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Abstract

The procedure for independent design of robust de-

centralized controllers proposed by Skogestad and Morari
[10] is improved by requiring the controller to be a de-
centralized Internal Model Control (IMC) type controller.
It is shown how to find bounds on the magnitude of the
IMC filter time constants such that robust stability or per-
formance is guaranteed. This allows the use of real per-
turbation blocks for modeling the uncertainty associated
with the controllers. In contrast, Skogestad and Morari
[10] found bounds on the sensitivity functions and comple-
mentary sensitivity functions for the individual loops, and
thereforz had to use complex perturbation blocks.
The concept of Robust Decentralized Delunability is in-
troduced. If a system is Robust Decentralized Detunable,
any subset of the loops can be detuned independently and
to an arbitrary degree withoul endangering robust stabil-
ity. A simple test for Robust Decentralized Detunability
is developed for systems controller by a decentralized IMC
controller.

1 Introduction

Decentralized control remains popular in the chemical process indus-
try, despite developments of advanced controller synthesis procedures
leading to full multivariable controllers. Some of the reasons for the
continued popularity of decentralized control are:

1. Decentralized controllers are easy to implement.
2. They are easy for operators to understand.

3. The operators can be allowed to retune the controllers to take
account of changing process conditions (as a result of 2 above).

4. Some measurements or manipulated variables may fail. Toler-
ance of such failures are more easily incorporated into the design
of decentralized controllers than full controllers.

5. The control system can be brought gradually into service dur-
ing process startup and taken gradually out of service during
shutdown.

Standard controller synthesis algorithms (e.g. Hz or Hy, synthesis)
lead to full controllers, and cannot handle requirements for controllers
with a specified structure, and alternative approaches therelore have to
be used for designing decentralized controllers. In this work we con-
sider independent design of robust decentralized controllers, introduced
by Skogestad and Morari [10]. New results on independent design are
presented which represent improvements over the existing design pro-
cedure, Throughout this work we will use the structured singular value
(see below) as the measure of control quality.

2 Notation

In this paper, G(s) will denote the plant, which is assumed to be of
dimension n x n. G(s) denotes the matrix consisting of the diagonal
elements of G(s), and g;;(s) is the ij'th element of G(s). The reference
signal (setpoint) is denoted r, manipulated inputs are denoted u and
outputs are denoted y. Throughout this work, all controllers are as-
sumed to be completely decentralized. The decentralized conventional
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feedback controller is denoted C(s), with i’th diagonal element c;(s).
Likewise, the decentralized IMC controller is denoted @, with 1’th di-
agonal element g;(s). C(s) and Q(s) are related by

C(s) = Qs)(! = G()Q() ™! ()

S(s) = (I + G(8)C(s))~" is the sensitivity function and H(s) = I —
5(s) = G(s)C(s)(I + G(8)C(s))"! is the complementary sensitivity
function. The sensitivity functions and complementary sensitivity funec-
tions for the individual loops are collected in the diagonal matrices
3(s) = (1-G(s)C(s))~" and A (s5) = G(s)C(s)(I = G(a)C(s))~L. Note
that the diagonal elements of $(s) and H(s) do not equal the diagonal
elements of S(s) and H(s), respectively. & and k; are the i’th element
on the diagonal of § and A, respectively.

3 Robust control and the structured sin-
gular value.

The realization that no model is a perfect representation of the system
it is describing points to the requirement that the control system sta-
bility and performance should be little affected by the uncertainties of
the model. In this paper we use the structured singular value, g, intro-
duced by Doyle [2], as a measure of the robustness of feedback systems.
Within the p framework, one accepts that it is the impossible to find
a perfect model, and instead require information about the structure,
location and estimates of the magnitude of the model uncertainties.

In Fig. 1 we have drawn an example of a feedback system with un-
certainty in the inputs and outputs!, represented by the perturbation
blocks Ay and Ag, respectively. Note that the individual perturbation
can be restricted to have a certain structure. For instance, as individ-
ual inputs and outputs usually do not affect each other, both A and
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Figure 1: Block diagram for feedback system with uncertainty in
the inputs and outputs.

Ao are assumed to be diagonal. Wy and Wo are frequency-dependent
weights normalizing the maximum magnitude of A; and A, respec-
tively, to unity.

