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1 Introduction

Most published work on the identification of dynamic models from
experimental data has been concentrated on the single-input-
single-output (SISO) case. This is also reflected in the literature
on process dynamics and control, where linear dynamic models
usually are obtained by fitting input- output data from a plant
or nonlinear simulation to a low-order transfer-function. In cases
where the process is multivariable, the transfer-matrix is usually
obtained by fitting the transfer-matrix elements independently.
However, obtaining reasonable models for the individual transfer-
function elements does not guarantee a reasonable multivariable
model. This is in particular true for ill-conditioned processes
which is the subject of this note. Ill-conditioned processes are
commonplace in the chemical process industry and include, for
example, high-purity distillation columns.

Skogestad and Morari [13] argue that fitting the transfer-matrix
elements independently easily may lead to poor models for ill-
conditioned processes unless one explicitly takes into account the
coupling between the gains of the different elements. In particular,
one is not able to obtain a good model of the low-gain direction
of the plant, and the model will easily have the wrong sign of
the determinant of the steady-state gain matrix and therefore be
useless for control studies. This problem may, however, usually
be corrected as the sign of the determinant and its approximate
value in many cases is known a priori [7], [6].

Another, and more fundamental problem with this identifica-
tion approach, is that the model may be inconsistent in that a
single physical state is repeated in the model. This issue is the
main topic of this paper. Ill-conditioned plants often have a single
dominating “slow” pole (large time constant) which is a result of
interactions in the process, and is thus shared by all the transfer
matrix-elements. However, by fitting the elements of an n X n
process independently, such that they all contain the dominant
pole, one may get an inconsistent model with at least n poles
similar to the single dominating pole of the process, As shown
in this paper, the inconsistency will result in a poor prediction of
the process behavior under feedback control, in particular when
only some loops are closed.

The general literature on identification theory has so far not fo-
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cused very much on multivariable issues, and the particular prob-
lems mentioned above that may be encountered when identifying
ill-conditioned plants do not seem to have been discussed.

We start the paper with an example of an inconsistent low-

" order model of a heat exchanger. The model, although seemingly

a good open-loop description of the plant, is shown to yield un-
expected behavior when one control loop is closed (”one-point
control”). The results in this example are subsequently explained
using analytical results. We then briefly discuss what types of pro-
cesses that are likely to be identified with an excessive number of
slow poles. At the end of the paper we present “experimental”
input-output data of a heat-exchanger which is ill-conditioned
and show that employing a classical identification method yields
a model which is poor for feedback control studies.

All the results presented in this paper are for 2 x 2 processes,
i.e., two inputs and two outputs. However, the results are of
relevance also for higher dimensional processes.

2 Introductory Example

Ezample 1. Heat-ezchanger. Consider a heat-exchanger modeled
using a single mixing tank for both the hot and cold side (see
Figure 1). Neglecting the heat accumulated in the walls yields a
model with two states. Data for the example we consider are given
in Table 1. In the following we only use the linearized form, y(s) =
G(s)u(s), of the model. Here y = [y )T = [Tc Ty]" is the
cold and hot outlet temperature and u = [u; ug)” = [gc  qn]T
is the cold and hot inlet flow rate. The exact linear model is

G(S) _ 1 k‘u(l + 4768) k12
(1 + ‘rls)(l + TQS) kZl k22(1 + 4763)
"= 100 yTe = 2.44 ;ku = —k22 = —1874 ;klg = _k21 = 1785

The model is strongly ill-conditioned and has a steady-state condi-
tion number of 41 and diagonal steady-state RGA-values of 10.8.

‘The physical explanation for the ill-conditioning is simply that

the heat transfer is very effective such that the two outlet tem-
peratures (outputs) are almost the same (61.59°C and 63.41°C in

‘our case), and it is very difficult to change them independently. In

particular, it is difficult to make them closer (this is the "weak”
or "difficult” or "low-gain” direction of the plant), whereas we
may easily make them both hotter or colder (this is the ”"strong”



Table 1. Steady-state data for heat-exchanger in Example 1
(see also Figure 1).

