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Abstract. In this paper we investigate the structure of the robust
optimal controller for a class of control problems investigated by many
researchers. The robust optimal controller for a problem in this class is
an SVD controller. This finding may be used to simplify the controller
synthesis (K) part of the D-K iteration procedure used for synthesizing
p-oplimal controllers.

Conditions for when the optimal controller in general has the struc-
ture of an SVD controller are discussed, focusing on the issues of re-
alizability of the transformed interconnection matrix and whether the
transformation makes the structure of the perturbation block (A) more
conservative.

1 Introduction

In this paper we investigate the structure of the robust optimal con-
troller for a class of control problems investigated by many researchers.
An example of a control problem in this class is given by the robust
controller design problem for a distillation column studied previously
by Skogestad et al. [19].

The nominal plant for this problem is given by

G(s) =

1 [0.878 —-0.864] ()

T5s+1 | 1.082 —1.096

which has a condition number of 141.7 and a RGA-value of 35.5 at
all frequencies. This model is an excellent example for demonstrating
the problems with ill-conditioned plants and has been studied by many
researchers [14, 3, 21].

For this problem, the relative magnitude of the uncertainty in each
of the manipulated variables is given by w;(s) = 0.2(55+1)/(0.55+1).
The robust performance specification is that |]u,-p$'||(,q < 1, where wp =
0.5(108 + 1)/10s and § is the worst sensitivity function possible with
the given bounds on the uncertainty in the manipulated variables.

This robust controller design problem is easily captured in the
framework of the structured singular value, p [5]. The resulting g
condition for Robust Performance (RP) becomes:

RP <= pa(M)<1 Vu 2

Mo | ~WIKSG WiKS
| wpSG -WsesS

where A; is » diagonal 2 x 2 perturbation block, Ap is a full 2 x 2
perturbation block, W; = w;l; and Wp = wpls.

Skogestad et al. [19] designed a controller giving a value of yu =
1.067. Freudenberg [9] used another design method to find a conlroller
with p = 1.054. Lundstrdm et al. [14] used the latest state-space Ho
software [1] to design a controller with y = 0.978. In a somewhat
altered form, this robust controller design problem has been considered
by Yaniv and Barlev [21), and was used as a benchmark for the 1991
CDC {3].

Engstad [8] showed that the controller obtained by Lundstrém et
al. [14] has the structure of an SVD controller. We prove that the p-
optimal controller is an SVD controller for thia robust controller design
problem. This suggests that the controller obtained by Lundstrdm et
al. [14] ie very near p-optimal. The resulting analysis suggests how the

i A =diag{A;, Ap) 3)
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design problem can be simplified prior to applying D-K iteration (or
H -synthesis) for finding the controller. The simplified design problem
is equivalent to the original design problem provided this contains only
full and/or multiplicative repeated scalar perturbation blocks. We then
describe the class of problems for which the optimal controller is an
SVD controller.

2 Background

Robust Performance The goal of any controller design is that
the overall system is stable and satisfies some minimum performance
requirements, These requirements should be satisfied at least when the
controller is applied to the nominal plant, that is, we require nominal
stability and nominal performance.

In practice the real plant G is not equal to the model G. The term
robust is used to indicate that some property holds for a set IT of possible
plants G as defined by the uncertainty description. In particular, by
robus( stabilily we mean that the closed loop system is stable for all G €
1. By robust performance we mean that the performance requirements
are satisfied for all G € II. Performance is commonly defined in robust
control theory using the Ho-norm of some transfer function of interest.
Definition 2.1 The closed loop system ezhibils nominal performance
if

1¥]lee = supT(¥) < 1. @)
w

Definition 2.2 The closed loop system ezhibits robust performance if

[[¥lloo =supT(¥) <1, VG ell (5)
w

For example, for rejection of disturbances at the plant output, ¥ would
be the weighted sensitivity

¥ =W SW;, S=(I+GK)!

N i N N 6
¥ = W, SW,, S=(I+GK)_1. ( )

In this case, the input weight W, is often equal to the disturbance
model. The output weight W; is used to specify the frequency range
over which the sensitivity function should be small and to weigh each
output according to its importance. The value K is the transfer func-
tion of the controller.