Any block diagram with uncertainties represented by perturbation blocks

A

M

Figure 2: Feedback system rearranged into a perturbation block
A and an interconnection matrix M.

can be rearranged into the M — A structure of Fig. 2, if external in-
puts and outputs are neglected. In Fig. 2, A is a block diagonal matrix
with the perturbation blocks of the original block diagram on the diag-
onal, and M contains all the other blocks in the block diagram (plant,

!Many other types of uncertainties possible, see [2] for details on how Lo
represent different uncertainties with perturbation blocks



controller, weights). Provided M is stable (the system has Nominal
Stability, NS) and A is stable (stable perturbation blocks), it follows
from the Nyquist stability criterion [2] that the overall system is stable
provided det(] — MA) £ 0 VA,VYw. In this case the system is said
to have Robust Stability (RS). The structured singular value is defined
such that

il = min{s|det(] - MA) =0 forsome A,2(A) <6} (2)

Il weights are used to normalize the maximum value of the largest
singular value of A to unity (#(A) = 1) at all (requencies, like in
Fig. 1, the system will remain stable for any allowable perturbation A
provided pa(M) < 1.

Doyle [2) showed that performance can be analyzed in the jt framework
by considering an equivalent stabilily problem of larger dimension. We
use a performance specification of the type &(WpS,) < 1 Vw where
Sp is the worst sensitivity function (S) made possible by the perturba-
tion blocks. This performance specification can be incorporated in the
1t framework by closing the loop from outputs to output disturbances
with the performance weight Wp and a full perturbation block Ap.
Il pa(M) < 1 (after normalizing the magnitude of the perturbation
blocks) for the corresponding M — A structure of increased dimension,
the system is said to have Robust Performance (RP), as the perfor-
mance specification is fulfilled for all the possible model uncertainties.
Doyle and Chu [3] proposed an algorithm for the synthesis of controllers
which minimizes 4, known as D~ X iteration. However, D— K iteration
results in full controllers, and the problem of synthesizing u-optimal
decentralized controllers has not been solved.

4 Independent design
Independent design of robust decentralized controllers was introduced
by Skogestad and Morari [10]. 1t is based on Theorem 1 in {9], which

we state here:

Theorem 1 Let the p interconnection matriz M be writlen as a Linear
Fractional Transformation (LFT) of the transfer function matriz T

M = Nyj 4 NygT(I = NooT) ™' Noy (3)

and let k be a given constant. Assume pa(Ny ) < 1 and det(] —
szT) # 0 then

pa <1 4)
if
(T)<er (5)
where cr solves
Ny Nia | _
Ha [ erNat erNa ] =1 )

and A = diag{A, T)
Proof: See [9].

T is generally some important transfer function which depends on the
controller. Skogestad and Morari [10] uses Thm. 1 to find bounds on
the sensitivity function and complementary sensitivity functions for the
individual loops (ie. T = § and T = H are used). The bounds on
and H can be combined over different frequency ranges. Thus, if
either the bound on $ or the bound on H is fuifilled for all loops at all
frequencies, then pa(M) < 1 is achieved.
In this method one treats the transfer functions (T') as uncertainty, and
thereafter finds bounds on the magnitude of this fictitious uncertainty
which guarantees that pa (M) < 1. Thereafter, one is faced with finding
controllers such that the bounds on the transfer functions are fulfilled.
It is therefore important for the success of independent design that T
introduces as little additional uncertainty as possible. It turns out that
choosing T = § and T = H are not ideal for this purpose.

4.1 Example 1.
Consider Example 1 in Chiu and Arkun {1]:

M

1.66 ~1.74e"%
G(s) = 395 +1 4:43+1
8.50 1 38s+1

There is independent input uncertainty with input uncertainty weight
Wi(8) = 0.07]3, and the performance requirement is given by the per-
formance weight W,(s) = 0.2574L 1,

Chiu and Arkun [1] attempted independent design for this example,
using T = § and T = £, but were unable to find a controller which
fulfilled the resulting bounds. In [1] it was therefore claimed that inde-
pendent design can not be performed for this example. We will however
demonstrate below that independent design can be performed for this
example, within the framework of Internal Model Control.

