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Abstract. Gain and delay uncertainty is commonly used to quantify plant-model mismatch in the process control community.
This type of uncertainty description cannot be directly used for robustness analysis and design in the structured singular value
(u) framework. This paper provides analytical expressions for some tight approximations of gain-delay uncertainty based on
complex perturbations in a form suitable for analysis within the y-framework. Simple bounds suitable for synthesis are also
presented. A model that covers the gain uncertainty exactly and closely approximates the delay uncertainty, is derived using
real perturbations. Finally these uncertainty models are applied to a distillation example.
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1 INTRODUCTION

The structured singular value, y, (Doyle, 1982)
has proven to be a very powerful tool for robustness
analysis (e.g. Skogestad et al., 1988). p provides a
computationally efficient necessary and sufficient con-
dition for robustness of a set of possible plants defined
by an uncertainty description. The condition may be
formulated as a Robust Stability (RS) test or as a Ro-
bust Performance (RP) test, using the H., norm to
specify the required performance. However, the un-
derlying assumption for necessity and sufficiency of
the robustness condition is that the uncertainty de-
scription is “tight”.

In the process control community it is very com-
mon to quantify plant-model mismatch in terms of
gain and delay uncertainties. This uncertainty descrip-
tion generates a set II of possible plants §

T = {§(5) |d(s) = ke ™" ;
k S [kmin, kmaa:] y 6 € [amin) amam]}- (1)

This set cannot be exactly modelled in the p frame-
work. One may argue that an exact representation of
this set is not very important, since the gain-delay un-
certainty itself is only an approximation of the actual
plant-model mismatch. However, from an engineer-
ing point of view, a set of “off the shelf” models for
commonly used uncertainty descriptions is very use-
ful and will substantially reduce the effort associated
with analysis and synthesis of robust controllers.

The purpose of this paper is then to present some
tight approximations of the uncertainty defined in
Eq.1. This issuc has also been studied by Laughlin
et al. (1987) and Lundstrom et al. (1991).

2 THE y-FRAMEWORK

This section only covers aspects of the structured
singular value framework with special importance for

this paper. A less brief review of  is given elsewhere
in this proceeding by Hovd et.al. (1993); the inter-
ested reader may also consult Skogestad et al. (1988),
Stein and Doyle (1991) and Balas et.al. (1991).

The general problem formulation in the 4 frame-
work is illustrated in Fig.1. The left block diagram
consists of an augmented plant P (including nomi-
nal plant model and weight functions), a controller
K and a (block-diagonal) perturbation matrix Ay =
diag{A1,- -, A,} representing uncertainty. d is a
vector of external input signals (e.g. disturbances
and set-points). e is a vector of output signals which
should be kept small (e.g. manipulated inputs and de-
viation from set-points). The weights in P are used to
specify the performance requirements and to normal-
ize each A; to be less than one in magnitude at each
frequency.

The right block diagram in Fig.1 is used for robust-
ness analysis. M isafunctionof Pand K,and Ap isa
fictitious “performance perturbation” connecting e to
d. Provided that the closed loop system is nominally
stable the conditions for RS and RP are:

RS & prs=suppp, (MuGw) <1l (2
RP & prp=suppup(M(w)) <1 3)

Remarks:

1) To formulate a robustness problem as shown in
Fig.1 each uncertainty must be represented in terms
of a linear fractional transformation (LFT).
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Fig. 1: General problem description
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2) The sufficiency of the robustness conditions re-
quires that the uncertainty description includes all “al-
lowed” uncertainties.

3) The necessity of the robustness conditions requires
that the uncertainty description includes only “al-
lowed” uncertainties.

4) p analysis is performed on a frequency by fre-
quency basis, while u synthesis is performed in a state-
space setting (Balas et al. 1991). For analysis it is
therefore sufficient to obtain the frequency response of
the interconnection matrix M, which means that even
irrational uncertainty models may be used. For p syn-
thesis, M has to be a finite dimensional state-space
model. Because of this tighter bounds may be derived
for analysis than for synthesis.

5) At present there is no u synthesis method for sys-
tems where the perturbation matrix A includes real en-
tries. Algorithms for analysis of this class of problems
are being developed (Young et al. 1991), but pure-
complex problems are much easier to solve.

6) 1rp = 0.8 means that the uncertainty perturbations
in Ay could be increased by a factor 1/0.8 = 1.25(i.e.
a larger uncertainty set) and still the performance spec-
ifications would be satisfied by a margin of 1.25. The
performance margin for the specified uncertainty set,
ie. ||Avlleo < 1 may be computed using a “skewed
1 (Packard 1988), here denoted J and defined by

My (w) M (w) -1
PV T Maw) Jw)  Maw) ~
9

J = 0.8 means that the performance is satisfied by a
margin of 1.25 for ||Aylle < 1.