Doyle [5] derived the structured singular value, p, to test for robust
performance. To use u we must model the uncertainty (the set Il of
possible plants G) as norm bounded perturbations (A;) on the nominal
system. Through weights each perturbation is normalized to be of size
one:

Al < 1. (™

The perturbations, which may occur at different locations in the sys-
tem, are collected in the block-diagonal matrix Ay (the U denotes
uncertainty)

Ay = diag {A;} (8)

and the system is arranged to match the left block diagram in Figure 1.
The interconnection matrix M in Figure 1 is determined by the nominal
model (G), the size and nature of the uncertainty, the performance
specificalions, and the controller (X).

For notational convenience in this section we assume M and each A;
are square (analogs to the definitions and theorems in this section hold
in the nonsquare case [13]). We assume each A; is complex. For the
example studied in this paper, these assumptions hold. The definition
of j is:

Definition 2.3 Let M € C"*" be a square complez matriz and let A
be the set of block-diagonal perturbations with the appropriate struc-
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Figure 1: Robust Performance and the M — A block structure

ture. Then 1 A (M) (the structured singular value with respect to the
uncertainty struclure A) is defined as

0 if there does not exist A € A such that

det(I + MA) =0,

Ha(M)= %

-1
[min {F(A)|det(I + MA) = 0}] otherwise.
AcA
Partition M in Fig. 1 to be compatible with A = diag{Ay,Ap}:

M= My Mo | (10)
M2y My

The following are tests for robust stability and robust performance (5)

Theorem 2.4 The closed loop system ezhibits robust stability for all
Aulleo < 1 if and only if the closed loop system is nominally stable
and

pa,MuGe) <1 Ve (1)

Theorem 2.5 The closed loop system ezhibits robust performance for
all |Aulleo < 1 if and only if the cloaed loop system is nominally stable
and

Ha(M(o) <1 Vo, (12)

where A = diag{Ay, Ap}, and Ap is a full square matriz with dimen-
sion equal to the number of outputs (the subscript P denotes perfor-
mance).

Multiple performance objectives can be tested similarly using block-
diagonal Ap. Note that the issue of robust stability is simply a special
case of robust performance.

It is a key idea that u is a general analysis tool for determining
robust performance. Any system with uncertainty adequately modeled
as in (7) can be put into M — Ay form, and robust stability and robust
performance can be tested using (11) and (12). Standard programs cal-
culate the M and A (1], given the transfer functions describing the sys-
tem components and the location of the uncertainty and performance
blocks A;.

Computation of u g with complex A is commonly calculated
through upper and lower bounds. First define two subsets of C"*"

Q={QeAa:Q"Q=1.} (13)

where Q¥ is the conjugate transpose of @ and I, is the n x n identity
matrix, and

D = {diag[di ;] : dim([;) = dim(A;), d; positive real scalar), (14)
then [5]

M H = -1
gzaép(Q )< pa (M) SDIEISU(DMD )- (15)

A result of Doyle [5] is that the lower bound, maé 2(QM), is always
Qe

equal to 1 5 (M). Unfortunately, the maximization is not convex, and
computing the global maximum of such functions is in general difficult.
In contrast, the computation of the upper bound is convex. However,
the upper bound is not necessarily equal to p except when the number
of complex A-blocks is < 3. The upper and lower bounds are almost
always within a percent or so for real problems [16], so for engineering
purposes u never has to be calculated exactly.

Controller Synthesis M is a function of the controller K. The
H,-optimal control problem is to find a stabilizing K which minimizes
sup @ (M(K)). The state-space approach for solving the Ho,-control
w
problem is described in {7).

The D-K iteration method (often called p-synthesis) is an ad hoc

method which atltempts to minimize the tight upper bound of g in (15},
i.e. it attempts to solve

min inf sup7 (DM(K)D™), 16
;(nDEDwP( (K)D™1) (16)

The approach in D-K iteration is to alternatingly hold K or D con-
stant and minimize supD’(DM(l(')D") with respect 1o the other. For

fixed D, the controll“ér synthesis is solved via He-optimization. For
fixed K, the quantity is minimized as a convex optimization. The re-
sulting D as a function of frequency is fitted with an invertible stable
minimum-phase transfer function and wrapped back into the nominal
interconnection structure. This increases the number of states of the
scaled M, which leads the next Ho,-synthesis step to give a higher order
controller. The iterations stop after sup& (DM (K)D™') is less than 1

or is no Jonger diminished. The resu|t=dng high-order controller can usu-
ally be reduced significantly using standard model reduction techniques
[1). Though this method is not guaranteed to converge to a global min-
imum, it has been used extensively to design robust controllers and
seems to work well [6].