5 Independent design with decentralized
IMC controllers.

Here we shall select T not as a transfer function, but rather as a
parametrization of the tuning constant in the controller. We use the
Internal Model Control (IMC) technique [5] to parametrize the indi-
vidual controller elements. The relationship between the elements ¢; of
the IMC controller and the elements ¢; of the conventional controller
is given by

ci = gl - giiei) ™! (8)
In the IMC design procedure [7], ¢; has the form
=050 9)

where i is the minimum phase part of gi;, and f; is a low pass filter
used to make g; realizable and to detune the system for robustness. In
order to simplily the exposition, we will assume the plant G to be open
loop stable, and use a low pass filter of the form
1
P L B 10
ki e (10)
That is, the f; is taken to be a low pass filter of order ny, consisting
of ny identical first order low pass filters in series. For details on IMC
design, and on filter form for unstable systems, the reader is referred
to Morari and Zafiriou [7].

5.1 Choice of T for independent design

After fixing ny, the only thing which remains uncertain in the IMC
technique is the value of ¢;. To fulfill performance requirements at
low [requencies, the closed loop system must be sufficiently fast, which
means that the filter time constant ¢ must be smaller than a certain
value. On the other hand, the closed loop system must be sufficiently
detuned to avoid robustness problems at higher frequencies, thus re-
quiring € to be larger than a certain value, meaning that 1/e must be
smaller than some value. We will therefore use Thm. 1 to find bounds
on ¢ and e¢; = 1/¢ which can be combined over different frequency
ranges. Since € is a positive real constant and S and H take complex
values, we will thereby make the uncertainty description for indepen-
dent design much less conservative.

At each frequency point, we will have to solve Eq. (6) iteratively. To
bypass the problem of having to find a new realization of @ for each
value of ¢ and e considered, we choose to work with [requency responses.
Although g;‘ in Eq. (9) will normally not be realizable, its [requency
response is easily calculated. As a result of the choice of working with
frequency responses, we will have to check & posteriori for the (internal)
stability of the jt inlerconnection matrix M for one choice of ¢ within
the bounds found.

We refer the readers to [9] or [7] for details on how to find the LFT's
needed for Thm. 1. We will here only elaborate on how to express f;
as an LFT of the uncertainly associaled with ¢ or e.

5.1.1 First order low pass filters.

Consider first the case ny = 1. The objective is to find the allowable
ranges for ¢; and e; = 1/¢; that at each frequency guarantee p(M) <1
Since we do not allow negative values for ¢; we should not write |¢;] < ¢..
Instead write

¢(1+4A))
ei(1+ A

[ad <1 an
jal <1 (12

€

€
and iterate in Thm. 1 for ¢ and €] until ¢, = 1 or ¢, = 1. We then get
the allowable ranges to be 0 < ¢; < 2¢! and 0 < ¢; < 2¢;. Note that all

quantities, including A, and A, are real. In order to use Thm. 1 we
now ned to write f; as an LFT of A, and A,. We then get

1 1 -1
Ne, = —(.Hl[(.‘J _c.s] (13)
1 [e e
—— (1)

5.1.2 Higher order low pass filters.

In IMC design, one will often use filters of order higher than one. We
therefore need to be able to express the higher order filters as LFT’s of
A, and A.. For this we can use the rules for series interconnection of
linear dynamical systems. First note that G(s) = C(sI — A)~'B + D
may be written as an LFT of {-I, with

Nu=D; Ni2=C; Na=B; Np=A

The formulae for series interconnection G = GG ol dynamical sys-
tems Gl(s) = C](JI-A])_IBl+D1 and Gg(s) = Cz(BI—Az)_lBg+D1
are (e.g. [6]):
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Figure 3: The interconnection matrix M expressed as an LFT
of the IMC controller @ and as an LET of the “uncertainty”
associated with the filter time constants.

_ A 0], [ B
A= [Bzcl A2]' B_[BﬁDl]
C= [D:C Ci]; D=[DDi]

The formulae for series interconnection of dynamical systems can be
used directly to express an njy’th order low pass filter as LFT’s of
diag{Aq, -, Aen,} and diag{A.y, -+, Aen,}. As we will normally use
the same time constant for all first order factors of the ny’th order filter,
we will have A,y = A = -+ = Ay, and Ay = A== Aeny,
and we have repeated scalar, real “uncertainty” associated with the
filter in each IMC controller element.

