result is an undesired large change in the actual value of
u1 — ug, which subsequently results in large changes in y; and y2 because of the
large plant gain in this direction.

Remark. The system satisfied RS because the uncertainty only occurs at the
input to the plant. In practice, with for example a small time delay added to
one of the outputs, this controller would give an unstable response.
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3.3.3 A robust controller: Single-loop PID

Unless special care is taken, most multivariable design methods (MPC, DMC,
QDMC, LQG, LQG/LTR, DNA/INA, IMC, etc.) yield similar inverse-based
controllers, and do not generally yield acceptable designs for ill-conditioned
plants. This follows since they do not explicity take uncertainty into account,
and the optimal solution is then to use a controller which tries to remove the
interactions by inverting the plant model.

Figure 3.2: Response for PID controller.

The simplest way to make the closed-loop system insensitive to input uncer-
tainty is to use a stmple controller, for example two single-loop PID controllers,
which does not try to make use of the details of the directions in the plant model.
The problem with such a controller is that little or no correction is made for
the strong interactions in the plant, and then even the nominal response (with
no uncertainty) is relatively poor. This is shown in Fig.3.2 where we have used
the following PID controllers (Lundstrom et al., 1991)

y1i—uy: K.=1.62;77 =41 min;7p = 0.38 min (16)
ya —us: K.=-0.39;77r = 0.83 min; 7p = 0.29 min (17)

The controller tunings yield a relatively fast response for y2, and a slower re-
sponse for y;. As seen from the dotted line in Fig.3.2 the response is not very
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much changed by introducing the model error in Eq.15.

Figure 3.3: Response for u-optimal controller.

In Fig.3.3 we show the response with the p-optimal controller (see Lund-
strom et al., 1991) which is designed to optimize the worst-case response (ro-
bust performance) as discussed towards the end of this paper. Although this is
a multivariable controller, we note that the response is not too different from
that with the simple PID controllers, although the response settles faster to the
new steady-state.

3.3.4 Limitations with the example: Real columns

It should be stressed again that the column model used above is not represen-
tative of a real column. In a real column the liquid lag, 8z, from the top to the
bottom, makes the initial response less interactive and the column is easier to
control than found above. It turns out that the important parameter to consider
for controllability is not the RGA at steady-state (with exception of the sign),
but rather the RGA at frequencies corresponding to the closed-loop bandwidth.
For a model of a real distillation column the RGA is large at low frequencies
(steady-state), but it drops at high frequencies and the RGA-matrix becomes
close to the identity matrix at frequencies greater than 1/6f.

Thus, since the interactions are much less at high frequencies, control is
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simple, even with single-loop PI or PID controllers, if we are able to achieve
very tight control of the column. However, if there are significant measurement
delays (these are typically 5 min or larger), then we are forced to operate at
a low bandwidth, and the responses in Figs.3.1-3.3 are more representative.
Furthermore, it holds in general that one should not use a steady-state decoupler
if the steady-state RGA-elements are large (typically larger than 5).

4 Tools for robustness analysis

In this section we will first introduce some simple tools, such as the frequency-
dependent RGA, to understand the poor responses observed in the distillation
example in the last section. Then we consider more general methods, which
allow for a detailed description of the model uncertainty. This leads into a
discussion of the structured singular value, g, as an analysis tool for evaluating
whether a system satisfies robust stability (RS) and robust performance (RP).
Readers who want to learn more about u are referred to Doyle (1982), Doyle
at al. (1982), Skogestad et al. (1987), or to the texts by Morari and Zafiriou
(1989) and Maciejowski (1989).

4.1 Simple tools for robustness analysis
4.1.1 SISO systems

For single-input-single-output (SISO) systems one has traditionally used gain
margin (GM) and phase margin (PM) to avoid problems with model uncertainty.
Consider a system with open-loop transfer function g(s)c(s), and let ge(jw)
denote the frequency response. The GM tells by what factor the loop gain
|ge(jw)| may be increased before the system becomes unstable. The GM is thus
a direct safeguard against steady-state gain uncertainty (error). Typically we
require GM > 1.5.

The phase margin tells how much negative phase we can add to ge(s) before
the system becomes unstable. The PM is a direct safeguard against time delay
uncertainty: If the system has a crossover frequency equal to w., (defined as
|ge(jwe)| = 1), then the system becomes unstable if we add a time delay of
60 = PM/w.. For example, if PM = 30° and w, = 1 rad/min, then the allowed
time delay error is # = (30/57.3)[rad]/1[rad/min] = 0.52 min.

Mazimum peak criterions. In practice, we do not have pure gain and phase
errors. For example, in a distillation column the time constant will usually
increase when the steady-state gain increases. A more general way to specify
stability margins is to require the Nyquist locus of ge(jw), to stay outside some
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region of the -1 point (the “critical point”) in the complex plane. Usually this is
done by considering the maximum peak, M; of the closed-loop transfer function
T or the peak M; of the sensitivity function. The reader may be familiar with
M-circles drawn in the Nyquist plot or in the Nichols chart. Typically, we require
that M, and M; are less than 2 (6 dB). 1/M; is simply the minimum distance
between ge(jw) and the -1 point. In most cases the values of M; and M, are
closely related, especially when the peak is large, There is a close relationship
between M; /M, and PM and GM. Specifically, for a given M, we are guaranteed

M 1 1

GM > Y T PM > 2arcsin( 2]\43) > 7

[rad] (18)

For example, with M; = 2 we have GM > 2 and PM > 29.0° > 1/M; [rad] =
28.6°. Similarly, for a given value of M; we are guaranteed GM > 1+ ML, and
PM > 2arcsin(2+wt) > MLt

4.1.2 MIMO systems

It is difficult to generalize GM and PM to MIMO systems. On the other hand,
the maximum peak criterions may be generalized easily. The most common
generalization is to replace the absolute value by the maximum singular value,
for example, by considering

M; = maxa(T(jw)); T =GCO(I+GC)™? (19)

Even though we may easily generalize the maximum peak criterion to multi-
variable systems, it is often not useful for the following three reasons:

1) In contrast to the SISO case, it may be not sufficient to look at only the
transfer function 7T'. Specifically, for SISO systems GC = C'G, but this does not
hold for MIMO systems. This means that although the peak of 7' (in terms of
a(T(jw)))) is low, the peak of T = CG(I + C'G)~! may be large.

2) The singular value may be a poor generalization of the absolute value.
There may be cases where the maximum peak criterion , eg. in terms of &(7),
is not satisfied, but in reality the system may be robustly stable. The reason is
that the uncertainty generally has “structure”, whereas the use of the singular
value assumes unstructured uncertainty. As shown below one should rather use
the structured singular value, i.e. (7).

3) In contrast to the SISO case, the response with model error may be poor
(RP not satisfied), even though the stability margins are good (RS is satisfied)
and the response without model error is good (NP satisfied). For example, recall
the distillation example above where for the decoupling controller GC(s) =
CG(s) = 0.7/sI, and the values of M; and M, are both 1. Yet, the response

27



with only 20% gain error in each input channel is extremely poor. To handle
such effects in general one has to define the model uncertainty and compute the
structured singular value for RP.

The conclusion of this section is that most of the tools developed for SISO
systems, and also their direct generalizations such as the peak criterions, are
not sufficient for MIMO systems.