Ve=Ve qo=qu Tei Thi Tc
[m?] [m®/min] [°C] [°C] [°C]
1 0.01 25 100 61.59
Ty UA p cp
[°C] [kJ/°Cmin]) [kg/m®] [kJ/°Ckg]
63.41 300 500 3.0

cp and p are equal for the hot and cold side.
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Figure 1. Simplified representation of heat-exchanger with
one mixing tank on each side.

or "high-gain” direction of the plant).

Open-loop responses in the outlet temperatures to a 10% step
change in hot inlet flow u, obtained from the model (1) are shown
by the solid lines in Figure 2 (similar responses, but with oppo-
site signs, are obtained for changes in u1). From the figure we
observe that the responses in both outputs are close to first-order
with a time-constant around 100 minutes. We also note that the
smallest time constant, 7, = 2.44 minutes, which we later show
is associated with the low-gain direction of the plant, is very dif-
ficult to observe from the open-loop responses. Indeed, as seen
from the dashed lines in Figure 2, an excellent fit is obtained with
the following model

__ 1 ki kiz
Gls) = 1+ 7s (kzl kzz) @

Although it may seem like this model only has a single time con-
stant 7y = 100 minutes, the state-space realization contains two
poles at —1/m;.

We now want to study the behavior of the process under par-
tial ("one-point”) feedback control, i.e., controlling one of the
outlet temperatures. The cold outlet temperature y; is controlled
with the cold inlet flow u; using a P-controller with gain K =
0.015 which yields a closed-loop time-constant for this loop of
about 3.5 minutes. Figure 3 shows the responses to a 10% step
change in hot inlet flow u; with this loop closed. The solid lines
are obtained with the "full” linear model (1), whereas the dashed
lines are obtained with the fitted model (2). For the response in
the uncontrolled output, y,, there is a significant difference be-
tween the two models. The full model yields a ”fast” response in
y2 (similar to that of the controlled output y,), whereas the fitted
model yields a slow settling towards the new steady-state. The
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Figure 2. Open-loop dynamic response of heat-exchanger.
Responses in outlet temperatures Ty (1) and Ty (y2) to
a 10 % step increase in hot inlet flow gy (uz). Solid line:

Response of full model (1). Dashed line: Response of fitted
model (2).
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Figure 3. Dynamic response of heat-exchanger with one
loop closed. Responses in outlet temperatures T; (v1) and
Ty (y2) to a 10 % step increase in gy (uz). Cold outlet
temperature Tc (y;? is controlled by g¢ (u;) using a pure
proportional controller with gain K = 0.015. Solid line:

Response of full model (1). Dashed line: Response of fitted
model (2).

reason for the large difference in behavior is, as we shall see, the
different number of slow poles in the two models.

3 Minimum number of states and
inconsistency.
Consider a linear system described by the model
t=Az+ Bu; y=Cz+ Du (3)

Here = denotes states, u inputs, y outputs and z the time deriva-
tive of z. Laplace transformation of (3) yields the transfer-matrix

G(s)=C(sI— A)'B+D (4)

For a system with n states, m inputs and p outputs we have
dim(A) = nxn, dim(B) = nxm, dim(C) = pxn and dim(D) =



p x m. The maximum rank of G(s) is rpey = min(p,m). Assume
that G(0) has rank r > 1. With D # 0 we may define a model
with a single state (time-constant) by letting the dynamic part of
the model, C(sI— A)~!B, have rank equal to 1 and use D to make
the rank of G(0) = r. However, such a model yields a very poor
initial response for most processes and is therefore not considered.
With D = 0, which is more reasonable from a physical point of
view, it is easily seen from (4) that we need at least r states for
G(0) to have rank r.

Ezample 1, continued. In the heat-exchanger example we had
a non-singular steady-state matrix G(0) with rank » = 2, and con-
sequently we need at least two states to describe the system using
a state-space description with D = 0. Thus, when attempting to
describe the system using only one time-constant we obtained the
simplified model (2) with two poles at —1/7;.