6.1.3 The overall low pass filter.

Above we have shown how to express an individual filter element f;
(being a low pass filter of order ny) as an LFT of the real “uncertainty”
in the filter time constant in that filter element. The LFT for the overall
IMC filter F = diag{/;} is then just a simple diagonal augmentation of
the corresponding blocks of the LFT for the individual filter elements.
For example, let N§; denote the Ni; block for the LFT of element i.
The block Ny for the LFT of the averall IMC filter will then be given
by Nu = diag{Nfl}.

Note that although we have repeated scalar “uncertainties” for each
individual filter element, the filter time constants may differ in different
filter elements, and the “uncertainties” in different filter elements are
therefore independent. For a plant of dimension n x n we therefore end
up with n repeated scalar uncertainty blocks for the IMC filter, each
of these blocks being repeated n; times?.

5.2 Example 1 continued.

Consider again Example 1 studied above. For this problem we choose
a second order low pass filter in each element of the decentralized IMC
controller. Since we have a 2 x 2 system, this will add two real, repeated
scalar perturbations, each repeated twice. Solving Eq. (6), we obtain
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Figure 4: Filter time constant bounds for Example 1. Solid:
upper bound. Dashed: lower bound.

the results in Fig. 4. We see that values of ¢ between 3.7 and 6.6 are at
all frequencies either below the upper bound or above the lower bound.
Choosing € = 5 for both loops, it is easily verified that the system is
nominally (internally) stable. We have thus completed an independent
design [or this example.

5.3 Independent design procedure.

With the preliminaries above, we can now propose an independent
design algorithm:

?One may use low pass filter of different orders in the different filter ele-

ments, in which case the value of n; will differ for different filter elements.

I. Find the matrices N, expressing the p interconnection matrix
M as an LFT of A, and the matrix N,, expressing M as an LFT
of A,. N, will depend on the value of €7, and N, will depend on
the value of e”.

2. We get
p(M) <1
if
0< 6 <2 Vi (15)
where ¢ solves
(V) = 1 (16)

Similarly, let e* solve p(N,) = 1, giving the bound

0<e <2 Vi &1/(2")<e Vi (1n

3. From 2 and Thm. 1 we know that u(M) < 1 for the range of
values of ¢ which at all frequencies is either within the range of
values in Eq. (15) or within the range of values in Eq. (17).

4. Choose a value of ¢ within the range of values found in point 3,
and verify the stability of M for this choice of ¢. 3

If we are successful in points 3 and 4, the controller design is completed.
Since we have real perturbations, point 2 requires Real u calculations
[11], which is still a research topic. However, the existing Real y soft-
ware has proved to be acceptable in many cases.

5.4 More examples

5.4.1 Example 2.

Here we consider Example 2 in [1], in which it is claimed that inde-
pendent design cannot be used to design a robust controller for this
example.

&2 & 21D
C(s) = 3—32‘% S =341 (18)

TiiLy

. 46,2 0.87(11.61s41
F15s+1 109541 (3.89s+1)(18.8s+1
In this example only robust stability is considered, with independent,
multiplicative input uncertainty with uncertainly weight Wi(s) =
0.135%t1-. As for example 1, a second order low pass filter is used in
each diagonal element of the IMC controller. This will add three real,
repeated scalar perturbations, each repeated twice. From point 2 in the
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Figure 5: Lower bound on filter time constant bounds for Exam-
ple 2.

independent design procedure we obtain the results in Fig. 5. From
Fig. 5 we see that any value of ¢ larger than 0.55 will be acceptable.
Choosing € = 1 lor all loops, we find that the system is stable. We thus
find that the system will be robustly stable for any value of ¢ > 0.55.
In general we want ¢ to be small for a faster nominal response.

For both example 1 and example 2, Chiu and Arkun [1] were unable to
perform an independent design, using the procedure of Skogestad and
Morari [10). This demonstrates the importance of introducing as little
conservatism as possible in the description of the uncertainty associated
with the controllers when performing an independent design.

3For any value of € within the range found in point 3, the map under the
Nyquist D-contour of det(F — MA) will encircle the origin the same number
of times. Thus, il M is found to be unsiable in point 4, it is “robustly
unetable”.



5.4.2 Robust decentralized detunability

Definition 1 A closed loop system is said to be Robust Decentralized
Detunable if each controller element can be detuned independently by
an arbitrary amoun! without endangering robust stability.