4.2 The RGA as a simple tool to detect robustness prob-
lems

4.2.1 RGA and input uncertainty

We have seen that a decoupler performed very poorly for the distillation model.
To understand this better consider the loop gain GC. The loop gain is an
important quantity because it determines the feedback properties of the system.
For example, the transfer function from setpoints, r, to control error, e = y — r,
is given by e = —Sr = —(I + GC)~'r. We therefore see that large changes
in GC' due to model uncertainty will lead to large changes in the feedback
response. Consider the case with diagonal input uncertainty, Ay. Let A; and
A, represent the relative uncertainty on the gain in each input channel. Then
the actual (“perturbed”) plant is

A 0
Gp(s) = G()T+Ap); Ap={ "} (20)
0 A,
Note that A; is not normalized to be less than 1 in this case. The perturbed
loop gain with model uncertainty becomes

G,C = G(I + Af)C = GC + GALC (21)

If a diagonal controller C'(s) (eg., two PI’s) is used then we simply get (since
Ay is also diagonal) G,C' = GC(I + A) and there is no particular sensitivity to
this uncertainty. On the other hand, with a perfect decoupler (inverse- based
controller) we have
C(s) = k(s)G™'(s) (22)
where k(s) is a scalar transfer function, for example, k(s) = 0.7/s, and we
have GC' = k(s)I where I is the identity matrix, and the perturbed loop gain
becomes
G,C = G(I +A)C = k(s)(I + GA[G™) (23)

For the distillation model (10) studied above the error term becomes

35.1A; —34.1A, —27.7A1 + 27.7A2) (24)

‘A n—1 —
GA(G) <43,2A1 “43.2A5 —34.1A, + 35.1A,
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This error term is worse (largest) when A; and A, have opposite signs. With
Ay = 0.2 and Ay = —0.2 as used in the simulations (Eq.15) we find

138 —11.1
v v—1 __
GALG _<17.2 —13.8> (25)

The elements in this matrix are much larger than one, and the observed poor
response with uncertainty is not surprising.

The observant reader may have noted that the RGA-elements appear on the
diagonal in the matrix GA;G~! in (24). This turns out to be true in general as
diagonal elements of the error term prove to be a direct function of the RGA

(Skogestad and Morari, 1987)
(GAG™")i = T7_ A (G)A, (26)

Thus, if the plant has large RGA elements and an inverse-based controller is
used, the overall system will be extremely sensitive to input uncertainty.

Control tmplications. Consider a plant with large RGA-elements in the
frequency-range corresponding to the closed-loop time constant. A diagonal
controller (eg., single-loop PI’s) is robust (insensitive) with respect to input
uncertainty, but will be unable to compensate for the strong couplings (as ex-
pressed by the large RGA- elements) and will yield poor performance (even
nominally). On the other hand, an inverse-based controller which corrects for
the interactions may yield excellent nominal performance, but will be very sen-
sitive to input uncertainty and will not yield robust performance. In summary,
plants with large RGA-elements around the crossover-frequency are fundamen-
tally difficult to control, and decouplers or other inverse-based controllers should
never be used for such plants (The rule is never to use a decoupling controller
for a plant with large RGA-elements). However, one-way decouplers may work
satisfactorily.

4.2.2 RGA and element uncertainty/identification

Above we introduced the RGA as a sensitivity measure with respect to input
gain uncertainty. In fact, the RGA is an even better sensitivity measure with
respect to element-by-element uncertainty in the matrix.

Consider any complex matrix G and let A;; denote the ¢j’th element in it’s
RGA-matrix. The following result holds (Hovd and Skogestad, 1992):

The (complex) matriz G becomes singular if we make a relative change
—1/Xi; in its ij-th element, that is, if a single element in G is perturbed from
gij 10 gpij = 95 (1 = 5-).-
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Thus, the RGA-matrix is a direct measure of sensitivity to element-by-
element uncertainty and matrices with large RGA-values become singular for
small relative errors in the elements.

Example. The matrix G in (10) is non-singular. The 1,2-element of the RGA
is A12(G) = —34.1. Thus the matrix G becomes singular if g15 = —86.4 is
perturbed to gp12 = —86.4(1 — 1/(—34.1)) = —88.9.

The result above is primarily an important algebraic property of the RGA,
but it also has some important control implications:

1) Consider a plant with transfer matrix G(s). If the relative uncertainty in
an element at a given frequency is larger than [1/A;;(jw)| then the plant may be
singular at this frequency. This is of course detrimental for control performance.
However, the assumption of element-by-element uncertainty is often poor from
a physical point of view because the elements are usually always coupled in some
way. In particular, this is the case for distillation columns: We know that the
elements are coupled such that the model will not become singular due to small
individual changes in the elements. The importance of the result above as a
“proof” of why large RGA-elements imply control problems is therefore not as
obvious as 1t may first seem.

2) However, for process identification the result is definitely useful: Models
of multivariable plants, G(s), are often obtained by identifying one element at
the time, for example, by using step or impulse responses. From the result
above it is clear this method will most likely give meaningless results (eg., the
wrong sign of the steady-state RGA) if there are large RGA- elements within the
bandwidth where the model is intended to be used. Consequently, identification
must be combined with first principles modelling if a good multivariable model
is desired in such cases.

Example. Assume the true plant model is

G = 87.8 —86.4
T\ 108.2 —109.6
By extremely careful identification we obtain the following model:
, [ 87T —88
Gp = (109 —108>
This model seems to be very good, but is actually useless for control purposes
since the RGA-elements have the wrong sign (the 1,1-element in the RGA is
—47.9 instead of +35.1). A controller with integral action based on G}, would
yield an unstable system.

To learn more about the RGA the reader is referred to Hovd and Skogestad
(1992) where additional references can be found.
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4.3 Advanced tools for robustness analysis:

So far in this paper we have pointed out the special robustness problems en-
countered for MIMO plants, and we have used the RGA as our main tool to
detect these robustness problems. We found that plants with large RGA- ele-
ments are 1) fundamentally difficult to control because of sensitivity to input
gain uncertainty, and decouplers should not be used, and 2) very difficult to
identify because of sensitivity to element-by-element uncertainty.

We have not yet addressed the problem of analyzing the robustness of a given
system with plant G(s) and controller C(s). In the beginning of this section
we mentioned that the peak criterions in terms of M were useful for robustness
analysis for SISO systems both in terms of stability (RS) and performance (RP).
However, for MIMO systems things are not as simple. We shall first consider
uncertainty descriptions and robust stability and then move on to performance.
The calculations and plots in the remainder of this paper refer to the simple
distillation model (10), using as a controller a steady-state decoupler plus PI-
control.

4.3.1 Uncertainty modelling

Before considering how to analyze uncertain systems, we will consider the H*-
approach to modelling plant uncertainty.

Linear Fractional Transformations (LFT) provide a general framework for
modelling uncertainty (Doyle, 1984). A LFT may be written in the following
form (see Fig. 4.1)

2= Fy(P,A)w = (Pag 4+ Poy A(I — Py A) ' Pra)w (27)

Figure 4.1: Uncertainty represented as linear fractional transformation (LFT).

Here P35 is the nominal mapping from w to z and A is a H**-norm bounded
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perturbation,

1Al = sup o (A(jw)) <1 (28)

Several sources of uncertainty may be combined and then A = diag{A;} is a
block-diagonal matrix with perturbation blocks Aj, Ay etc. These blocks may
represent parametric uncertainty, in which case they are scalars A; , possibly
repeated, or they may represent unstructured uncertainty in which case they
may be matrix-valued.

Each of these perturbations is bounded in terms of its H*®-norm. For para-
metric uncertainty this is actually not very convenient as it would allow for
complex variations in the parameter, |A;| < 1. Therefore for parametric un-
certainty we generally restrict A; to be real. Thus, it clear that the frequency
domain does not offer any advantage for parametric uncertainty. On the other
hand, the frequency bounds come in nicely when handling non-parametric un-
certainty such as neglected dynamics. Also, it is very convenient for lumping
several sources of uncertainty, although this must be done with some care to
avoid being too conservative (when the uncertainty description allows unrealistic
plants).

For unstructured uncertainty we have to make a choice of where to place
the perturbation representing the uncertainty in question. Some alternatives
are shown in Fig.4.2. These may all be represented by the LFT in Eq. (27).

There is no definite rule on which unstructured uncertainty to use, but the
following may be useful: 1) Use the multiplicative (relative) uncertainty to
represent neglected and uncertain dynamics occuring between the plant and the
controller (e.g., neglected or uncertain actuator and measurement dynamics).
2) Use the “feedforward” (additive) forms when the zero uncertainty is large
(in particular if a zero may go from the LHP to RHP) 3) Use the “feedback”
forms when the pole uncertainty is large (in particular if a pole may cross the jw-
axis). One particular combination of the feedforward and feedback forms, which
appears to be useful, is the coprime uncertainty used in the Glover-McFarlane
loop shaping procedure described in the next section.

