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Abstract

The structured singular value framework is applied to a
distillation benchmark problem formulated for the 1991
CDC [6]. A two degree of freedom controller, which satis-
fies all control objectives of the CDC problem, is designed
using p-synthesis. The design methodology is presented
and special attention is paid to approximation of given
control objectives into frequency dependent weights.

1 Introduction

The purpose of this paper is to demonstrate, by an ex-
ample, how the structured singular value (SSV, p) frame-
work [4] may be used to design a robust controller for a
given control problem, defined by an uncertain model and
control objectives that cannot be directly incorporated in
the p-framework. In particular, we consider how to ap-
proximate the given problem into a p-problem by deriving
suitable frequency dependent weights, which define model
uncertainty and control objectives in the p-framework.

The control problem studied in this paper was intro-
duced by Limebeer [6] as a benchmark problem at the
1991 CDC where it formed the basis for a design case
study aimed to investigate advantages and disadvantages
of various controller design methods for ill-conditioned
systems.

The problem originates from Skogestad et al. [13]
where a simple model of a high purity distillation col-
umn was used to demonstrate that ill-conditioned plants
are potentially extremely sensitive to model uncertainty.
In [13] uncertainty and performance specifications were
given as frequency dependent weights, i.e. the prob-
lem was defined to suit the p-framework and therefore
a p-optimal controller yields the optimal solution to that
problem.

However, in the CDC benchmark problem [6] uncer-
tainty is defined in terms of parametric gain and delay un-
certainty and the control objectives are a mixture of time
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domain and frequency domain specifications. These spec-
ifications cannot be directly transformed into frequency
dependent weights.

The distillation problem in [13] and variants of this
problem, like the CDC problem, has been studied by sev-
eral authors. In three recent studies [7], [3] and [15], two
degree of freedom controllers are designed for the CDC
problem. All these papers are based on the McFarlane-
Glover loop shaping design procedure {10], where uncer-
tainties are modelled as Ho.-bounded perturbations in
the normalized coprime factors of the plant. To obtain
the desired performance, [7} use a reference model design
approach, [3] use the Hadamard weighted H -Frobenius
formulation from [2], while [15] use the method of in-
equalities [16] where the performance requirements are
explicitly expressed as a set of algebraic inequalities.

The two degree of freedom design in this paper differs
from [7], [3] and [15] in that we use p-synthesis for our de-
sign. With this method uncertainty is modelled as linear
fractional uncertainty and performance is specified as in a
standard H., control problem. Like [7], we specify some
of the control objectives as a model-matching problem.

2 CDC problem definition

The plant model and design specifications for the CDC
benchmark problem [6] are presented in this section.

Plant model

The plant is an ill-conditioned distillation column,
modelled by

G(s) = 755777 | 1.082

A 1 0.878
—1.096 0 koe=?%2¢

—0.864] [kle“’” 0

(1)
(2)
In physical terms this means 20% relative gain uncer-
tainty and up to 1 min delay in each input channel. The

set of possible plants defined by Eq.1-2 is in the following
denoted II.
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Design specifications

Specifications S1 to S4 should be fulfilled for every
plant G € II:

S1 Closed loop stability.

S2 For a unit step demand in channel 1 at ¢ = 0 the plant
outputs y; (tracking) and y (interaction) should sat-
1sfy:

y1(t) > 0.9 for all ¢ > 30 min.
y1(t) < 1.1 for all ¢

0.99 < y1(o0) < 1.01

y2(t) < 0.5 for all ¢

e —0.01 < ya(00) < 0.01

Corresponding requirements hold for a unit step de-
mand in channel 2.

S3 The maximum singular value of the closed loop trans-
fer function from output disturbances to manipu-
lated inputs should not exceed 50 dB at any fre-
quency, i.e. 5(I,;S) < 50dB ~ 316, Vw.

S4 The open loop unity gain cross over frequency should
be less than 150 rad/min, i.e. 6(GKy) < 1 forw >
150.

Here K denotes the feedback part of the controller and
§ = (I + GK,)™! the sensitivity function for the worst
case G.

Note that S4 in practice is implied by S1 which in turn

is implied by $2, so the actual performance requirements
are S2 and S3.

3 The p-framework

This section gives a very brief introduction to p-analysis
and synthesis and define some of the nomenclature used
in the rest of the paper. For more details, the interested
reader may consult for example [13], [14] and [1].

The Hoo-norm of a transfer function M(s) is the peak
value of the maximum singular value over all frequencies.