Jw)= {J(w)

3 UNCERTAINTY MODELLING

The objective of this section is to present approx-
imations of II (Eq.1). The following notation is used:

E = kma;_- + knn’n k,. = kmaz - kmt’n

2 - kmru: + kmiﬂ
7 — Bnru:u-: +9rm'n - 9mar = Gma‘n
§m —TEE R 5 = et

0* = max{|0min|, |Omaz|}

3.1 Complex uncertainty, irrational weight

The set IT maps onto a “polygon”-shaped region
on the complex plane at each frequency (Fig.2). The
simplest way to represent IT within the y-framework is
by a nominal plant model subject to a single complex
additive or multiplicative perturbation, which gener-
ates a “disk”-shaped region on the complex plane at
each frequency. In this section three different choices
of nominal models are considered and for each of
them analytical expressions for the smallest perturba-
tion needed to cover every plant in IT are presented.
A is complex and |A(jw)| < 1Vw.

Set II; : Multiplicative uncertainty with nominal
model k.

= {§()|§(w) = k(1 + 1 WAGW)}  (6)
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Fig, 2: Comparison of IT (polygon), IT; (largest disk),
I, (second smallest disk) and II; (smallest disk) on
the complex plane at w = 0.35 [rad/min] for k €
[0.8, 1.2]and @ € [0, 1].

L) = I(1+k)e=30w 1| forw < m/0*
2+k, forw > 7/6*
Q)
Set II, : Multiplicative uncertainty with nominal
model ke=i«?,

I = {§(Gw)|§(Gw) = ke ™11 + LW)AGW)} ()

[ |+ k)emiwfe — 1| forw < /65

bw) = { 2+k, forw > m/6s
®
Set II; : Smallest disk that covers II. This set
may be represented as additive uncertainty with an
irrational nominal model. A pure multiplicative de-
scription cannot be used because the nominal model
is 0 at some frequencies. We use a mixed multiplica-

tive/additive representation.

1T = {§(jw)|§(iw) = keI [ma(w) + bW AGw)])
(10)
ma(w) and l3(w) are obtained by minimizing
miny, ¢y aw) , s.t. II C IIz , Yw. This constrained
optimization may be solved analytically and yields

w m3(w) hw)
wa () Vk2 + tan?(05w)
wp (1 +k)cos(@sw) (1+k,)sin(fsw)
we 0 1+ k’
for0 < wy < 29 arccos ({5£=) < wp < 71 Swe.

II, and II, are special cases of the uncertainty
model studied by Laughlin et al. (1987). The two
set are identical if 0,,4, = —0min. Of the three
sets above IT; generates the largest disk on the com-
plex plane at each frequency and II3 the smallest, i.e.
Liw) > bhw) > B(w) Yw. However, this does not
mean that II; is always the least conservative approx-
imation of IT. It is not the size of the set, but the worst
case plant within the set that matters. There are plants
(possibly “worst-case”) within both II and II3 which
do not belong to II; as shown in Fig.2.



3.2 Complex uncertainty, rational weight

Rational weights are needed, for example for H
and p-synthesis.

Set II;, : Same as II; but with a rational weight
lwi(jw)| > h(w) Yw.

IIis = {G15(s)|§15(5) = k[1 + wi(s)AGW)]} (11)

* 2 *
(1+%)6%s +k, (GT’) +2(, (07") +1
ol (B, (51
(12)
¢=2363,(, =0.838and(, =0.685  (13)

The first part of w1 (s) is derived form a first order Padé
approximation, the second part is a correction factor
used to obtain II C IT;,. The optimal values of ¢, (,
and (, are dependent of k., but independent of 6*. Nu-
merical optimization reveals that these parameters do
not vary much for different values of k, and the fixed
parameters in Eq.13 may be used without introducing
much extra conservativeness.

wi(s) =

3.3 Real uncertainty

With real uncertainty it is possible to derive a tight
description of IT which avoids covering a polygon by
a disk.

Set II. : This set is obtained from an nth order
Padé approximation (Fig.3).

A | Bu Bn —252 | &:,1& %;"
I'e=| Cu | Du Du | = 1 % 0
Co | Da Dy 2 _?;E,é. =1
0 &k,
Iy = [ 11 ] (14)

—1<Ap<land —1< A, <1 (15)

Note that Ay is a repeated perturbation.

This set does not quite cover II, but is a tight ap-
proximation. By increasing n, the number of I'y’s, an
arbitrary close approximation may be obtained. How-
ever, in most practical applications a second order ap-
proximation would probably suffice. In special cases
II, is a subset of II: 1) The delay uncertainty in-
cludes both prediction and delay, i.e. 6,,;, < 0 and
Omaz > 0, or 2) Either 8,,,;,, =0or 8,,,, =0.

The parameterization of I'y causes problems if: 1)
Omaz = —Omin = 0 = 0, and some elements of I'y
will be infinite; 2) Opyin = 0 = (1 — Tp,1nA)~! im-
proper for A = —1; 3) ez = 0 = (1 — T 114)7!
improper for A = 1. These problems are avoided by
adding or subtracting a small quantity t0 8,,,;, Of 044 -

Fig. 3: Uncertainty model with real A’s

4 DISTILLATION EXAMPLE

The purposc of this section is to show how the un-
certainty sets from the previous section may be used
for robustness analysis. The example processes is a
high-purity distillation column presented in Skoges-
tad et al. (1988), however, here the uncertainty is de-
Jfined in terms of gain-delay uncertainty, while Skoges-
tad defined the uncertainty in terms of a proper rational
bound on a complex multiplicative perturbation.