However, care must be taken when representing uncertainty in an unstruc-
tured form. For example, for our distillation column example, it may be tempt-
ing to add some unstructured additive uncertainty to the plant. It turns out
that this uncertainty description would be extremely conservative for this plant
as the sign of the plant (represented by the sign of det G((s) or by the signs in
the RGA-matrix) is extremely sensitive to such changes. In practice, as noted
earlier, this kind of uncertainty does not occur for distillation columns as there
are strong couplings between the elements in G(s).

Two examples illustrate the usefulness of the general uncertainty description
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Figure 4.2: Alternative ways of representing unstructured uncertainty. (a) Addi-
tive uncertainty, (b) Multiplicative input uncertainty, (¢) Multiplicative output
uncertainty, (d) Inverse additive uncertainty, (e) Inverse multiplicative input
uncertainty, (f) Inverse multiplicative output uncertainty.

given above.
Neglected dynamics. Assume that the real set of plants is something like

Real plant : ¢ = ke k' €[0.8k, 1.2k] (29)

where k is the nominal (“average”) gain, and we allow for gain variations of
+20%. To simplify the controller design we want to use a simple nominal model

with no delay, i.e.,
Nominal model : g =k (30)

The uncertainty in the gain may be handled directly as parametric uncertainty,
but the neglected delay must clearly be represented in a non-parametric manner.
In order to simplify the uncertainty description we choose to lump together
gain variations and the neglected delay as unstructured multiplicative (relative)
uncertainty:

Set of possible models : g,(s) = k(1 4+ wrAr); |Ar(jw)] <1, Yw  (31)
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Here Ay is a compler scalar. The modelled set g, must include the real set
of plants ¢'(s). Let ry represent the relative uncertainty in the gain. Then
the following approximation for the weight is derived using a first-order Pade-
approximation

1-8s
(1+rk)e—95—1z(1+rk)1 21 (32)

+§8

Since it is only the magnitude that matters we make this expression minimum
phase and derive the following simple weight

14 (G- + 3)0s

33
1-1-%63 (33)

wr(s) = ry
The weight is somewhat optimistic (too small) at intermediate frequencies. In
our case with 7, = 0.2 the magnitude of the weight is ry = 0.2 at low frequencies,
crosses 1 at about frequency 1/6 and approaches 2(1 + r;/2) = 2.2 at high
frequencies.

Note that even though the uncertainty weight only has 1 state it will allow
for an infinite number of plants of arbitrary high order. On the other hand, (31)
is not an exact representation of the original set of plants ¢’(s) and may be con-
servative for that reason. For a scalar case it is probably not very conservative
as the delay is generally the “worst case”. However, in the multivariable case
this may not always be true.

Pole variations represented as parametric uncertainty. Consider the
set of plants ¢’ = 1/(s+a’) where —1 < a’ < 3. This may be exactly represented

as
1

s+a+2A°
where A is a real scalar perturbation. This is in fact an inverse additive uncer-
tainty (see Fig.4.2) with nominal model g(s) = 1/(s + a) and w;q = 2. Note
also that poles crossing from the left to the right half plane may be modelled
tightly with this uncertainty.

g = a=1, |Al<1 (34)

4.3.2 Conditions for Robust stability

By Robust Stability (RS) we mean that the system is stable for all possible
plants as defined by the uncertainty set (using the A’s as discussed above). This
is a “worst case” approach, and for this reason one must be careful about not
including unrealistic or impossible parameter variations. With this caution in
mind, it turns out that the H*®-norm (for completely unstructured uncertainty)
and the structured singular value (for diagonally structured uncertainty) provide
an exact way of analyzing robust stability,
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Figure 4.3: Multiplicative input uncertainty.

As an example, consider the the case with multiplicative input uncertainty
shown in Fig. 4.3. We assume that the system without uncertainty (A = 0) is
stable (we have NS). Instability may then only be caused by the “new” feedback
paths caused by the A-block. Therefore, to test for robust stability (RS) we
rearrange the feedback system with uncertainty into the standard form in Fig.4.4
with the two blocks A and M. Here the interconnection matriz M is the transfer
function from the output,ua, to the input, ya, of the A-block. For the case of
multiplicative input uncertainty we have A = Ay and obtain M = wC(I +
GC)_IG = wiTr = wyCSG (the negative sign has been dropped as it does not
matter). To test for stability we make use of the “small gain theorem”. Since
the A-block 1s normalized to be less than 1 at all frequencies, this theorem says
that the system is stable if the M-block is less than 1 at all frequencies. Robust
stability is then satisfied if

(M) =c(wiTi(jw)) < 1, Vw (35)

Figure 4.4: General block diagram for studying robust stability and robust
performance.

Unstructured uncertainty. One crucial point is that this condition is also
necessary (it is clearly sufficient) for RS provided we allow for all A’s satisfying
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7(A) < 1,Yw. That is, we have for the general block diagram in Fig.4.4:
RSY |Alleo €1 iff M|l <1 (36)

The same robust stability condition applies for each of the six forms of unstruc-
tured uncertainty shown in Fig. 4.2 when we use

M, =WaCS, M,=W;CSG, M,=WoGCS (37)

My =WiaSG, M.=W;(I+CG)™', M;=WioS (38)

Figure 4.5: Coprime uncertainty description

However, even though (36) is mathematically correct it will generally be
conservative for the following two reasons: 1) It allows for A to be complex, 2)
It allows for A to be a full matrix.

It 1s actually the second point which is the main problem in most cases. How-
ever, before discussing it we shall introduce the coprime uncertainty description
which will be used in the next section.

Coprime uncertainty description. Consider the uncertainty description in
Fig.4.5 (note that the M in that figure denotes one coprime factor of the plant
and not the interconnection matrix). This uncertainty description is rather
general, as it allows for both zeros and poles crossing into the right half plane,
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and has proved to be very useful in applications. To test for RS we rearrange
the block diagram to match Fig.4.4 with

A= (ig) Mgs = (i) (I+GC)y M~ (39)

where Mps is the interconnection matrix. We get

AN

RSVHA Hoogl iff ||[Mrs|leo <1 (40)

M
The reason why we get a tight condition in terms of the H**-norm even though
we have two uncertainty blocks is that the blocks enter into the same point in
the block diagram.

Structured uncertainty. We will now consider the general case where (36)
does not provide a tight bound because we have several A-blocks caused by
individual sources of uncertainty.

For example, if the input uncertainty represents neglected dynamics in the
the individual channels then the set of possible plants is given by

Gp(s) = G(T + wiAr); Ay = (Al 0 ) (41)
0 A,
where A; represents the independent uncertainty in each input channel such
that the overall Ay is a diagonal matrix (it has “structure”). ((41) is identical
to Eq.(20), except that wr yields the magnitude, since A; is now normalized to
be less than 1.)

Also, for multivariable plants it makes a difference whether the uncertainty is
at the input or the output of the plant. Thus, we may want to consider combined
input and output uncertainty. This may be represented in the general form in
Fig.4.4 with M as 2 x 2 block matrix and A = diag{A;, Ap}. Again, we note
that A has a diagonal structure and (36) is conservative.

To improve the tightness of condition (36) we first note that the issue of
stability should be independent of scaling. We then have the improved condition

RS if Ir;l(in)&(DlWD_l)<1,Vw (42)

where D is a real block-diagonal scaling matrix with structure corresponding
to that of A, such that AD = DA. A further refinement of this idea led to
the introduction of the structured singular value, u(M) (Doyle, 1982). We have
(essentially this is the definition of y)

RS V structured A iff pa(M)<1 (43)

37



This is a tight condition provided the uncertainty description is tight. Note that
for computing p we have to specify the block-structure of A and also if A is real
or complex. Today there exists very good software for computing p when A is
complex. The most common method is to approximate g by a “scaled” singular
value as introduced in (42):

pa(M) < mino(DMD™) (44)

This upper bound is exact when A has three or fewer “blocks”, and the largest
deviation found so far for more blocks is 10-15% (Doyle, 1982).

Figure 4.6: p-plots for distillation example with decoupling controller.