3 The Structure of the p-Optimal Con-
troller

Recall that the problem statement of Skogestad et al. [19] specifies
that A; be a diagonal perturbation block. Lundstrom et al. made the
assumption that the uncertainty block Ay was a [ull block when per-
forming the D-K iteration design method to design the controller. Even
with this potentially conservative assumption, a controller with smaller
s value was obtained. This leads one to suspect that the structure of
Ay is not important for this problem.

In Section 3.1 we give the structure of the optimal controller found
by Lundstrdm et al. in [14]. In Section 3.2 we show that the robustness
of an SVD controller is insensitive to the structure of A;. In Section

3.3 we show that the p-optimal controller is an SVD controller. This
explains why the assumption made by Lundstrém et al. that Ay is full
block was nonconservative. This also allows us to derive a simplified
D-K iteration design procedure in which the synthesis part (K) can be
solved a8 two decoupled subproblems.

3.1 The Structure of the Controller Found by Lund-
strom in [14]
The plant G(s) can be decomposed into G(s) = UEq(s) VH  where

1 19721 0
p = — 17
c(2) 755+1[ 0 0.0139] m
y - | 0626 -0.7809 | 0.7066 —0.7077
~ | 07809 06246 |' T | —0.7077 —-0.7066

U and V are unitary matrices. This is the singular value decomposition
of the plant G(s)!. We define an SVD controller for the plant G(s) to
have the form

K(s) = VEg(s)UH (18)

where Tk (s) is a diagonal matrix. Engstad [8] found that this is indeed
the structure of the controller found by Lundstrdm et al. in [14].

3.2 The Structure of A

We now show that the structure of A; is unimportant in determining
robust stability provided that the controller is an SVD controller. To
do this, we will need the following result, where A ig the conjugate
transpose of A.

Theorem 3.1 (i for Normal Matrices) Assume M is normal (i.c.
MHEM = MMH), then pa(M) = p(M) = T(M) irrespective of the
structure of A (provided A is complez).

Proof: Result follows directly from (15) and that p(M) = (M) for
normal matrices. QED.

This theorem states that the value for p is independent of the
structure of A provided that the M matrix is normal. This result has
proven useful for studying the robust control of cross-directional paper
manufacturing [12] and coating processes {2], and for parallel processes
[11, 17).

We now apply this theorem to show that for SVD controllers the
robust stability for the system under study is independent of the struc-
ture of the uncertainty block Ay.

The test for robust stability is given by Thm. 2.4, with M;; =
—WiKSG = —WiKG(I + KG)~!. Substitute the SVD for the plant

'With the slight modification that the dynamic term, 1/(758 + 1), is mul-
tiplied into the singular value matrix Lg, thus giving the singular values
phase.

oo



(17) and the expression for the SVD controller (18) into the expression
for My, to give

My = VW, SkEe(I + Tk Ta) 'V, (19)

where V commutes with Wy since W} is a repeated scalar block.

Since Wy, 8¢, Lk and their conjugate transposes are diagonal and
commute, it is easy to show that My, M = M M,,, i.e. M\, is nor-
mal. Applying Theorem 3.1 gives us that robust stability for this prob-
lem is independent of the structure of A;. Note that this is not neces-
sarily true when the controller is not an SVD controller. For simplicity,
we would normally take the structure of A; to be a full block.

Though this does not imply that the structure of A; is unimpor-
tant when determining robust performance, we certainly would not be
surprised if this were the case. We now show that the robust perfor-
mance of the j-optimal controller is insensitive to the structure of A;
for this specific example.