Some readers might believe that also the full model has two
poles at —1/m = —1/100 since there are two mixing tanks which
isolated would have a time-constant of V/q = 100 minutes each.
However, an analysis of the full model (1) reveals that there is a
multivariable zero that cancels one of the apparent poles at —1/7;.

The single pole at —1/7;, which is shared by all the transfer
function elements, is a result of the interactions between the two
sides of the heat exchanger. In addition the full model has a sig-
nificantly faster pole corresponding to a time-constant r, = 2.44
min. Applying one-point feedback control to the full model (1)
causes the shared pole —1/7; to move, and also the uncontrolled
response to become fast. However, this is not the case when the
simplified model (2) is used, because here only one of the two
poles at —1/7; is moved. This is shown in the next section.

Ezample 2. PI-control of Wahl and Harriot column [15].

High-purity distillation columns operating with reflux L and
boilup V as independent variables may be strongly ill conditioned.
Furthermore, it is well known that the individual open-loop re-
sponses may be well approximated using only one dominating
time-constant. This has been shown both from plant data [9] and
in several theoretical papers, e.g., [4]. Due to this, first order
models are commonly used in the distillation control literature.

Wahl and Harriot [15] use a simple low-order model to study
the behavior of a high-purity column under one-point control.
Their low-order model is somewhat more complicated than the
pure first-order transfer-function matrix as given in (2), but the
minimal realization of their model contains two time-constants
equal to 365 min, while the full model only has one time-constant
at 365 min.

The dashed lines in Figure 4 show the response in top compo-
sition yp (y2) of the Wahl and Harriot low-order model to a step
change in feed composition with the composition on plate 4 (y;)
under feedback control. The controller tuning (PI-controller) used
here is somewhat different than the one used by Wahl and Har-
riot, but the responses resemble closely the ones shown in [15]?,
Le., a fast response in the composition on plate 4 (y;) with a slow
settling towards steady-state for the uncontrolled top composition
(y2). The slow settling in y, is noticed by Wahl and Harriot, but
they assume it to be a property of the process. However, the slow
settling to steady-state is simply a result of a modeling error, that
is, the model has an excessive slow pole. This is seen from the
solid lines in Figure 4 which show the responses obtained using

Actually Wahl and Harriot have the wrong sign on the change in top
composition
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Figure_ 4. Wahl and Harriot column. Response in top-
composition yp (;) and z4 (y;)to a disturbance in feed com-
position with z,4 controlled by reflux. Dashed lines: Simula-
tions with low-order model given by Wahl and Harriot [15].
Solid lines: Simulations with full linear model.

the full linear model. The full model yields a fast response in both
compositions.

Also several other authors (e.g., [14], [11]) have used inconsis-
tent models for studies of partial feedback control in distillation.
This may be seen from their figures by observing the slow settling
in the uncontrolled output.

4 Analytical treatment of model with
one loop closed.

Consider applying the control law
du1 = —I((dyl knd dyl,) (5)

to the simplified model (2) (here subscript s denotes setpoint).
The closed-loop transfer-matrix becomes

Kkiy k1o
dy\ 1 T+Kkn) T+ Kk ) dy1,
dy; ] ~ 1+71oLs Kk ko (14rors)- T2 dug
(1+Kky1) (1+ms)

(6)

TcL = Tl/(l + I(k]l) (7)

Thus, three of the elements are first-order with the time-constant,
Tor, whereas the transfer-function gg;(s) from uz to the uncon-
trolled output y; is second order, as it in addition contains the
open-loop dominant time-constant ;. To see how the two time-
constants contribute to the overall response in the uncontrolled
output y,, write go2(s) on the form

where

X Xor
gaa(s) = 14+ 7s + 1+ 70Ls (8)
The ratio between the gains X; and Xy, is given by
X, 1 kizka
—— =14+ Kkn)(= - Y =—= 9
Xer 1+ 11)(1’ ) k11kaz ©)



Y is the ratio between the off-diagonal and diagonal steady-state
gains, and is a well known measure of interactions (e.g., [2], [10]).
It is also related to the 1, 1—element of the Relative Gain Array

(3] for 2 x 2 systems
1

M= ——

. (10)

The model is ill-conditioned when Y is close to one which corre-
sponds to a large value of Ay;.