Distillation example revisited. Consider the distillation example from
the previous section and consider multiplicative input uncertainty in each of the
two input channels

09s s+ 1
05s+1 7 05s+1
With reference to (33) we see that this corresponds to 20% gain error and a
neglected time delay of about 0.9 min. The weight levels off at 2 (200% uncer-
tainty) at high frequency. The dotted line in Fig.4.6 shows u(M) = p(w;TT)

wr(s) = 0.2+ (45)
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for RS with this uncertainty using the decoupling controller. The p-plot for
RS shows the inverse of the margin we have with respect to our stability re-
quirement. For example, the peak value of pa,(M) as a function of frequency
is about 0.53. This means that we may increase the uncertainty by a factor
1/p = 1.89 before the worst-case model yields instability. This means that we
tolerate about 38% gain uncertainty and a time delay of about 1.7 min before
we get instability.

Remark: For the decoupling controller we have GC' = OT7I’ and Ty =T =

1
1.43s+1

not matter, and we get ua(M) = a(wrTr) = |0.2

I. For this particular case it turns out that the structure of A does
5541
(0.53+1§(1.435+1)
in other cases it may be critical to use the right structure, e.g., see Fig. 16 in

Skogestad et al. (1988).

|. However,

4.3.3 Conditions for Robust Performance

An additional bonus of using the H*-norm both for uncertainty and perfor-
mance is that the robust performance (RP) problem may be recast as a special
case of the RS-problem (Doyle et al, 1982) with the performance specification
represented as a fake uncertainty block, Ap. To test for RP one then considers
the interconnection matrix Mgrp from the the outputs to the inputs of all the
A-blocks, including the Ap-block for performance. Note that Ap is a “full”
matrix (no diagonal structure). This follows since performance is defined using
the singular value and we have ¢(A) = ua(A) when A is a full matrix. Mgpp
depends on the plant G, the controller C' and the weights used to define un-
certainty and performance. The condition for robust performance within the
H -framework then becomes

RP iff px(Mrp)<1; Vw, A= (A 0 > (46)
0 Ap
Distillation example revisited. Let us now check if RP is satisfied for
the distillation example. To do this performance must first be defined.
Nominal performance. NP is defined such that at each frequency the value
of the weighted sensitivity, (wpS), should be less than 1. We select the weight

5/240.05

S

wp(s) = (47)
With reference to Eq.(3) we see that this requires integral action, a closed-loop
bandwidth of about 0.05 [rad/min] (which of course is relatively slow when the
allowed time delay is only about 0.9 min) and a maximum peak for &(S) of
M, = 2.
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As discussed above we may define y for NP as pa, (wpS) = 6(wpS) where
Ap is a full matrix. As expected, we see from the dashed line in fig.4.6 that the
NP-condition is easily satisfied with the decoupling controller: &(wpS) is small
at low frequencies and approaches 1/M; = 0.5 at high frequency because of the
maximum peak requirement on &(S).

Robust Performance. RP means that the performance specification is sat-
isfied for the worst-case uncertainty. The most efficient way to test for RP is
to compute p for RP. If this p-value is less than 1 at all frequencies then the
performance objective is satisfied for the worst case. Although our system has
good robustness margins and excellent nominal performance we know from the
simulations in Fig.3.1 that the performance with uncertainty (RP) may be ex-
tremely poor. This is indeed confirmed by the y-curve for RP in Fig.4.6 which
has a peak value of about 6. This means that even with 6 times less uncer-
tainty, the performance will be about 6 times poorer than what we require. y
for robust performance was computed as pz (Mgp) where the matrix A in this
case has a block-diagonal structure with Ay (the true uncertainty) and Ap (the
fake uncertainty stemming from the performance specification) along the main
diagonal, and

(48)

MRP _ (wICSG UJICS)

U)pSG U)PS
The derivation of Mgp follows by representing the performance as an inverse
multiplicative perturbation similar to that in Fig.4.2d, and rearranging the block
to match Fig.4.4 (see Skogestad et al, 1988).

The p-optimal controller 1s the controller which minimizes g for RP. The
present approach to designing the p-optimal controller (‘D-K iteration’) is a
rather tedious procedure which involves solving a number of scaled H*-problems.
The iterations are not guaranteed to converge and generally result in high-order
controllers.

For our example Lundstrom et al. (1991) obtained a p-optimal controller
with 22 states which yields an essentially flat p-curve with a “peak” of u of 0.978.
The simulation in Fig.3.3 shows that the response even with this controller is
relatively poor (taken into account that the only obvious limitation is a delay
of about 1 min). The reason is that the combined effect of large interactions
(as seen from the large RGA-values) and input uncertainty makes this plant
fundamentally difficult to control.

Comment: In the time domain our RP-problem specification may be formu-
lated approzimately as follows: Let the plant be

G =6 (M L %) (19)
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where G(s) is given in (10). Let 0.8 < k; < 12,08 <k, <12,0<6; <0.9
[min], and 0 < #3 < 0.9 [min]. The response to a step change in setpoint should
have a closed-loop time constant less than about 20 minutes. Specifically, the
error of each output to a unit setpoint change should be less than 0.37 after 20
minutes, less than 0.13 after 40 minutes, and less than 0.02 after 80 minutes,
and with no large overshoot or oscillations in the response.

Conclusion. The structured singular value, u, provides an excellent tool
for analyzing the robustness of control systems. Within the H*-framework it
is possible to consider most sources of model uncertainty, including parametric
and unstructured uncertainty, and with help of u one can essentially directly
pick out the worst-case plant and see if it satisfies the specifications for RS or
RP. However, for a number of reasons p seems to be best suited for analysis, i.e,
to answer “what if” questions. It may also be suited for evaluating the upper
bound on achievable performance, i.e., as a kind of ultimate controllability tool.
However, for actual controller design it seems like simpler methods, as the ones
described in the next section, are more appropriate.

5 Robust Control System Design

In this section, we will focus on a loop shaping methodology for the design of
robust multivariable control systems.

The classical loop shaping approach to control system design has been ap-
plied to industrial systems over several decades. For single-input single-output
systems and loosely coupled systems, the approach has worked well. But for
truly multivariable systems it has only been in the last decade that a reliable
generalization of the approach has emerged. Multivariable loop shaping is based
on the idea that a satisfactory definition of gain (range of gain) for a matrix
transfer function is given by the singular values of the transfer function. By
multivariable loop shaping, therefore, we mean the shaping of singular values of
appropriately specified transfer functions.

5.1 Trade-offs in multivariable feedback design

In February 1981, the IEEE Transactions on Automatic Control published a
Special Issue on Linear Multivariable Control Systems, the first six papers of
which were on the use of singular values in the analysis and design of multivari-
able feedback systems. The paper by Doyle and Stein (1981) was particularly
influential: it was primarily concerned with the fundamental question of how
to achieve the benefits of feedback in the presence of unstructured uncertainty,
and through the use of singular values it showed how the classical loop shaping
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ideas of feedback design could be generalized to multivariable systems. To see
how this was done, consider the one degree of freedom configuration shown in

figure 5.1.

Figure 5.1: One degree of freedom feedback configuration

The plant G and controller C' interconnection is driven by reference com-
mands 7, output disturbances d, and measurement noise n. y are the outputs to
be controlled, and u are the control signals. In terms of the sensitivity function
S = (I + GC)~! and the closed-loop transfer function 7' = GC(I + GC)™! =

I — S, we have the following important relationships:

y(s) = T(s)r(s) + S(s)d(s) — T(s)n(s) (50)

u(s) = C(s)S(s)[r(s) — n(s) — d(s)] (51)

These relationships determine several closed-loop objectives, in addition to
the requirement that C stabilizes G; namely:

1. For disturbance rejection make ¢(S) small.
2. For noise attenuation make (T small.
3. For reference tracking make a(T) = o(T) = 1.

