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1 Introduction

Decentralized control remains popular in the chemical
process industry, despite developments of advanced con-
troller synthesis procedures leading to full multivariable
controllers. Some reasons for the continued popularity
are ease of implementation and maintainance, failure tol-
erance and operator acceptance. The design of a decen-
tralized control system consists of two main steps:

a) Control structure selection, that is, choosing manip-
ulated inputs and controlled outputs, and pairing
inputs and outputs.

b) Design of a single-input single-output (SISO) con-
troller for each loop.

In this paper we will consider Step b), and assume that
Step a) has already been completed (e.g. by using tools
such as the RGA [9, 10]). Standard controller synthe-
sis algorithms (e.g. Hy or He synthesis) lead to multi-
variable controllers, and cannot handle requirements for
controllers with a specified structure. Instead, some prac-
tical approaches to the design of decentralized controllers
have evolved:

¢ Independent design [12, 15, 11, 3].
e Simultaneous design using parameter optimization.
e Sequential design [5, 13, 14].

In this paper we discuss sequential design in detail and
present some new results.

Notation. The matrix G(s) denotes a square plan*
of dimension n x n, and g;;(s) is the ¢j’th element
of G(s). The decentralized controller is assumed to
be diagonal with diagonal elements c¢;(s) (see Fig. 1).
The matrix consisting of the diagonal elements of G
is denoted G = diag{g:;}. The sensitivity function is
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Figure 1: Block diagram of feedback system with decen-
tralized controller.

S = (I + GC)™! and the complementary sensitivity is
H=1-8 = GC+ GC)™!. Loop i is the SISO
feedback system consisting of g¢;; and ¢;. The sensitiv-
ity functions and complementary sensitivity functions for
the individual loops are collected in the diagonal matrices
S = diag{5;} = diag{1/(1 + giic;)} = (I — GC)~* and
A = diag{h;} = diag{giic;/(1+giici)} = GC(I-GC)™.
Two frequency-dependent measures which we make use of
are the Performance Relative Gain Array, PRGA =T =
GG~ (with elements 7;;), and the Closed-Loop Distur-
bance Gain, CLDG = GG~ Gy (with elements 6 ).

2 Sequential Design

Sequential design involves closing and tuning one loop at
the time. The procedure was introduced in the control lit-
erature by Mayne [13], but it is probably fair to say that
it has always been the most common way of designing
decentralized controllers n industry, and it has been ad-
dressed by several other authors (e.g. [2, 4, 5, 13, 14, 17]).

Advantages with sequential design

1. Each step in the design procedure involves designing
only one single input single-output (SISO) controller.

2. A limited degree of failure tolerance is guaranteed:
If stability has been achieved after the design of each
loop, then the system will remain stable if loops fail
or are taken out of service in the reverse order of how
they were designed.



Problems with Sequential Design

1. The final controller design, and thus the control qual-
ity achieved, may depend on the order in which the
controller in the individual loops are designed.

. Only one output is usually considered at the time,
and the closing of subsequent loops may alter the
response of previously designed loops, and thus make
iteration necessary.

The transfer function between input uj and output
yr (which is considered when designing loop k) may
contain right half plane (RHP) zeros that do not
correspond to RHP transmission zeros of G(s).

The usefulness of a sequential design procedure will de-
pend on how successfully it adresses the above issues.
The conventional rule for dealing with problem 1 is to
close the fast loops first, the reason being that the loop
gain and phase in the bandwidth region of the fast loops
is relatively insensitive to the tuning of the slower loops.
While this argument is reasonable for loop k itself (in-
volving only rg, ug and y; ), the response of output k may
still be sensitive to the tuning of the controller in a slower
loop I, if u; has a large effect on yg.

We will attempt to reduce the severity of problem 2 by
using simple estimates of how the undesigned loops will
affect the output of the loop to be designed.

Problem 3 may affect the order of loop closing since we
will require that the system is stable after the closing of
each loop.