Consider Y in the range 0 to 1. For cases with Y =1 (A, =
o0) we see from (9) that X; becomes zero, i.e., there is no gain
related to 71, and only 7oL remains in gs3(s). This is as expected
since Y = 1 implies that the model is singular at all frequencies
and the minimal realization of (2) will only contain one state.
On the other hand, if ¥’ = 0 (A\;; = 1) we see from (9) that the
gain related to o1, will be zero and only 1 will be left in gz2(s).
This is also as expected since Y = 0 implies that the steady-state
matrix is triangular or diagonal, in which case it is likely that
the identified process actually contains two poles at —1/7; (see
discussion below). For values of Y between 0 and 1 (A, > 1),
both poles will be present in gs2(s).

From (9) we see that the ratio X;/X¢y also depends on the

gain K used in the controller. The higher the gain is, the larger is
the ratio X;/X¢r. This means that the faster the response in the
controlled output is, the more marked is the large time-constant
71 in the uncontrolled output, y,.
Ezample 1, continued. For the heat-exchanger example we have
Y = 0.907 and Kk, = 28.1 which yields X,/ Xcr = 2.98 for the
simplified model (2). That is, a major part of the response in the
uncontrolled output y, is related to 7, which is confirmed by the
slow settling for y; (dashed line) in Figure 3. For the full model
(1) the single time-constant 7 is affected by the feedback control,
and y; has no slow settling (solid line in Figure 3).

Our analysis of equation (9) seems to suggest that it is for
weakly interactive processes we get the largest error when an in-
consistent model with excessive slow poles is used. However, this
conclusion is misleading as it is for ill-conditioned processes we
most likely will identify a model with too many slow poles. To
see this consider a 2x 2 model which is reduced to have two states.
The two poles left should be the ones with the largest effect on the
input-output behavior of the full model. Each of the two poles will
have an input direction related to them, that is, a set of inputs
that cancels the other pole. A similarity transformation of the
state-space model, so that the A-matrix becomes diagonal, will
reveal these directions in the rows of the transformed B-matrix.
Changes in one input at the time, i.e., the input vectors [I 0]T
and [0 1]T, will span the input space. If one of the poles dom-
inates the responses to both these input perturbations, it means
that the gain related to the "hidden” pole must be small com-
pared to the gain related to the dominating pole. This implies
that the system has two directions with widely differing gains,
1.e., the system is ill-conditioned?. From this we conclude that it
is only for ill-conditioned systems that the open-loop responses
are likely to be well approximated using an inconsistent model
with a single time-constant. A diagonal or triangular 2 X 2 pro-
cess which has ¥ = 0 (Ay; = 1) and is well described using only
one time-constant 7y is thus likely to actually contain two poles
at —1 / 1.

Erample 1, continued. A similarity transformation of the state-
space realization of the full heat exchanger model (1) shows that
the input direction cancelling 7; is [I —1)7 and the input direc-
tion cancelling 7y is [l 1)7. A singular value decomposition of

the model gives a (minimized) condition number of 41 with the
high-gain input direction being [I —1)7 and the low-gain input
direction being [1 1]7. In this case we therefore have a perfect
alignment of the singular input vectors and the pole-cancelling

.vectors, i.e., the high-gain input direction has a pole —1/7, and

the low-gain input direction a pole —1/7;. The gain in the di-
rection of the slow pole —1/n is consequently 41 times the gain
in the direction of the fast pole —1/7;, and the fast pole is thus
only weakly visible in open-loop simulations with perturbations
in single inputs. This explains why a model using only one time-
constant yields an excellent fit of the open-loop responses in Fig-
ure 2.