4. For control energy reduction make (C'S) small.
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If the unstructured uncertainty in the plane model G is represented by an addi-
tive perturbation i.e. G, = G+ A, then a further closed-loop objective is (recall

(37)):

5. For robust stability make ¢(C'S) small.

Alternatively, if the uncertainty is modelled by a multiplicative output pertur-
bation such that G, = (I + A)G, then we have:

6. For robust stability make ¢(T") small.

The closed-loop requirements 1 to 6 cannot all be satisfied simultaneously.
Feedback design is therefore a trade-off over frequency of conflicting objectives.
This i1s not always as difficult as it sounds because the frequency ranges over
which the objectives are important can be quite different. For example, distur-
bance rejection is typically a low frequency requirement while noise mitigation
is often only relevant at higher frequencies.

In classical loop-shaping, it is the magnitude of the open-loop transfer func-
tion GC which is shaped, whereas the above design requirements are all in terms
of closed-loop transfer functions. However, it is relatively easy to convert the
closed-loop requirements into the following open-loop objectives:

1. For disturbance rejection make g(GC') large.
2. For noise attenuation make o(GC') small.

3. For reference tracking make o(GC') large.

4. For control energy reduction make (C') small.
5 & 6. For robust stability make a(C') small.

Typically, requirements 1 and 3 are important at low frequencies, while 2,
4,5 and 6 are high frequency conditions as illustrated in Figure 5.2.

To shape the gains (singular values) of GC by selecting C is a relatively
easy task but to do this in a way which also guarantees closed-loop stabil-
ity is in general non-trivial. Doyle and Stein (1981) suggested that an LQG
controller could be used in which the regulator is designed using a “sensitivity
recovery” procedure of Kwakernaak (1969) to give desirable properties (gain and
phase margins) in GC. They also gave a dual “robustness recovery”procedure
for designing the filter in an LQG controller to give desirable properties in CG.
Recall that CG is not in general equal to GC which implies that stability mar-
gins vary from one break point to another in a multivariable system. Both these
loop transfer recovery procedures had problems:
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Figure 5.2: Design tradeoffs for the multivariable loop transfer function GC

e they were unsuitable for directly achieving specified loop shapes

e the gauranteed stability margins were only gauranteed as limiting proper-
ties in the design

e in the limit the controllers effectively inverted the plant and so the proce-
dure broke down for nonminimum phase systems.

It was not until 1990, that a satisfactory loop shaping design procedure was
developed by McFarlane and Glover (1990). This will be described in section 5.3,
but first it will be necessary to consider a related robust stablization problem.

5.2 Robust Stabilization

As previously discussed in this paper, gain and phase margins are unreliable
indicators of robust stability for multivariable systems because they do not
take account of the coupling between loops. In section 4, several uncertainty
descriptions were presented in which the uncertainty was captured by a norm
bounded perturbation. Robustness levels could then be quantified in terms of
the maximum singular values of various closed-loop transfer functions.

For example, in the feedback configuration of figure 5.1, if GG is replaced by
Gp = G+ A, where 6[A(jw)] < e(w), then the closed-loop remains stable if
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o[C(jw)S(jw)] < e71(w) for all w. A design objective, for robust stabilization,
might therefore be to find a C' which stabilizes G and minimizes ||CS|,,. A
more general uncertainty description, which allows for both poles and zeros
crossing into the RHP, is the coprime uncertainty description used by Glover
and McFarlane (1989). This leads to an attractive robust stabilization problem
formulated in an H* framework. The main results are summarized below.

5.2.1 Normalized coprime factorization

The plant model
G=M"'N, (52)

is a normalized left coprime factorization (LCF) of G if M, N € RH, (the set
of stable real rational transfer function matrices) and M M* + NN* = I where

for a real rational function of s, X* denotes X7 (—s).

With the notation
A|B
C|D

a state-space realization of a normalized coprime factorization of G is given

(Vidyasagar, 1988) by

G(s)= D+C(sI — A)"1BZ (53)

s | A+HC |B+HD H
[JV M]: =120 | B-1Zp R-17? ] (54)
where
H=—(BD" + 2C")R™! (55)
R=1+DD" (56)

and the matrix Z > 0 is the unique stabilizing solution to the algebraic Riccati
equation (ARE)

(A-BS™'DT"C)Z+ Z(A-BS'D'C)' - ZCTR™'CZ+ BS™'BT =0 (57)
where
S=1+D"D. (58)
5.2.2 Perturbed plant model

A perturbed model G, can be defined as

Gp = (M + AM)_I(JV =+ AN) (59)

where Apr, Ay € RHy and H 21\7 H < 1, as illustrated in figure 5.3.
M |l
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Figure 5.3: Perturbed plant model and controller

5.2.3 Robust stabilization

The robust stability condition for the class of perturbed models defined by (59)

was derived previously in (40). For iN ' < 1 we have
M [ee]
. det || | C =1 —1
RS iff = 7 (I+GCY "M <1 (60)

o0

A reasonable objective is therefore to find the stabilizing controller that min-
imizes v and thus allows for the largest perturbations. This is the problem
of robust stabilization of normalised coprime factor plant descriptions as in-
troduced by Glover and McFarlane (1989). The minimum value of v for all
stabilizing controllers C is

[C] (I+Ge)y~tmt

(61)

Yo =

c stalllolilising I 0o
and is given in Glover and McFarlane (1989) by
w0 = (1= nwoig) (62
where || - || denotes the Hankel norm. From (Glover and McFarlane, 1989)
IV, M (7 = Amax (ZX(1+2X)71) | (63)
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where Amax(.) represents the maximum eigenvalue, and X > 0 is the unique
stabilizing solution of the ARE

(A—-BST'DTC)TX4+X(A-BS™'DTC)-XBS 'BTX4+CTR™'C = 0. (64)
Hence, it can be shown that

70 = (14 Amax(Z X))/ (65)

A controller which achieves 7q is given in (McFarlane and Glover, 1990) by

A+ BF+13(Q")"'Z2C"(C+ DF) | %(Q") ' 2C"

¢= BTX | DT ’ (66)
where
F=-S"YDTC+ BTX), (67)
and
Q=(1—-)I+X2Z. (68)

The above results on robust stabilization are particularly attractive because
the optimal v and the corresponding optimal controller can be found without
an iterative search on 7 which is normally required to solve H* problems.

In the next section, it is shown how the robust stabilization problem can be
used in conjunction with the ideas of Doyle and Stein on singular value loop
shaping to arrive at a reliable multivariable loop shaping design procedure.

5.3 Loop shaping design

Robust stabilization alone is not much used in practice because the designer is
not able to specify the desired performance requirements. To do this McFarlane
and Glover (1990) proposed pre- and post-compensating the plant to shape the
open-loop singular values prior to robust stabilization of the “shaped”plant.

If W1 and W, are the pre- and post-compensators respectively, then the
shaped plant G is given by

Gs = WoGW, (69)

as shown in figure 5.4. The controller C is synthesised by solving the robust
stabilization problem of section 5.2 for the shaped plant Gg with a normalized
left coprime factorization Gy = M;1N,. The feedback controller for the plant
G is then C' = — W1 C Ws.

The above procedure contains all the essential ingredients of classical loop
shaping, and can be easily implemented using reliable algorithms in, for example,
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_______________________________

Figure 5.4: The shaped plant and controller

Matlab. Skill is required in the selection of weights, but experience on real
applications has shown that robust controllers can be designed with relatively
little effort by following a few simple guidelines. Hyde (1991) offers a step by step
procedure for weights selection developed during his Ph.D work with Glover on
the robust control of VSTOL aircraft. These guidelines are summarised below in
subsection 5.3.1. Successful application of the procedure has also been reported
by Postlethwaite and Walker (1992) in their work on advanced control of high
performance helicopters some of which will be described in section 6.

5.3.1 A loop shaping design procedure

The following procedure is a summary of that found in (Hyde, 1991):

1. Scale the outputs so that the same amount of cross coupling into each of
the outputs is equally undesirable.

2. Scale the inputs to reflect the relative actuator capabilities or expected
usage. This may involve a few iterations based on the control signals
which result from successive designs.

3. The inputs and outputs should be ordered so that the plant is as diagonal
as possible. The relative gain array can be useful here.

4. Select the elements of diagonal pre- and post-compensator weights W; and
Wy so that the roll off rates of the singular values are approximately 20
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dB/decade at the desired bandwidths. Some trial and error is involved
here.