1M ()]l = sup 7(M (jw)) (3)

The left block diagram in Fig.1 shows the general prob-
lem formulation in the py-framework. It consists of an aug-
mented plant P (including a nominal model and weight-
ing functions), a controller K and a (block-diagonal) per-
turbation matrix Ay = diag{A;, -+, A,} representing
uncertainty.

Uncertainties are modelled by the perturbations (A;’s)
and uncertainty weights in P. These weights are chosen
such that ||Ay]lec < 1 generates the family of possible
plants to be considered. In principle Ay may contain
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Figure 1: General problem description
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both real and complex perturbations, but in this paper
only complex perturbations are used.

Performance is specified by weights in P normalizing d
and e such that a closed-loop Hco-norm form d to e less
than 1 (for the worst case Ay) means that the control
objectives are achieved.

The framework in Fig.1 may be used for both one de-
gree of freedom (ODF) and two degree of freedom (TDF)
controllers. In the ODF case the controller input y is
the difference between set-points and measured plant out-
puts, y = r — ym, while in the TDF case y = [r, —ym]T.
A TDF controller may be partitioned into two parts

Ak | Bk,
Cx | Dkr

Bry

K =[K, K,] = P

(4)

where K, is the feedback part of the controller.

The right block diagram in Fig.1 is used for robustness
analysis. M is a function of P and K, and Ap (||Ap|le <
1) is a fictitious “performance perturbation” connecting
e to d. Provided that the closed loop system is nominally
stable the condition for Robust Performance (RP) is:

RP <« prp =sup pa(M(jw)) <1 (5)
where A = diag{Ay, Ap}.

u is computed frequency-by-frequency through upper
and lower bounds. Here we only consider the upper
bound

pa(M(jw)) < inf #(DMD™) (6)
peD

where D = {D|DA = AD}.

At present there is no direct method to synthesize a
p-optimal controller, however, pu-synthesis (DK-iteration)
which combines p-analysis and Hoo-synthesis often yields
good results. This iterative procedure was first proposed
in [5] and [11]. The idea is to attempt to solve

min inf sup&#(DMD™! 7
gin inf sup o( ) (7)

D
(where M is a function of K') by alternating between min-
imizing sup,, (DM D) for either K or D while holding
the other fixed. The iteration steps are:

DK1 Scale the interconnection matrix M with a stable
and minimum phase rational transfer matrix D(s)
with appropriate structure.

DK2 Synthesize an Ho-controller for the scaled prob-
lem, ming sup, (DM D™1).



DK3 Stop to iterate if the performance is satisfactory or
if the Hoo-norm does not decrease, else continue.

DK4 Compute the upper bound on g (Eq.6) to obtain
new D-scales as a function of frequency D(jw).

DKS5 Fit the magnitude of each element of D(jw) to a
stable and minimum phase rational transfer function
and go to DK1.

Each of the minimizations (steps DK2 and DK4) are
convex, but joint convexity is not guaranteed.

The Hoo-controller synthesised in step DK2 has same
number of states as the augmented plant P plus two times
the number of states of D, so it is desirable to keep the
order of P and the D-scales as low as possible.

4 Design procedure

The CDC problem in section 2 cannot be directly trans-
formed into a y-problem. The reasons for this are: 1) The
gain-delay uncertainty in Eq.1-2 has to be approximated
into linear fractional uncertainty (Fig.1); 2) Specification
S2 need to be approximated since it is defined in the time
domain; 3) In the y-framework it is not possible to di-
rectly bound the four SISO transfer functions associated
with S2 and the 2 x 2 transfer function associated with
S3. Instead these control objectives must be reflected in
the Hoo-norm of the transfer function from d to e (Fig.1).

The following approach makes it possible to apply u-
synthesis to this kind of a problem:

1 Approximate the given problem into a p-problem.
2 Synthesize a robust controller for the yp-problem.

3 Verify that the controller satisfies the original specifi-
cations (S1-S4) for the original set of plants (II).

Step 1 is our major concern in this paper. Several ap-
proaches may be used to obtain the p-problem, however,
the following guidelines are general: A) Choose d and e
such that all control objectives are reflected in the H.-
norm of the transfer function between these signals. At
the same time keep the dimension of d and e as small as
possible. B) Use low order uncertainty and performance
weights to keep the order of P and thereby the order of
the controller low. C) Use weight parameters with physi-
cal meaning, since these parameters are the tuning knobs
during the design. Derivation of such weights for the
CDC problem is treated in detail in the next section.