3 A New Design Procedure

3.1 [Initializing the Design Procedure

Consider the feedback system in Fig. 1. The control error
(offset) is given by

e=y—r=-5Sr+5Gad (1)

Assume that the plant transfer function G and the dis-
turbance transfer function G4 are scaled such that the
largest tolerable offset (e) in any controlled variable has
magnitude 1 and the largest individual disturbance (d)
expected has magnitude 1 at any frequency. For simplic-
ity we assume that the largest expected changes in the
setpoints (r) are equal to the allowed magnitude of e. To
satisfy our performance objectives, we must then for any
single setpoint |r;| < 1 at least require

|[S:is] < 1 (2)
and for any single disturbance |d| < 1 at least require
[ISGair| < 1 3)

(here [A];; denotes the ij’th element of A). We want
to express these performance requirements in terms of
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the individual designs. We first factorize the sensitivity
S in terms of the sensitivity of the individual designs,

S=(I+GC)™

S=(I+GC) ‘=8I + EgH)™! (4)
where Eg = (G — é)é’_l. For frequencies (w < wpg)
below the bandwidths of the individual loops we have
H =~ I and we get (I + EgH)™! ® GG™' = TI. The
control error becomes
e:y—rz—STT—i-STGd; w<wp

(3)

[ = {y;;} is known as the Performance Relative Gain
Array (PRGA) and I'G4 = {é;1} is the Closed Loop Dis-
turbance Gain (CLDG) [9, 16]. At frequencies w < wp we
also have § ~ (GC)~! and the performance requirements
in Egs. (2) and (3) become for w < wp

PRGA : %’C— <1l & \|guci| > |75l (6)
Oik
CLDG : < 1 & gl > 6] (7)

Thus |y;;(jw)| is the minimum loop gain requirement at
frequency w < wpg for a change in setpoint j to cause an
acceptably small offset in output i. Likewise, |6;5(jw)] is
the minimum loop gain requirement at frequency w < wp
in loop i for rejecting disturbance k. In other words, from
frequency dependent plots of |v;;| and |6;x|, we can get a
good estimate of the required bandwidth in the individual
loops. We will therefore use the PRGA and CLDG for
two purposes:

1. Determine the order of loop closing (closing first
loops that are required to be fast).

. Estimate loop gain requirements |g;;c;| for counter-
acting interactions and disturbances, thereby finding
an estimate of the complementary sensitivity func-
tions (h;’s) for the individual loops.

3.2 Refined Loop Gain Requirements

The above relationships may be used to independently
design cach loop in terms of performance, at least at
lower frequencies. However, when the controllers in some
loops have been designed, we have gained more knowl-
edge about the closed loop system, and we want to take
advantage of this new knowledge when designing subse-
quent loops.

In the following, we will assume without loss of gen-
erality that the loops are closed (and controllers de-
signed) in the order 1,2,---,k,k + 1,---, and that the
loop to be designed is k. Let G} denote the subma-
trix of dimension k x k in the upper left corner of G, let
Cr = diag{ci,ca,...,ck} and let Sy = (I+GyCy)~! and
Hy, = GrCr(I+GiCy)~ . Introduce Gy = diag{G, gii},



Sy = diag{Sk, 5}, and H; = diag{Hy, b}, i = k+1,k+
2, m.
We then have the following generalization of Eq. (4)

(8)

which is the basis for our design procedure. Note that:

S =8I+ EHy)™ Y, Er=(G- Gk)Gl:l

1. Fork:lwehaveélzé,5'1 = S and H; = H and
rederive (4).

2. 5 = (I + GCx)™1, the upper left k& x k block of
Sk, yields the response for loops 1 to k with the
remaining loops open.

3. On the other hand, the upper left k x k block of S
yields the response of loops 1 to k with the remaining
loops closed. Thus, we get from Eq. (8) that rows 1
to k of (I + E.H k)~ ! express how interactions from
loops 7 > k affect loops 1 to k.

4. (I+Ey ﬁk)‘l is in general a full matrix. To evaluate
this matrix we will use an estimate of h; for the loops
that have yet not been designed.

5. In our sequential design prgcedure we will consider
the first k rows of (I + ExHy)™! as an input weight
for performance to Sy = (I + GxCy)~L.