W5 is often chosen as a constant reflecting the relative importance of the
outputs to be controlled while ¥, contains the dynamic shaping.

Integral action (for steady-state accuracy) and high frequency roll off (for
noise attenuation and robustness) should be placed in W if desired.

. Sometimes it is found useful to “align ”the singular values at the desired
bandwidth using a further constant weight W, cascaded with W;. This is
effectively a decoupler and should not be used if the plant is ill-conditioned.

. Robust stabilization of the shaped plant is carried out as described in
section 5.2. If the optimal gamma, 7g, is less than about 4, then the design
is usually successful. That is, the shape of the open-loop singular values
will not have changed much after robust stabilization. A large value of
v indicates that the specified singular value shapes are incompatible with
robust stability requirements.

. Analysis of the design may prompt further modifications of the weights if
all the specifications are not met.

. When implementing the controller, the configuration shown in figure 5.5
has been found useful when compared with the conventional set up in fig-
ure H.1. This is because the references do not directly excite the dynamics
of Cs which can result in large amounts of overshoot (classical derivative
kick). The prefilter ensures a steady state gain of 1 between r and y.

G

A

A
Y

W,

Figure 5.5: A practical implementation of the loop shaping controller
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5.3.2 Loop shaping design and the method of inequalities

In Whidborne et al (1992), it has recently been shown how the method of
inequalities (Zakian and Naib, 1973) can be used in the loop shaping design
procedure to select the weights W7 and W, to satisfy a given set of performance
inequalities. Although computationally demanding the technique has proved
useful when stringent performance specifications are required to be met.

The method of inequalities (MOI) introduced by Zakian (Zakian and Naib,
1973) is a computer-aided multi-objective design approach, where desired per-
formance is represented by a set of algebraic inequalities, and the aim of the
design is to simultaneously satisfy these inequalities. The design problem is
expressed as

¢i(p)<e for i=1...n (70)

where ¢; are real numbers, p € P is a real vector (p1,ps,...,pq) chosen from a
given set P and ¢; are real functions of p. The functions ¢; are performance
indices, the components of p represent the design parameters and ¢; are chosen
by the designer and represent tolerable values of ¢;. The aim is the satisfaction
of the set of inequalities in order that an acceptable design is reached.

The functions ¢;(p) may be functionals of the system step response, for
example the rise time, overshoot or the integral absolute error, or functionals
of the frequency response, such as the bandwidth. They can also represent
measures of the system stability. The actual solution to the set of inequalities
(70) may be obtained by means of numerical search algorithms, such as the
moving boundaries process (Zakian and Naib, 1973).

In some previous applications of the MOI, the design parameter has param-
eterized a controller with a particular structure. For example, p = (p1, p2) could
parameterize a PI controller p; +ps/s. This has meant that the designer has had
to choose the structure of the control scheme and the order of the controllers.
In general, the smaller the size of the design vector p, the easier it is for the
numerical search algorithm to find a solution, if one exists. While this does give
the designer some flexibility and leads to simple controllers, and is of particular
value when the structure of the controller is constrained in some way, it does
mean that better solutions may exist with more complicated and higher order
controllers. A further limitation of using the MOI in this way is that a stability
point must be located as a pre-requisite to searching the parameter space to
improve the index set ¢, that is a point such that ¢; < co for: =1,2,...,n
must be found initially.

Two aspects of design using the loop shaping design procedure (LSDP) make
it amenable to combine this approach with the MOI. Firstly, unlike most H -
optimization problems, the Hy-optimal controller for the weighted plant can
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be synthesised from the solution of just two ARE’s and does not require time-
consuming y-iteration. Secondly, in the LSDP, the weighting functions are cho-
sen by considering the open-loop response of the weighted plant, so effectively
the weights W; and W5 are the design parameters. This means that the design
problem can be formulated as in the method of inequalities, with the weighting
parameters used as the design parameters p to satisfy some set of closed-loop
performance inequalities.

Such an approach to the MOI overcomes the limitations to the MOI de-
scribed earlier. The designer does not have to choose the order or structure
of the controller, but instead chooses the structure and order of the weighting
functions. With low-order weighting functions, high order controllers are syn-
thesised which often leads to significantly better performance or robustness than
if simple low order controllers were used. Additionally, the problem of finding a
stability point is simply a case of choosing sensible initial weighting functions;
an easy matter if the open-loop singular value plots are studied.

For more details of loop shaping design and the method of inequalities see

Whidborne et al (1992).

5.4 Two degrees of freedom controllers

Most control design problems naturally possess two degrees of freedom (DOF).
In general this arises from the existence of, on the one hand, measurement or
feedback signals and on the other, commands or references. Quite often, one
degree of freedom is forsaken in the design, and the controller is driven by, for
example, an error signal (i.e. the difference between command and output).
Other ad hoc means may also be used to arrive at a 1-DOF implementation. A
general 2-DOF feedback control scheme is depicted in figure 5.6. The commands
and feedbacks enter the controller separately where they are independently pro-
cessed.

5.4.1 An extended loop shaping design procedure

Limebeer et al (1993) have recently proposed an extension of McFarlane and
Glover’s loop shaping design procedure (LSDP) which uses a 2-DOF scheme to
enhance the model matching properties of the closed-loop system. The feedback
part of the controller is designed to meet robust stability and disturbance rejec-
tion requirements in a manner identical to the 1-DOF LSDP. That is, weights
are first selected to produce a shaped plant with desirable singular values. An
additional prefilter part of the controller is then introduced to force the response
of the closed loop system to follow that of a specified model Tj.
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Figure 5.6: General 2-DOF feedback control scheme

The design problem to be solved is illustrated in figure 5.7. The scalar
parameter p is used to adjust the emphasis that is placed on model matching
in the optimization. For p = 0, the problem reverts to the standard LSDP. As
p is increased, more emphasis is placed on model following.

The H® optimization problem to be solved is that of finding a controller C
which stabilizes G and which minimizes the H® norm of the transfer function
between the signals (r7¢7)7 and (uTy? 27)T as defined in figure 5.7. Note that
the robust stabilization problem alone involves minimizing the H° norm of the
transfer function between ¢ and (uZy”)T. The two degrees of freedom design
problem is easily solved using standard routines, in for example Matlab, but
as a standard H® optimization problem an iterative approach is required. In
practice, sub-optimal controllers are often used which satisfy a given bound ~
on the transfer function being minimized.

The two degrees of freedom approach will usually also involve a few iterations
on p to achieve the desired balance between robust stabilization and model
matching.

5.4.2 A further extension using the method of inequalities

In section 5.3, we saw how the one degree of freedom loop shaping design proce-
dure could be enhanced by using the method of inequalities to select the weights
W1 and Ws. It is tempting therefore to think that the same could be done for the
2-DOF approach. However, the latter requires y-iteration for its solution which
makes it too slow computationally to be effectively combined with the MOI.
Whidborne et al (1993), therefore, proposed an alternative strategyy based on
fixing the structure of the prefilter part of a 2-DOF controller.
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Figure 5.7: Two degrees-of-freedom design problem

The proposed approach involves adding a prefilter C}, to a feedback con-
troller C' designed, using the 1-DOF LSDP, as illustrated in figure 5.8. C), is
parameterised with a subset of design parameters while C' is the solution to
the LSDP with weights W; and W, parameterised with the remaining design
parameters.

Functional constraints

¢i(W1; WQ, C'p) S E; for 1=1...n (71)

can then be defined to represent performance requirements and a MOI approach
used to find the parameters of Wy, Wy and C,. Given W; and W», C), follows
straight from a 1-DOF LSDP with no iterations.

For more details see Whidborne et al (1993), where the MOT approach has
been successfully used to design a 2-DOF controller for the distillation column
benchmark example.The results of this case study will be presented at the mini-
course on Robust Multivariable Control using H* Methods (2nd European
Control Conference, Groningen, 1993) for which this paper has been prepared.
In the next section, a second case study on helicopter control will be consid-
ered. It is a straightforward application of the loop shaping 2 DOF design
methodology without MOI.
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Figure 5.8: A 2 degrees of freedom controller configuration

6 Advanced control of high performance heli-
copters: a case study

To fly a high performance helicopter in low-level or nap-of-the-earth flight cur-
rently demands a high pilot workload; so high in fact as to limit the potential
of the aircraft to a level below what is theoretically possible. Thus in order to
enable the next generation of helicopters to fulfil the challenging specifications
that are emerging, an automatic flight control system will be an essential ingre-
dient. In this section, we will report on the findings of an on-going study into
the role of advanced multivariable control theory in the design of full-authority
full-flight-envelope control laws.