In the IMC framework, controllers are detuned by increasing the filter
time constants. We have thus found for example 2 above that the
loops can be detuned independently of each other, without endangering
robust stability, provided all loops have ¢; > 0.55. Thus the closed loop
system in example 2 with ¢; > 0.55 in all loops is found to be robust
decentralized detunable according to Definition 1. After removing the
performance requirement from example 1 and redoing the calculations
for robust stability, we find thal it is robust decentralized detunable
provided ¢; > 0.16 for both loops.

5.4.3 Example 3, with some further notes on nominal
stability.

We would like to emphasize point 4 in the Independent design proce-
dure, that nominal stability must be checked explicitly for one value of
€ within the bounds found. A decentralized IMC controller as paramet-
rized in Eq. (9) will make the individual loops stable, which in many
cases will be considered an advantage. However, integral action is in-
herent in IMC controllers, and integral action and stability of the indi-
vidual loops is known to be incompatible with stability of the overall
system for certain plants. The Niederlinski Index criterion (8] gives a
necessary condition for obtaining stability both of the individual loops
and the overall system when there is integral action in all channels.
The Niederlinski Index criterion has recently been generalized to open
loop unstable plants [4]. Let the number of Right Half Plane (RHP)
poles in G be ny (including multiplicities), and the number of RHP
poles in G be fiy. Note that in general iy # ny. If all the individual
loops are stable, a necessary condition for the stability of the overall
system is that

detG(0)

sign{N;} = aign{m

=sign{(-)""H)  (19)
Thus, belore attempting to perform an independent design, one should
check that overall stability can be achieved with integral action in all
channels and having stable individual loops.

Example 3. Consider the process

5 8
G(s) = [ 2055+612-+1 205’+212:+I ] (20)
T007F12:+1 074 120+1

with independent actuator uncertainty with uncertainty weight W;(s) =
0.21%5417, Since this plant is stable and the Niederlinski Index is neqa-
tive, Ny = —3.8, we know that we cannot have the individual loops

stable and at the same time achieve overall system stability. Neverthe-
less, we proceed with independent design, and choose third order low
pass filters for both loops. We find that point 3 in the independent
design procedure indicates that any value of ¢ > 4 (approximately) will
give robust stability (figure omitted). Calculating p for ¢ = 5 for bolh
loops, we do indeed obtain a value of y < 1 at all frequencies. The
reason, which we find in point 4 in the independent design procedure,
is that the system is nominally unstable. The u test merely tells us
that this instability is a robust property. For other cases, it may not be
this easy to tell & priori that the overall system will be unstable with
the individual loops stable.

5.5 Conclusions
‘We have found that:

o The independent design procedure can be made more powerful
by considering decentralized IMC controllers only. The result of
considering only decentralized IMC controllers with a specified
filter structure, is that the set of possible controller designs con-
sidered is much smaller than the set of possible controller designs
when trying to find bounds on § and H. Of coutse, for problems
where independent design based on bounds on § and H is lea-
sible, restricting the choice of controller to one specific structure
may actually be a disadvantage.

o We have demonstrated how to find bounds on the IMC filter time
constants which guarantee robust stability/performance. The
only uncertainty associated with the controller elements is then
the uncertainty in the filter time constants. We therefore have
real uncerlainty, which is less conservative than the complex un-
certainty one has to use when trying to find bounds on S and H,
as suggested by Skogestad and Morari [10].

4«Decentralized detunability” for a given controller should not be confused
with decentralized integral controllability (DIC), which is a propertly of the
plant only.

e Within the independent design framework, one can derive a bound
on the IMC filter time constants which ensures that the system is
“robust decentralized detunable”, that the loops can be detuned
by an arbitrary amount, independent of each other, without en-
dangering robust stability. If a system is robustly decentralized
detunable, any subset of the loops can be taken out of service
without introducing instability.

o A disadvantage of the proposed independent design procedure is
that the bounds obtained are common to all the filter elements,
and it is not obvious how to take advantage of the possibility
of having differing filter time constants in the different filter ele-
ments. However, one may of course use constant ratios between
the filler time constants in the independent design procedure
(e.g. choosing €, = ¢, €3 = 10¢*, etc.).
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