In Fig. 2 we give the robust performance yu plots for the controller
of Lundstrém et al. for both when A is full block and when A consists
of independent scalar blocks. The plots are indistiguishable, i.e. robust
performance is independent of the structure of Ay for the SVD con-
troller. Notice the flatness of the p plots; it is well-known that the
p-optimal controller has the property that the optimal p(M(jw)) is
conslant, except at very high [requencies where z must approach |wp|
for proper controllers. Since the yu plot for the controller of Lundstrém
et al [14] is very flat, and the controller is an SVD controller [8], we
expect that this controller is very nearly p-optimal.
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Figure 2: a) Comparision of robust performance p plots with Ay
equal to full block and to a diagonal block.

3.3 Analysis of the Optimal Control Problem

Here we analyze the control problem for full block A; as used by Lund-
strém et al. in [14]. We prove that the p-optimal controller must be an
SVD controller.

In Fig. 3 and we give equivalent block diagrams for the A — A
structure in (3). Clearly, an identity matrix can be inserted anywhere
in a block diagram without altering the system. In Fig. 3a we have
shown M as an LFT of the controller K. Thereafter identities are
inserted in four different places (e.g. VUM = UYU = I). Note that
diag{VH  UHY} commutes with diag{ W}, W}, since both W; and Wp
are scalar times identity matrices. The blocks within each dashed box

in Fig. 3a are combined to form A, N, and Ik, which we show in
Fig. 3b.

Now we consider the structure of the transformed system in Fig. 3b.
The transformed controller £ and all the blocks in N in Fig. 3b are
diagonal. The transformed performance block Ap is a full block. With
Ay diagonal, the transformed uncertainty block Ar=VHAV in A
would be a full block, with a certain structure that cannot be utilized
in the y framework. We showed in Section 3.2 that the structure of Ay

is unimportant provided that the controller is an SVD controller, so we
allow Ay to be full. The transformed uncertainty block A; is then full
block with no additional structure.

Now consider the robust optimal control problem, in which we de-
sire to minimize p:

min pa(M(K)) min 14 (M (Sk))

= min i 7 (DA -1
= gwngDszpa(DM(EK)D )

inf minsupF(DM(EK)D'l). (20)
peD Px w

The first equality holds because the transformed system is equivalent
to the original systermn. The second equality holds because the number
of uncertainty blocks is < 3. Because the perturbations are full block,
the D-scales are diagonal. Since we also have that every block in N is
diagonal, the controller synthesis for the transformed system

b)

Figure 3: The M — A structure of the synthesis problem. a) Ex-
pressing M as a linear {ractional transformation of the controller
K, with identities inserted at four places in the block diagram.

b) The feedback system after transformation, M- A.
min supE(DM(EK)D") (21)
Ik w

consists of two completely decoupled synthesis subproblems, each sub-
problem involving a SISO “plant”. The resulting robust optimal con-
troller ©x must be diagonal, therefore the original controller K is in-
deed an SVD controller.

Now consider performing the D-K iteration design procedure to the
transformed system to try Lo determine the robust optimal controller.
The controller synthesis part (K) of D-K synthesis consists of two com-
pletely decoupled synthesis subproblems, each subproblem involving a
SISO “plant”. This holds also after applying the D-scales from the
robustness analysis (D) part of D-K synthesis, since the D-scales also
consist of diagonal blocks, When using (18) to find the controller K
from the diagonal T, we see that the resulting controller will have the
structure of an SVD controller.

However, since A contains full blocks, the same D-scales must be
applied to both synthesis subproblems. The robustness analysis (D)
part of D-K iteration must therefore be performed simultaneously for
both subproblems, i.e. we must consider the diagonal matrix Lg for
robustness analysis, and not its diagonal elements separately.

Performing D-K iteration on the transformed system will converge
faster and is numerically better conditioned than on the original system.
This is both because the H, subproblems are smaller than the original
problem, and because the algorithm will be initialized with a controller
which has the correct (optimal) directionality.

4 Generalization of the Results.

It is of interest to determine for which class of controller synthesis prob-
lems the p-optimal controller has the structure of an SVD controller.
It is easier to consider when the “u-upper bound” optimal controller
has the structure of an SVD controller. Since the D-K iteration proce-
dure uses the upper bound when designing the controller, and the upper
bound is within 1-2% of u for all practical problems to date, considering
the optimally in terms of the upper bound is not restrictive.