4.1 Problem definition

The uncertain plant model is

G’(s)= 1 [0.878 —0.864] [kle“’” 0
75s+1 [ 1.082 —1.096 0 kpe =028

(16)
where

k; €08, 1.2 : 6, €[0,1]; i=1,2 (17)

i.e. 20% relative gain uncertainty and up to 1 min de-
lay in each input channel.

The required performance is specified in terms of a
frequency dependent bound, W, (s), on the sensitivity

function $ = (I + GK)~! for the worst case plant G.
RP & sup ||[Wo(I + GK) e < 1 (18)
k, 0

1 (20s+2)

2@+ 0y > Y

Wp (s)=

42 Analysis

The controller, used in this comparison, was syn-
thesised by DK-iteration (Balas et al., 1991) with un-
certainty set II;, representing the gain-delay uncer-
tainty in each input channel. It yields ppp = 1.028,
so RP is almost satisfied.

The complex perturbation sets I1;; and I3 are both
outer approximations of the gain-delay set II. Be-
cause of this we know that J (Eq.5) for these approxi-
mations will yield an upper bound of J (IT) (denotes J
for uncertainty set IT). Similarly, since 1I, is an inner
approximation (for the uncertainty in this example),
J(I1,.) yields a lower bound of J(IT).

Fig.4 shows J for the distillation example where
the uncertainty is modelled by sets I, (solid), II3
(dash) and II. (using n = 2) (dash-dot). The “true”
J(II) is bounded from above by the solid and the
dashed curve, and from below by the dash-dot curve.
An interesting observation is that the smallest upper
bound and the lower bound are quite close to each
other, i.e. J(II) is determined by rather tight bounds.
At some frequencies between 0.01 and 0.1 [rad/min]
J(I3) > J(I,), which shows that at these frequen-
cies the smaller set 11 includes plants which are worse
than any plant within the larger set IT;,. However,
at most frequencies the smallest set J(II3) yields the
tightest upper bound on J(II). At most frequencies
above 7 [rad/min] J(IIs) and J(II,) arc identical (if
the computation of J(II.) had converged they would
be identical for all frequencies above « [rad/min]).
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Fig. 4: The “skewed p” J as a function of frequency

for different uncertainty sets; J(II;,) (solid), J(II1)
(dash) and J (II,) (using n = 2) (dash-dot).

5 DISCUSSION

The only uncertainty model suitable for synthesis,
presented in this paper, is II;, which has the advan-
tage of a very simple nominal model with no delay.
The reason for not including any delay in the nomi-
nal model is to keep the order of P(s) as low as pos-
sible, since a controller obtained by DK-iteration has
the same number of states as the augmented plant P(s)
(Fig.1) including the D-scales. Of the same reason,
the correction factor in wi(s) (Eq.12) may be omitted
when it is not necessary to cover every plantin I7.

Set I, where the average delay is included in the
nominal model, could of course also be approximated
by a rational model suitable for synthesis. This is done
by Laughlin et al. (1987), however, the result is often
more conservative. The explanation to this lies in the
high frequency behavior of II; and I, At high fre-
quencies the sets have equal disk radii (on the com-
plex plane), but while the disk center of II; is fixed at
1+ 0j the center of 11, moves along the unit circle and
thereby IT; effectively covers a larger region, resulting
in extra conservativeness.

The analysis in section 4.2 is based on J (Eq.5)
instead of u, since a comparison based on y may be
misleading when different representations of a given
uncertainty set are studied. Consider a gain-delay un-
certain plant with k£, = 0.2 and #; = 1 and represent
this uncertainty by sets II3 and II.. At a frequency
w > 5g=, II3 covers all plants withina disk with cen-
ter on the origin and radius 1+k,., I, covers all plants
within an annular region with outer radius 1 + k.. It
can be shown that the worst case plant is at a maxi-
mum distance from the origin, so I, and II. covers
the same worst case plant. Assume that a controller
K yields 4 = 1.1 for uncertainty set II3, i.e. a per-
formance margin of 1/1.1 for all plants within a radius
Ay(1+k,) = £5(1+0.2) ~ 1.09. Consider another
controller K, which yields the same y but for II,., i.e.
the same performance margin but for a larger radius
1+ Ayk, =1+ {50.2 ~ 1.18. This shows that y for
the two cases cannot be directly compared.

6 CONCLUSIONS

Single-input-single-output gain-delay uncertainty
cannot be exactly represented in the structured singu-
lar value framework, but has to be approximated into
a linear fractional form.

The smallest single complex perturbation that cov-
ers a gain-delay uncertainty may be derived analyti-
cally (Set II3). This uncertainty set may be used for
analysis only.

A delay free nominal model subject to a low order
multiplicative perturbation (Set II1 ;) is recommended
for p-synthesis.

An arbitrary tight approximation of the gain-delay
uncertainty may be derived using real structured un-
certainty (Set II.). This uncertainty set may in prin-
ciple be used both for analysis and synthesis, but no
synthesis method for real perturbations is available at
present.
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