Step 2 is fairly straight-forward with DK-iteration us-
ing available software (e.g. [1]). Experience with this
iterative scheme shows that for the first iterations it is
best if the controller synthesized in step DK2 is slightly
sub-optimal (Heo-norm 5-10% larger than the optimal)
and the D-scale fit in step DKJ5 are of low order. In sub-
sequent iterations more optimal controllers and higher
order D-scales may be used if required. However, it is

recommended that also the final controller is slightly sub-
optimal since this yields a blend of Ho, and H3 optimal-
ity with generally better high frequency roll-off than the
optimal H.-controller.

Step 3 is in this paper performed using time simulations
with the four extreme combinations of gain uncertainty
(Eq.2) and a 1 minute delay (approximated as a second
order Padé). In general it is difficult to ensure that the
worst case uncertainty is included in a simulation study
and p-analysis may be required to verify that the control
objectives are satisfied.

Given the p-problem from step 1 the following iterative
design procedure is applied:

i Start with relatively loose performance requirements
and check that Nominal Performance (Ho-norm less
than 1 for Ay = 0) is obtainable.

ii DK-iterate until ||[DM D~1||s & 1. (The physical in-
terpretation of the weight parameters are most ac-
curate for a Ho,-norm of about 1.)

iii Check if the control objectives are achieved (step 3
above). If they are not, adjust the weight parameters
and go to ii. (Since DK-iteration is computationally
demanding, it is often a good idea to check the effect
of the adjustments by synthesizing a controller using
the old D-scales, before going to ii.)

5 Approximation of the CDC

problem

In this section we approximate the benchmark problem
into a p-problem suitable for DK-iteration, i.e. we de-
rive uncertainty and performance weights which reason-
able well reflects the given uncertainty and design spec-
ifications. First an uncertainty model is derived , then
performance specifications are derived for both ODF and
TDF designs.

5.1 Uncertainty model

The gain-delay uncertainty (Eq.2) is approximated into
linear fractional uncertainty by use of a single complex
multiplicative perturbation in each input channel. G,

denotes the approximation of G in Eq.1.
Gp(s) = G(s)(I + Auv(s)Wa(s)) (8)
G(s) (9)

(10)

1 [0.878 —0.864
T T5s+1[1.082 —1.096

Ay(s) = diag{A1, As} ;5 [|Au(s)lleo <1

(L4 E)maes + ks _ 1.1s40.2
Wa(s) = 7 ' Inyy = 0Bs T 1 Iyxa

(11)



where k., = 0.2 is the relative gain uncertainty and
Omas = 1 is the maximum delay.

This uncertainty model does not quite include all com-
binations of gain and delay uncertainty in Eq.2, but has
the advantage of a low order weight with physical param-
eters.

If the performance verification (step 3 of the design
procedure) shows that this simple uncertainty model does
not yield a robust controller for the set of plants II, then
a more rigorous uncertainty model should be used (for
example the third order weight presented in [9] which
completely covers gain-delay uncertainty). However, it is
best to start the design with a simple low order model.

5.2 Performance specifications
5.2.1 One degree of freedom controller

A simple way to approximate S2 and S3 into a p-problem
is shown in Fig.2, where K is an ODF controller.

The time domain requirements of specification S2 is
approximated by a frequency domain bound (Wg2) on
the sensitivity function S, = (I + GpK,)~! for the worst
case plant Gp. A suitable weight is [8]

1 708+ Mg
Mg 1gs+ A 2x2:

For ||Ws2Sp||leo < 1 this weight yields:

Wsz(s) = (12)

1 Steady-state error less than A;
2 Closed-loop bandwidth higher than wg = 1/7;

3 Amplification of high-frequency output disturbances
less than a factor Mg.

Specification S3 yields a simple frequency independent

weight i

Vs (13)
For ||WsaKySp|leo < 1 this weight guarantees a(KySp)
less than Mg g for all frequencies.

Note that the formulation in Fig.2 lumps the four SISO
requirements of S2 and the 2 x 2 requirement of S3 into
a bound on the entire 2 x 4 transfer function from # to
[¢, @]7. From the relation

max{2(4), 5(B)} < 5([A B]) < vImax{5(4),5(B)}

Wss = Isxa

(14)
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Figure 2: Block diagram for one degree of freedom con-
troller.

it is clear that the physical interpretation of the weights
results in slightly too ‘hard’ performance requirements.