3.3 The Sequential Design Procedure

The proposed sequential design procedure is outlined
here. The objective of the controller design is to design
SISO controllers ¢; that minimize some performance ob-
jective. As the performance objective we usually consider
anorm (e.g, Heo-norm or Hy-norm) of the weighted sensi-
tivity function of the overall system, and get the following
design problem:

min || WpSWp | (9)

The performance weights Wp*"™ and WJ*"P need not
be square, but Wp is often a square diagonal matrix used
to weigh each individual output.

Note that S can be expressed in terms of S as shown
in Eq. (8). Obviously, we can only have a performance
requirement for an output where we have a controller.
For this reason, define

WaE*¥ . first k columns of Wp

(10)
Likewise, define

WEZ"D . first k rows of (I + ExHy)™'Wp (11)

o Qur sequential design procedure is then for step
k to design a SISO controller cp that minimizes
[|WprSsWpk|| where Sy depends on cx, and Wpy
is evaluated using an estimate of h; for i > k.

The main steps are as follows:

Step 0. Initialization: Determine the order of loop clos-
ing and estimate H = diag{h;}. The loop gain
requirements given in Section 3.1 in terms of the
PRGA and CLDG are helpful for this purpose, as

will be demonstrated in the example.

Step 1. Design of controller ¢; by considering output 1
only. We have G} = G = diag{gi;} and Hy = H.
Wp1 is the first column of Wp, and Wp; is the first
row of (I + Ekﬁ)‘lVVD.

Step k. Design of controller ¢, by considering outputs
1 to k. Here Gy, = diag{Gy,gi}; i = k+1,---,n.
We use Hy = diag{Hy_1,hi}; i = k,---,n, where
Hy_1 is the complementary sensitivity function for
the k—1 loops that have been designed and %; is the
estimate from Step 0 for the loops that are yet to be
designed.

Step n. Design of the last controller ¢,,. This is done by
considering the overall problem in (9).

Remarks:

1. The design procedure may be generalized to cases
where we consider closed-loop transfer functions other
than S.

2. With the possible exception of Step 0, the procedure
is easily automated.

3. 8=+ GCyr)™ 1! is required to be stable at each
step in the design. This guarantees the limited degree of
failure tolerance mentioned in Section 2.

4. With the exception of Step n, we use the estimate
of hy to evaluate Hj (and Wpy) during the design of cy.
This is not strictly necessary, but making hy a function
of ¢; will complicate the setup of the controller design
problem.

5. One objective with our procedure is that the use of
the input weight Wpy (using the estimate of h; for i > k)
should reduce the need for iteration (redesigning loops),
and this has indeed been confirmed by examples.

6. In the example we use an Ho, performance objec-
tive,

| WeSWp ||=|| WpSWp |lec= sup&(WpSWp) (12)

7. In the example we also include model uncertainty.
Then for robust performance (12) should be satisfied for
all possible S’s allowed for by the uncertainty descrip-
tion. With Ho.-bounded model uncertainty this may be
reformulated as an equivalent structured singular value
test. For example, for the case with multiplicative input
uncertainty (see Fig. 2) we get the robust performance
condition (e.g. [15])

WiCSG WiCSWp
ma | wosG  weswp | <L

(13)



Figure 2: Multiplicative input uncertainty.

where p is the structured singular value [6] and A =
diag{Ar,Ap}. Ay is a diagonal matrix representing the
input uncertainty, and Ap is a full matrix representing
the performance requirement. Qur sequential design pro-
cedure is then for step k to design a SISO controller that
minimizes

o, Wik CeSkGr Wik Cr Sk Wk ] (14)

WprSkGr  WpeSiWpi

with Ay = diag{Asx,Ap}. Here Aj; a diagonal k x k
maftrix and Ap is a full np X np matrix.

8. Although our design procedure is new, the idea
of using a simplified estimate of the effect of closing
the other loops is not new. For example, Balchen and
Mummé ([1], Appendix C) derive an estimate the trans-
fer function in loop k using an estimate of h; for the
other loops, and use this to find pairings.

9. It is easier to estimate the complementary sensitivity
function for the individual loops than to estimate the
controller in the individual loops. This holds especially
at low frequency, where control is almost perfect, and we
know that 71,' ~ 1.