5 MISO-Identification using ARMAX

In Appendix we provide a Matlab file for generating open-loop
"experimental” data using the linear model (1). The data are
produced using a multivariable experiment , i.e., simultaneous
perturbations in the two inputs. Noise is added to the inputs as
well as the outputs. Figure 5 shows the 100 min. input sequence
(including noise) and the resulting outputs generated using the
Matlab file. The inputs to the process contain 3 % white noise,
while the outputs have white noise with variance 0.03 °C' (which
is very small compared to practical situations).

The identification problem is to come up with a reasonable
multivariable dynamic model based on these data alone, i.e., based
on the noise-free inputs and the noisy measurements. One should
not supply any knowledge about the special multivariable struc-
ture of the model as given by (1). The identified model is in-
tended to be used for feedback control studies, and two different
cases are of interest. 1) Partial control: Output y; is controlled

wusing input u; while y; is left uncontrolled. 2) Multivariable con-

trol: Both y; and y, are controlled using both inputs. In both
cases the responses to set-point changes as well as disturbances in
the inputs should be considered and compared with those of the
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Figure 5. Input and output data used for identification of
heat exchanger. The data were generated with the Matlab
file given in Appendix.

2Note that some ill-conditioned systems may have the directions .of the
poles closely aligned with the input vectors of the perturbations. In this case
both poles will show up in the simulations.



correct model (1). The intention of the challenge problem is that
one should identify the model based on open-loop data only. If
one is allowed to use closed-loop data we believe the identification
becomes simpler.

We here employ a fairly standard identification technique to
the data generated using the Matlab file given in Appendix. We
employ the Matlab System Identification Toolbox [8] and use
MISO-identification with an ARMAX-type model structure. In
the identification we fit each output with a strictly proper sec-
ond order mode] which is the same structure as the true model
(1) (see Appendix for details). The model resulting from this
identification is given by

—2025(5.2183+1)

.027. 110.7
G(s) = (<3$:9;(+33$o;33,:+5>

(1.4045-+1)(110.53+1)

1871(0.02635+1)
(2.0275+1)(110.72+1) ) 11)

2049(3.9475+1)
(1.404541)(110.5541)

The identified model (11) has a minimal realization with 4 states.
Figure 6 compares the noise-free open-loop step responses of model
(11) with those of the "true” model (1). We see from the responses
that we have obtained a reasonable identification of the individ-
ual SISO-transfer functions. Furthermore, we see from the identi-
fied model that we have been able to obtain reasonable estimates
for the two poles ~1/7 and ~1/7,. However, the multivariable
interactions have not been captured as the model (11) has mul-
tivariable zeros at —0.0217 = —1/46.1 and —0.426 = —1/2.35
which do not cancel the poles. This is also becomes clear if one
consider the singular values of the true (1) and fitted (11) model
respectively. The true model (1) has, as mentioned previously,
a low-gain direction with a single fast pole —1/7;. However, the
low-gain direction of the fitted model (11) has a significant part
of its dynamics related to a slow pole around —1/71.

Figure 7 compares the closed-loop responses of the correct
model (1) and the identified model (11) when output 1 is con-
trolled with input 1 using the proportional feedback law u; =
K.y, with K, = 0.015. We see that the identified model yields
a good prediction for the controlled output y;. However, for the
uncontrolled output y, there is a large discrepancy between the
process represented by (1) and the identified model (11). For the
correct model the single slow pole is moved by the feedback con-
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Figure 6. Open-loop step responses of identified model
(11% (dashed lines) and model (1) (solid lines). Labels g;;

denotes corresponding transfer-matrix elements.
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Figure 7. Closed-loop responses of identified model (11)
(dashed lines) and correct model (1) (solid lines) to step
disturbance of magnitude 0.001 in the hot flow g (u;).

Output T¢ (y1) controlled by q¢ (u;) using proportional
controller with gain K, = 0.015.

itroller and the response in the uncontrolled output y; is as fast as
ifor 1. The identified model (11), on the other hand, contains an
excessive slow pole which is left in the partially controlled model
and results in a slow settling in output y,.