Based on S2, S3 and the results in [13] we use A =
0.01, 7 = 20, Ms = 2 and Mks = /2 % 316. A few
iterations shows that the ODF controller probably not
will yield the required performance, so we focus on the
TDF design.

5.2.2 Two degree of freedom controller

The block diagram in Fig.3 defines the p-approximation
of the CDC problem we will use for the TDF design.

Specification S2 is here approximated by a ‘model-
matching problem’. Compared to a weight on the sen-
sitivity function, this allows a more direct way to deal
with both the set-point tracking and interaction speci-
fications of S2. The reference model Ty, ;q defines the
tdeal transfer function from set-points to plant outputs,
and the signal weights W, and W, are used to penalize
the difference between desired and actual response.

The set-point tracking should ideally be decoupled and
the response and overshoot requirements are the same for
both channels. To keep the order of Ty, ;4 small, while
at the same time have the freedom to allow for some
overshoot in the ideal response, we use a second order
reference model in each channe)

1
‘I'Z-Z(/is2 + 2¢amias + 1

Tyr,id = Iyxo (15)
The weights W,, and W, in Fig.3 are used to obtain
specification 3 by bounding ||KySp||co. Note that even
without S3 it is necessary to include the noise # or an-
other signal (non-zero for w — co) between G and K
to obtain a proper controller, since G is strictly proper
(limy .00 7(G(jw)) = 0).
Figure 3 gives
[é] _ [WeNIIWr WeN12 Wy ] [f’] (16)
@ |WuNuW, —W,NpW,]| |7

where N11 = SpGpI{,- - Tyr,id = Tyr,p - Tyr,id; N12 =
Tyrp; Not = (I + KyGp) 'K, and Nay = K,S,. For
simplicity, we use diagonal weights with the same weight
in both channels (W; = w; * Iox2, ¢ = e,u,r,n), ie.
W.W, forms a bound on Ny; and W, W,, forms a bound
on Nzg.

Tyr.id

A

W, H—

b ]
=W,

Figure 3: Block diagram for two degree of freedom con-
troller.
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Now, Wsq and Wg3 from the ODF-design are used as
a starting point to find appropriate signal weights W,.,
Wy, W, and W,. The combined weight W, W,, should be
similar to Ws3 and W, W, may be choosen similar to Wge
to obtain a reasonable bound on the mismatch between
actual and ideal response. However, the off-diagonal el-
ements in Eq.16, W, N1,W,, and W, No W, also have to
be considered when selecting the signal weights, since it
is the Hoo-norm of the entire transfer function that is
minimized by the controller. This demonstrates that the
weights have to be selected with some care in order to
avoid impossible performance specifications.

We may choose one of the signal weights arbitrary and
then shape the other signals relatively to the arbitrary
weight. Let W, = I at all frequencies. This yields Ny;
bounded by W, = Wsy and Nj; bounded by W,,. At low
frequencies Naj & Nao! so let W, = Wss. Next consider
how to choose W, such that W, Nos W, reflects S3 and
WeN12W,, does not limit the performance of the overall
system. At low frequencies N5 = I, so W, has to be
smaller than W, ! in this frequency range. At higher
frequencies W, is chosen such that W, W, becomes an
active bound on Nyy. One way to obtain this is to use

Wi(s) = Iaxe (17)
We(s) = ﬁ%hxz (18)
Wu(s) = Mirs Iaxa (19)
Wa(s) = Tas+ A (20)

——————1Iyx>
Tas + My

Mr in Eq.20 is a bound on the low frequency peak
value of Njs (the complementary sensitivity function).
This parameter is used to adjust the frequency where
W, W,, becomes an active bound on Njs.

The performance weights derived above have several
parameters, however, it is easy to find reasonable numer-
ical values for these parameters since they all have some
physical meaning. In fact, most of the numerical values
are almost directly obtained from the specifications in
section 2.