6.1 Background

The Control Systems Research Group at Leicester University has several years
experience in the design of advanced control laws for future generation heli-
copters. For the past three years a major research project has been undertaken,
funded by the UK Defence Research Agency (DRA) Bedford, formerly the Royal
Aerospace Establishment, to investigate the role of advanced multivariable con-
trol theory in the design of full-authority full-flight envelope control laws.

This section outlines some of the salient features and results arising out
of this DRA-funded research. The work has enabled an in-depth study using
computer simulation to help assess the impact that advanced control systems
might play in improving the handling qualities of future military helicopters.
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The main achievements have been to extend and to improve upon the results of
earlier work (Yue and Postlethwaite, 1990) and to demonstrate that multivari-
able design methods using H*-optimization, and in particular the loop shaping
methodology of section b, provide a valuable way forward in the design of robust
full-flight-envelope control systems.

In May 1992, an important goal of the research project was achieved, with the
successful piloted simulation, using the Large Motion System simulator at DRA
Bedford, of a multivariable control system designed for wide envelope use. The
system was tested over a period of three days by two experienced helicopter test
pilots, one from the Royal Navy, the other from the Army. The testing consisted
of two phases: the first, a familiarisation phase, during which the pilots could
accustom themselves to the response types available from the control system and
generally gain a feel for how to fly the aircraft via the controller; the second,
the test phase, during which the pilots were asked to perform a set of specified
tasks, each designed to highlight certain characteristics of the aircraft’s response.
Each pilot completed an in-cockpit assessment of the system’s response using
the Cooper-Harper pilot rating scale (Cooper and Harper, 1969). With this the
pilot can classify the desirable and unsatisfactory handling aspects on a points
system, scaled from 1 to 10, where 1 represents the most satisfactory qualities.
A rating of 10 represents major and unacceptable system deficiences, where
control may be lost during part of the flight envelope. Cooper-Harper ratings
of 1 to 3 are said to conform to a level 1 handling qualities rating and are a goal
of any helicopter flight control system.

The control system tested in May 1992 received level 1 ratings in a large
majority of the runs made. The controller was also tested over a wide range of
speeds, from hover to well in excess of 100 knots. During the three days of tests,
it became clear that in simulation at least, the multivariable controller was able
to provide robust stability and decoupled performance. Both pilots agreed that,
in spite of certain deficiencies in the primary yaw response and collective to yaw
coupling, the control law provided excellent stability and control.

Following the May trials a redesign was undertaken to increase the yaw axis
bandwidth and to slightly reduce the heave axis bandwidth. This was a very
simple matter with the 2-DOF loop shaping design technique being used. The
new design was fully tested in piloted simulation in December 1992. At these
trials, the previously identified deficiencies were no longer present and all the
mission task elements performed were given level 1 Cooper-Harper ratings.
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6.2 The helicopter model

The aircraft model used in our work is representative of the Westland LYNX,
a twin-engined multi-purpose military helicopter, approximately 9000 lbs gross
weight, with a four-blade semi-rigid main rotor. The unaugmented aircraft is
unstable, and exhibits many of the cross-couplings characteristic of a single
main-rotor helicopter. These characteristics have been captured by a computer
model known as the Rationalized Helicopter Model (RHM) (Padfield, 1981) that
was used in our study. This model has been developed at DRA Bedford over
a number of years and is a mature and fairly accurate (though by no means
definitive) nonlinear model of the Lynx. In addition to the basic rigid body,
engine and actuator components, it also includes second order rotor flapping and
coning modes for off-line use. The model has the advantage that essentially the
same code can be used for the real-time piloted simulation as for the workstation-
based off-line handling qualities assessment.

The equations governing the motion of the helicopter are complex and diffi-
cult to formulate with high levels of precision. For example, the rotor dynamics
are particularly difficult to model. A robust design methodology is therefore
essential for high performance helicopter control.

The starting point for our designs was a set of five eighth-order linear dif-
ferential equations modelling the small-perturbation rigid body motion of the
aircraft about five trimmed conditions of straight-and-level flight in the range
0 to 80 knots. The controller designs were first evaluated on the eighth-order
models used in the design, then on twenty-one state linear models, and finally
using the full nonlinear model. The robust design methodology used in the
controller design did turn out to provide excellent robustness with respect to
nonlinearities and time delays which, although simulated, were not explicitly
included in the linear design process.

6.3 Design objectives

The main objectives were to design a full-authority control system that:

e Robustly stabilized the aircraft with respect to changes in flight condition,
and model uncertainty and non-linearity.

e Provided high levels of decoupling between primary controlled variables.

e Achieved compliance with the Level 1 criteria given in the US Army Aero-

nautical Design Standards, (ADS-33C, 1989).
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6.4 Design method

The two degrees of freedom loop shaping design procedure of section 5.4 was used
to robustly stabilize the aircraft over a wide range of flight conditions, whilst
simultaneously forcing the closed-loop system to approximate the behaviour of
a specified transfer function model Ty5. The overall control law was actually
comprised of five controllers, designed at a range of flight conditions between
0 and 80 knots, each one having a Kalman filter-like structure. The latter is a
property of the LSDP and is very useful when scheduling between controllers
over the flight envelope. As the dynamics of the open-loop aircraft vary with
speed, so too do the controllers obtained at each operating point. Therefore,
these controllers can be scheduled with forward speed if required, to give wide-
envelope performance.

The aim of the design was to synthesize a full-authority controller that ro-
bustly stabilized the aircraft and provided a decoupled Attitude-Command/
Attitude-Hold (ACAH) response type that closely approximated the behaviour
of a simple transfer-function model.

The outputs to be directly controlled were:

e Heave velocity
e Pitch attitude
e Roll attitude
e Heading rate

With a full authority control law such as that proposed here, the controller has
total control over the blade angles, and is interposed between the pilot and the
actuation system. The pilot flies the aircraft by isuing appropriate demands
to the controller. These demands, together with the sensor feedback signals,
are fed to the flight control computer which generates appropriate blade angle
demands. Other than that we make no assumptions about the implementation
details.

The controller was designed to operate on six feedback measurements: the
four controlled outputs listed above and the body-axis pitch and roll rate signals.
The other inputs to the controller consisted of the 4 pilot inceptor inputs.

The control law output consisted of four blade angle demands:

e Main rotor collective
e Longitudinal cyclic

e Lateral cyclic
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e Tail rotor collective

These demands were passed directly to the actuator model.

6.5 Weighting function selection, the design parameter p,
and the desired transfer function 7j

The same loop shaping weights W; and Ws, and the same desired transfer
function Ty, were used for all 5 operating point designs. It was found that the
ADS-33C bandwidth requirements impact directly on the “cross over ”frequency
of the weight W, which was chosen to have the first order diagonal form

b d
lediag{5+a,8+ she st } (72)
s s s s
A static diagonal W, was chosen as
W, = diag {1,1,1,1,0.1,0.1} (73)

That is, the roll rate and pitch rate signals are weighted less than the other four
outputs which are required to be controlled. The rates are included as extra
measurements because it is well known that they will make the control problem
easier.