The noise levels of the data provided in Appendix are rela-
tively small compared to what one should expect in a practical
situation. However, increasing the noise levels will mainly change
the results obtained in a qualitative manner, that is, the excessive
slow pole in the identified model will become even more marked.
An additional problem which may be encountered at higher noise
levels is that of obtaining the correct sign of the determinant of the
steady-state model. However, as mentioned in the introduction,
‘this is usually a less crucial problem as the sign and approximate
:value of the determinant in many cases is known a priori.

The input sequence used to generate the “experimental” data
jin Appendix are based on low-pass filtered PRBS signals with a
‘'minimum time between changes of 5 minutes. It was assumed
that 100 minutes of experiments with a sampling rate of 1 minute
would provide sufficient data for the identification. However, we
do not rule out the possibility that a different input sequence may
yield better results. The problem is how to determine the best
possible input sequence when the process dynamics are largely
unknown. It is worth noting that although we used a low-pass
filtered input sequence, the main model error was at rather low
frequencies, while the high frequency behavior of the process was
reasonably well captured in the identified model. This may in-
dicate that an input sequence with even more emphasis on low
frequencies would have yielded better results than the actual in-
put sequence used in Appendix.

6 Conclusions

¢ The open-loop responses of ill-conditioned processes will of-
ten take the form of almost pure first-order dynamics, and
the open-loop dynamics of such processes are seamingly
well approximated by a low-order model containing only
the dominant time-constant. However, the model will have



the single slow pole of the process repeated and is there-
fore physically inconsistent. The inconsistency results in a
poor prediction of the process behavior, in particular under
partial feedback control.

o We believe the problem of obtaining models for ill-conditioned
processes which are consistent in terms of the number of
slow poles represents a “new” and challenging problem in
identification.
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APPENDIX 1. Matlab-file for generating input-output

data of heat exchanger.

% This file generates inputs, u, and outputs, y,

% for heat exchanger identification problem:

,rand('normal’);

A=[-.21 .20;.20 -.21];B=[-36.5853 0;0 36.5853];
=eye(2);D=zeros(2);

%PRBS-signals (low-pass filtered):

ql=15e-3%-1-1-1111-1-11111111111-1 -1);

q2=3.5¢-3%-1-1-1-1-1-11-1-1-1-1-1-111-1-1-1-1-1};

.% Inputs last for 5 minutes (sampling time 1 min.):

for i=1:length(ql),

u 1+5*§i-1?:5*!,1 =ql(i)%ones(5,1);
u(1+45+(i-1):5%,2)=q2(i)*xones(5,1);
end

%Noisy inputs for simulation:

usimE:,l;=ug:,1;+0.03*ma,xgug:,lg;*randéloo,lg;

usim(:,2)=u(:,2)+0.03*max(u(:,2) jxrand (100,1);
% Obtain noise-free outputs:
£=1:100;

ysim=Isim(A,B,C,D,usim,t);

% Noise on outputs has variance 0.03 degrees centigrades:

y(:,1)=ysim(:,1)+0.03%rand(100,1);
y(:,2)=ysim(:,2)+0.03%rand(100,1

Example of using MISO ARMAX-identification (8]
% Fit model for #;:
‘ the1=pem([y$:,1) u,[22220001 1))
"% Fit model for y:
the2=pem([y(:,2) u],[22 22000 1 1]);
% Note: thel and the2 are on discrete polynomial form.

NOMENCLATURE

A - heat transfer area (m?)

cp - heat capacity (kJ/°Ckg)

G(s) - process transfer-matrix for effect of inputs »
gi;(8) - transfer matrix element i,j

k;; - steady state process gains

I - identity matrix

K - controller gain

gc, qi - cold and hot inlet flows (m®/min)

Tc, Th - cold and hot outlet temperatures (°C')
U - heat transfer coefficient (kJ/m? °Cmin)

u; - process input i

Ve - liquid volume cold side (m?)

Vi - liquid volume hot side (m?)

Y= :u’,:n - interaction measure

yp - distillate composition

y; - process output i

Greek symbols

A1 - 1,1 element of RGA

11 - dominant (largest) process time-constant (min)
T3 - smaller process time-constant (min)

Tor - closed-loop time-constant (min)

Subscripts
8 - setpoint change