6 TDF controller design

Ay in Eq.10 is structured, however, it can be shown that
the TDF problem (as defined in section 5) belongs to a
class of problems where an unstructured Ay may be used
without introducing conservativeness (Hovd et al., 1993).
In the following we use an unstructured Ay which gives
D(s) = diag{d(s),d(s), 1,1, 1,1},

Initially d(s) was set to 0.01, obtained from a natural
physical scaling (‘logarithmic compositions’ [12]). This

1At low frequencies (I + GKy)"lG'Kr I =Ky~ K, >
Npy = (I+KyG)_II(r ~ Ky(I+ GKy)_l = Noo

Table 1: Final weight parameters and D-scales

Weight parameters
Gd | Ta | A | Ms
071 [95 [ 107* | 35

My
2.0

D(s) = diag{d(s), d(s), Laxa}

(s +5.70) (s®+2%0.6645 % 0.112s + 0.112%)
(s +0.0144) (32 + 2 * 0.622 * 0.568s -+ 0.5682)

Mks
630

Tid

8.0

d(s) = 0.00299

yn y12

00 100 85 50 100

Figure 4: Time responses with plant-model mismatch.
yi; shows response in output ¢ for step change of set-
point j at £ = 0. All responses with 1 min. delay (2nd
order Padé).

simple scaling substantially reduces the number of itera-
tions required to obtain ‘good’ D-scales.

The initial weight parameters were choosen to: 1) Yield
an ideal response which satisfies S2 with some margin
without too large overshoot (74 = 8,(;q = 0.71); 2) Re-
quire a close fit to the ideal response at low frequen-
cies (A = 107%) and a looser fit at high frequencies
(ta = 10, Ms = 3); 3) Yield a loose requirement on Ky.S,
to be increased if required (Mr = 3, Mg s = 630 (56dB)).

Only two DK-iterations was needed to get urp < 1,
however, the performance with respect to S2 and S3 was
not quite achieved. Mg, My and 1, was adjusted to 3.5,
2.0 and 9.5, respectively. After two more DK-iterations a
controller which satisfies $1-S4 was obtained. The con-
troller has 24 states, yields a closed loop Heo-norm of
1.015 and may be synthesized using the final weights and
D-scales given in Table 1.

The performance of the TDF controller is demon-
strated in Fig.4 where time responses for the four ex-
treme combinations of uncertainty are shown. The sim-
ulation results are also summerized in Table 2 and are
seen to satisfy spesification S2. The maximum peak of
7(KyS) = 306, which is less than 316 (50 dB), as re-
quired in 83, and the unit gain cross over frequency,



Table 2: Control performance with gain uncertainty and

second order Padé approximation of a 1 min. delay. (See
also Fig.4)

step | gain unc. set-point tracking interaction

ch. | k k2 | t=30| max |{=100| max [¢=100
1 1.2 | 1.2 1.066 1.092 | 0.998 | 0.051 | 0.001
1 1.2 | 0.8 0.984 | 1.036 | 0.999 | 0.471 | -0.001
1 0.8 ] 1.2 0.969 | 1.030 | 1.000 | 0.426 | 0.001
1 0.8 1 0.8 0.906 | 1.000 | 1.000 | 0.138 | 0.000
2 1.2 | 1.2 1.052 | 1.074 | 0.999 | 0.051 | 0.001
2 1.2 | 0.8 | 0.987 | 1.030 [ 1.000 | 0.265 | 0.001
2 0.8 | 1.2 1.002 | 1.038 | 0.999 | 0.310 | 0.000
2 0.8 | 0.8 0.950 | 1.002 | 1.000 | 0.138 | 0.000

7(GKy) = 1, is at 1 rad/min, well below 150 rad/min, as
required in S4.

The transfer functions N1, and Nay, which are not part
of the CDC problem, have peak values of 3.4 and 420,
respectively.

7 Discussion

There has been some confusion with respect to specifi-
cations S4 of the CDC problem. In [15] both S3 and
S4 are applied to the closed loop transfer function KyS
from output disturbances to plant inputs, ¢.¢ this trans-
fer functions is gain limited to 316 (50dB) for frequencies
below 150 rad/min and to 1 (0dB) for frequencies above
150 rad/min. This objective may also be achieved us-
ing the design procedure presented this paper, however it
requires more complicated weights W,, and W,,. For the
design presented in this paper (K 5’) < 1 for frequencies
above 700 rad/min.

The inability to independently penalize separate ele-
ments of the closed loop transfer function complicates the
performance weight selection in the py-framework. The
Hadamard weighted approach [3] does not have this prob-
lem and will therefore yield better performance with re-
spect to the specifications in the CDC problem, S1 - S4.
However, for a practical engineering problem the trans-
fer functions Ny and N, in Fig.3 aere of importance,
80 it seems reasonable to include them into the control
problem.

8 Conclusions

p-synthesis has been successfully applied to a demand-
ing ill-conditioned uncertain problem where uncertainty
is defined as parametric gain-delay uncertainty and the
design objectives are a mixture of time domain and fre-
quency domain specifications.
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