The desired closed-loop transfer function Tj is chosen to be diagonal with
second order transfer functions on each of the four channels: heave velocity,
pitch and roll attitudes and heading rate. The damping and natural frequencies
of these transfer functions were selected to give what were considered to be
adequate responses. The selection of p is a compromise between robust stability

p |0 01 (02 |04 (07510 |15 |20 |30
Yo | 2.89] 290 | 292 | 299 | 3.23 | 3.46 | 3.98 | 4.59 | 6.35

Table 1: Relationship between p and v, for a hover design

and model matching. Table 1, shows the relationship between p and 7y for a
hover design, where 7 is the minimum H *°-norm of the transfer function being
minimised. The reciprocal of g i1s roughly proportional to the multivariable
stability margin. For the hover design in question a value of p = 1.5 was used,
together with a suboptimal value of v = 4.2.
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6.6 Controller scheduling

The controller was designed to run in either of two modes: (i) fixed gain, (ii)
interpolated. In fixed gain mode, the closest controller for the given flight
condition would be switched in to provide control. This controller would remain
operative until the mode was de-selected. If the interpolated mode was engaged,
the controllers would be interpolated smoothly as a function of air-speed to
compensate for variation in dynamics. To implement for real would require an
accurate measurement (or estimate) of forward air-speed.

6.7 Outer-loop modes

To enhance the handling qualities provided by the basic ACAH response of the
inner loop H controller, three outer loop modes were also implemented.

e Turn coordination: this was provided by augmenting the heading rate
demand as a function of bank angle at moderate/high speed. This enabled
a coordinated turn to be effected as a single axis task.

e Automatic trimming: this was achieved using a trim-map to offset the
linear inner loop controller with the appropriate trim attitude.

e Hover acquisition/hold: this mode enabled the pilot to acquire and hold
hover automatically. Longitudinal and lateral velocty state estimates were
needed to achieve this.

During the piloted trials, the first two modes were used continuously, but insuf-
ficient time was available to evaluate the hover acquisition utility.

6.8 Step response analysis

The response of the closed-loop system (comprising controller and full nonlinear
model) to step input demands on pitch and roll channels are shown in figures
6.1 and 6.2. These show, respectively, an acceleration from hover and the com-
mencement of a coordinated turn at 60 knots. In both cases there is seen to be
minimal cross-coupling.
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Figure 6.1: Pitch axis step response: outputs and actuators
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Figure 6.2: Roll axis step response: outputs and actuators
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6.9 Handling qualities assessment: off-line analysis

ADS-33C (1989) details the latest requirements’ specification for military heli-
copters which is intended to ensure that mission effectiveness will not be com-
promised by deficient handling qualities. The requirements are stated in terms
of three limiting “ levels ”of acceptability of one or more given parameters.
The levels indicate performance attributes that equate with pilot ratings on the
Cooper-Harper scale. A Matlab Handling Qualities Toolbox (Howitt, 1991) was
used as a supplement to existing computer aided control system design packages
in order to integrate handling qualities assessment into the complete design and
analysis cycle. The dynamics of the closed loop vehicle were assessed against
the dynamic response requirements specified in sections 3.3 and 3.4 of ADS-33C
using the off-line simulation model. A selection of the results are given in Walker
et al (1993). In summary, the performance provided by the control law led to
level 1 handling quality ratings for almost all of the mission tasks performed.

6.10 Handling qualities assessment: piloted simulation on
the DRA Bedford large motion simulator

The simulation model was written in Fortran and run on an Encore Concept-32
computer with an integration step of 20 mS. A Lynx-like single seat cockpit
was used, mounted on the large motion system which provides £30 degrees of
pitch, roll and yaw, +4 metres of sway and +5 metres of heave motion. Also,
the pilot’s seat was dynamically driven to give vibration and sustained normal
acceleration cues. The visual display was generated by a Link-Miles Image IV
CGI system and gave approximately 48 degrees field of view (FOV) in pitch and
120 degrees FOV in azimuth with full daylight texturing. A three axis side-stick
was used to control pitch, roll and yaw together with a conventional collective
for heave.

Handling qualities were assessed for three hover/low speed mission task ele-
ments (sidestep, quick-hop, bob-up) and three moderate/high speed tasks (lat-
eral jinking, hurdles, yaw pointing) using CGI databases developed by DRA
Bedford.

Two DRA test pilots took part in the trials (of May and December 1992),
both with significant experience of Lynx and the simulator. For each task in
turn, the pilot performed two or three familiarisation runs before performing a
definitive evaluation run, at the end of which the simulation was paused so that
comments and handling qualities ratings could be recorded. The six tasks are
briefly described below.

Sidestep: With reference to figure 6.3a, the objective was to translate side-
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ways through 150 ft from a hover at a height of 30 ft above ground level in
front of one diamond and square sighting arrangement, to acquire and maintain
a stable hover in front of the next sighting system.

Quick-hop: The quick-hop task (figure 6.3b) is the corresponding longitu-
dinal task to the sidestep, requiring a re-position from hover over a distance of
500 ft. Again, similar levels of initial pitch attitude were used to determine the
task aggression. The task was flown down a walled alley to give suitable height
and lateral position cues.

Bob-up: The bob-up task was performed in front of one of the V-notch
hurdles (figure 6.3¢). From a hover aligned with the bottom of the V-notch,
the pilot had to acquire and maintain a new height denoted by a mark on the
notch.

Lateral jinking: The lateral jinking task concerned a series of ‘S’ turns
through slalom gates followed by a corresponding line tracking phase (figure
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6.3d). The task had to be flown whilst maintaining a speed of 60 knots and a
height of 25 ft.

Hurdles: Using the same V-notch hurdles as seen for the bob-up task, a
collective-only flight path re-positioning task was flown at 60, 75 and 90 knots
to represent increasing task aggression. From an initial height aligned with the
bottom of the V-notch, the pilot had to pass through each hurdle at the height
denoted by a mark on the notch and then regain the original speed and height
as quickly as possible.

Yaw pointing: Whilst translating down the runway centre line at 60 knots,
the pilot was required to yaw to acquire and track one of a number of offset
posts.

Table 2 is a detailed compilation of one of the pilot’s questionnaires based
on the May 1992 trials. The primary response in heave, pitch and roll was
excellent. But the primary response in yaw was sluggish and there was some
undesirable collective-to-yaw coupling.

A redesign was undertaken to increase the yaw axis bandwidth and to slightly
reduce the heave axis bandwidth. This was done very simply in the two de-
grees of freedom loop shaping design procedure by simply modifying the desired
closed-loop transfer function Tj.

The new design was tested in December 1992 and achieved pilot ratings of
level 1 for all six tasks.

6.11 Conclusion

The results of this case study have demonstrated that multivariable design tech-
niques can play a significant role in the design of control systems for high per-
formance helicopters.

7 Conclusions

The paper has provided an introduction to frequency domain methods for the
analysis and design of multivariable control systems. Particular attention was
given to H* methods and to problems of robustness which arise when plant
models are uncertain, which is always the case. The additional problems asso-
ciated with the control of ill-conditioned plants were also considered.

The relative gain array, the singular value decomposition and the structured
singular value were shown to be invaluable tools for analysis.

For multivariable design, emphasis was given to the shaping of the singular
values of the loop transfer function. The technique of McFarlane and Glover
and its extension to two degrees of freedom controllers were considered in detail.
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The power of the approach was demonstrated by its application to the design of
a full-authority wide-envelope control system for a high performance helicopter.
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Task

Level of
Aggression

Comments

HQR

Level

Side Step

Low

Loads of spare capacity

Mid

Task workload still minimal, re-
sponse perfect.

High

Increased level of aggression
does not increase workload.
Very easy

2(low)

Quick
Hop

Low

Desired  performance eas-
ily achieved. Slight right drift.
3-axis task. A lot of inertia in
model. Control law good.

Mid

Easier at higher aggression be-
cause less anticipation required.
No problems.

Hurdles

Low

Desired

performance achieved satisfac-
torily. Yaw coupling only prob-
lem, but spare capacity.

High

At top of hurdle, control ac-
tivity high and little spare ca-
pacity. > 10° coupling into
heading.

Lateral
Jinking

Low

Stacks of spare capacity. Mini-
mal control activity. Single axis
task. No cross-coupling.

Mid

As above

High

As above

Yaw
Pointing

V.Low

Adequate performance achieved
with difficulty. Control activity
high. Not much spare capac-
ity.Precision difficult.

Low

PIO problems. Very high yaw
inertia. Low sensitivity, possi-
bly some lag. Maximum rate
O.K. but needs to be tighter

Table 2: Pilot comment from the May 1992 trials
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