A practical requirement is that the transformed interconnection
matrix (corresponding to N in Fig. 3) must be realizable, in order to
enable the use of standard state-space based Hoo-synthesis algorithms,



e.g. (7). This will always be possible when U and V are real and the
weights used commute with Lthe matrices used to transform the in-
terconnection matrix N (e.g. in Fig. 3 diag{V”,U"} commutes with
diag{Wy, Wp}). For specificity, we give the following three classes of
systema for which these properties hold:

1. the plant is described by scalar dynamics multiplied by a constant
matrix, with scalar times identity weights,

2. the plant is parallel, with parallel weights, and

3. the plant is symmetric circulant, with symmetric circulant weights.
The distillation column example studied in this paper is in Class 1.
Distillation column models given by scalar dynamics multiplied by a
constant matrix have been used by numerous researchers (for example,
see the references listed in [18]).

Nominally identical units in parallel with interactions, for example
flow splilters and parallel reaclors with combined precooling, are de-
scribed by parallel models. Hovd and Skogestad {11} has studied the
robust optimal control of these systems in detail.

It is easy toshow that such models are diagonalized by a real Fourier
matrix.? To show how this dingonalization works on a simple example,
a 2 x 2 parallel process has the model

a(s) b(s
6 = [ ol o ] e
The 2 x 2 Fourier matrix, which diagonalizes G(s), is
1 1 1
F=E[1 _1]. (3)
Applying this to G(s) gives
g = FG(s)FT = [ a(s) + b(s), a(s) — b(s) ] 3 (24)

Paper machines [12, 20] and coating processes {2] have been ap-
proximated by symmetric circulant models. Though this class is more
general than the class of parallel models, symmetric circulant models
are diagonalized by the same real Fourier matrix.

Whether the u-optimal controller is an SVD controller also de-
pends on the location and structure of the perturbation blocks.? The
p-optimal controller will be a SVD controller only if the transformations
of the interconnection matrix involved do not make the structure of the
resulting perturbation matrix A more conservative than the structure
of the original perturbation matrix A. If the original problem contains
only full perturbation blocks and/or multiplicative (or inverse multi-
plicative) repeated scalar perturbation blocks, the structure of A will
equal the structure of A. On the other hand, if the problem contains
diagonal or additive repeated scalar blocks, Lhe structure of A may be
more conservative than the structure of A. For the special case when
the plant is described by a normal transfer function matrix (such as for
parallel or symmetric circulant plants), additive repeated scalar per-
turbation blocks do not make the structure of A any more conservative
than the structure of A.

Even when the structure of the transformed perturbation matrix
A is more conservative than the structure of the original perturbation
matrix A, it may still be useful to perform D-K iteration on the trans-
formed system to get initial D-scales for performing D-K iteration on
the original system.

For the cases of Hj- and Hoy-optimal control there is no perturba-
tion block (A) in the problem, and considerations about the structure
of the perturbation block therefore do not apply. However, both the Hy
and H,, norms are invariant under unitary transformations, and the
optimal controller will have the structure of an SVD controller provided
N is realizable, as discussed above for the p-optimal controller.

5 Conclusions

We have shown that the robustness of an SVD controller is insensitive
to the structure of the input uncertainty for the distillation control
problem in [19]. We [urther showed that the g-optimal controller for
this problem has the structure of an SVD controller. This finding may
be used to simplifly the controller synthesis (K) part of the D-K iteration
procedute used for synthesizing p-optimal controllers.

Conditions for when the optimal controller in general has the struc-
ture of an SVD controller have been discussed, focusing on the issues of
realizability of the transformed interconnection matrix N (see Fig. 3b)
and whether the transformation makes the structure of the perturba-
tion block (A) more conservative.

?The standard Fourier matrix of [4] has pairs of columns which are com-
plex conjugates of each other. A real Fourier matrix is defined by replacing
each of these pairs of columns by an appropriate scaling to the addition and
subtraction of the columns (see [10] for details).

3Recall thal the performance specificalions can be written in terms of
performance perturbation blocks. Thus without loss of generality we can
apeak only of the locations of the perturbation blocks and not of the transfer
functions of interest for performance.
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