10. For the examples we have studied, the sequen-
tial design procedure presented in this paper achieved a
control quality almost equivalent to that achieved using
parameter optimization for all loops simultaneously.

11. A choice has to be made as to what design method
should be used for design of the SISO controllers. Alter-
natives are synthesis (with no restriction on the controller
parameterization) and parametric optimization (with a
fixed controller parametrization). The disadvantage with
synthesis, for example using the Hs- and Hy,-norms, is
that the controller order becomes very large. We there-
fore prefer parameter optimization which yields simple
low-order controllers, e.g., a PID controller. Parameter
optimization is managable when we employ sequential
design because we consider only one controller at the
time. The main disadvantage is that the achievable con-
trol quality depends on the controller parameterization.

4 Example

Consider the following example from Chiu [4]. The plant
is given by

0.66 —0.61 —0.005
6.7s+1  Bdstl 506541

Gls) = kil D 085 |

(8) = | 325:41 TTetd 7 09s 41 (15)
—34.7 46.2 0.87(11.61s41)
Bi504+1 109sF1 (3.80341)(18.85+1)
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Figure 3: Elements of PRGA = GG~! (solid lines) and
uncertainty weight (dotted line). PRGA13 is smaller than
10~2 at all frequencies.

The outputs are assumed to be scaled correctly with re-
spect to each other. We immediately note the strong one-
way interaction in the system represented by the large
off-diagonal elements in row three. In [4] only robust
stability is considered, with independent, multiplicative
input uncertainty (see Fig. 2) with uncertainty weight
Wi(s) = 0.13%255'5[_—1[. This uncertainty weight reflects
a steady state gain uncertainty of 13% and a maximum
neglected time delay of 0.5 minute. We add the perfor-
mance requirement d(WpS) < 1 Vw, which should be
satisfied for all possible plants allowed by the input un-
certainty. We choose the performance weights

wp(s) = 047251
Tel

Wp=1I, Wp=uwpl, (16)
The objective is to make the system as fast as possible
in a robust sense, by minimizing 7.; in the performance
weight subject to purp(M) < 1 (prp meaning p for ro-
bust performance), where M is as given in Eq. (13).

We choose to pair on the diagonal elements of G as in
[4]. We first want to estimate the required bandwidth, w;,
in each loop.

The PRGA for this example is shown in Fig. 3 (solid
lines), together with the uncertainty weight (dashed
lines). PRGA elements larger than 1 imply interactions,
and the figure shows that there is as expected severe in-
teraction from loops 1 and 2 into loop 3. The loop gain
in loop 3 must consequently be high at the frequencies
where the feedback in loops 1 and 2 is effective to reject



the “disturbances” entering from loops 1 and 2. This
means that the bandwidth in loop 3 has to be higher
than the bandwidths in loops 1 and 2.

The bandwidth in loop 3 will be limited by the time
delay of 0.5 minutes allowed by the input uncertainty.
We therefore estimate wg = 1 [rad/min], which is slightly
below the frequency where |Wj| crosses one.

Next consider the “disturbance” from loop 1 into loop
3, as expressed by the PRGA element y3;. We have
v31 ~ b0 for frequencies lower than approximately 0.1
[rad/min]. Thus, at the bandwidth frequency for loop
1, w1, we must require |gasecz(jwi)| > 50. If |gases]
has a slope of —2 on the Bode magnitude plot, we get
wy < 1/4/|vs1]l = 1/7.1. A similar discussion applies
for the interaction from loop 2 into loop 3. We have
[¥a2] & 10 at low frequencies, and if |gsacs| has a slope of

—2 we get wg < 1//|ys2| =~ 1/\/T6 For the interactions
of loop 1 and loop 2 into loop 3 to be of equal significance,
we thus get that we/w1 = v/|va1l/|V32| = V5, and this
will be used in the following.

From the above discussion the controller parametriza-
tion is chosen to allow a high roll-off

Tis+1 Ths+1
Tis 10T5s+1 (17)

Note that this is not strictly a PID controller since the
pole in the last term is at a lower frequency (s = 0.1/73)
than the zero.

Step 0: From the above discussion we conclude that
the order of loop closing should be: Loop 3 (fastest), loop
2, loop 1. The initial estimates for the complementary
sensitivity functions for the individual loops are chosen
to be second order of the form

> 1
MO = Ty

As estimates of the loop bandwidths w;, we and wg, we
select based on the above discussion the following;:

c(s) =k

(18)

1. Loop 3 is the fastest and we estimate ws = 1
[rad /min].

2. wyfwy = VB~ 2.2.

3. wy = 1/7 where 7¢ is minimized at each step such
that g = 1. This choice follows since loop 1 is
the slowest loop, and has little interactions from the
other loops. Thus the response of this loop by itself
will determine the performance of the overall system.

Step 1: Controller design for loop 3. Wp; is the third
row of (I+Ekf{k)'1, and there is one 1 x 1 perturbation
block for the input uncertainty, and one 3x 1 perturbation
block for the performance specification. Iterating on 7y
(and changing w; and wy correspondingly, as explained
above) we obtain g = 1.0 for 74 = 8.5 [min], and the
corresponding controller is

4.70s+14.01s+1

e3(s) = 849 = = 0 Ts 1 1

(19)
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Figure 4: Complementary sensitivity functions for the
individual loops, h;. Solid: Final designs. Dotted: Esti-
mates at Step 1 of the design (w; = 1/8.5, wy = 2.2wy,
w3 = 1)

Step 2: Loop 2. In H} we replace the estimate of hs by
the actual design for loop 3. Wp2 is the second and third
rows of (I+Ey, Hy)~!. There is one diagonal perturbation
block of dimension 2 x 2 for the input uncertainty, and
a 3 x 2 perturbation block for performance. p = 1.0 is
obtained for 74 = 11 [min], with

1.32s+10.186s+ 1
1.32s 1.86s+1

Step 3: Loop 1. Now all loops are included and we
consider the overall design problem with a diagonal 3 x 3
perturbation block for the input uncertainty and a full
3 x 3 perturbation block for performance. p = 1.0 is
obtained for 7,; = 18 [min] with

0.38554+10.898s+1 (21)
0.385s 8.98s+1

Note that 7,; which was obtained in the last step, is the
value of 7,; which will apply to all outputs in the overall
problem. In comparison, the best decentralized controller
found using simultaneous parametric optimization with
the same controller parametrization gave u = 1 for 7 =
16 [min]. This demonstrates that there is little to be
gained by iterating on the design.

The final complementary sensitivity functions (solid
lines) for the individual loops, h; are shown in Fig. 4,
together with the estimates (dotted lines) used in Step
1 of the design. These differer considerably, and this il-
lustrates that the design method does not require very
accurate & priori estimates of h;.

In Fig. 5a we show the response to a unit setpoint
change in output 1 ( the most difficult direction). The in-
teractions are pronounced, but acceptable. As seen from
the dashed lines the responses are insensitive to adding
0.5 min time delay in all channels.

ca(s) = —0.079 (20)

c1(s) = 0.04

Comparison with conventional design. For this exam-
ple, conventional sequential design, e.g. based on Ziegler
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Figure 5: Responses with decentralized control. a) Se-
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ings (note scale on y-axis). Solid: Nominal responses.
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Nichols tunings, will yield unacceptable designs, because
conventional sequential design only considers one output
at the time. Thus, there is no incentive for restricting the
bandwidths of loops 1 and 2 in order to avoid interactions
into loop 3. This is seen from the simulations in Fig. 5b
where we use the BLT PI-tunings of Luyben [12], which
are based on detuning the Ziegler Nichols tunings by a
common factor for all loops.

5 Conclusion

We propose a new sequential design procedure, that in-
volves minimizing the design criterion at each individual
step. The key basis for our design procedure is the fac-
torization of the overall system in terms of the individual
designs, Eq. 8, and the use of estimates for the comple-
mentary sensitivity functions, h;, of the loops that are yet
to be designed. By use of measures such as the PRGA
and CLDG we are able to obtain good initial estimates
of the required loop gains, g;;¢;, in the bandwidth region,
and thus estimate h; = giici /(1 + gisci).
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