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1 Introduction

It is well-known that the high nonlinearity of processes is one of the
challenging control problemsm. In the case of mild nonlinearity, lin-
ear control, based on local linearization, may provide satisfactory
performance. However, in the case of high nonlinearity, linear con-
trol may lead to very poor performance and nonlinear control may be
necessary. Inspired by this realization, there have been considerable
interests in nonlinear control in the past years. As a result, exact
linearization control theory has emergedlg]. By using nonlinear coor-
dinate transformations and state feedback, a wide class of nonlinear
processes can now be “globally” linearized in either an input-state or
an input-output sense. Exact linearization control provides a promis-
ing method to the control of nonlinear systems.

Many application studies to various chemical processesls] as well
as other highly nonlinear plants have already been done. Among
vhem, more than ten are applications to continuous bioreactors (for
details, see [6]). Although most of the studies are very successful,
some do meet problems which limit the applicability of exact lin-
earization control. Dochain and Perrierl! noticed unstable zero dy-
namics in an anaerobic digestion process. Lien and Wangul] and
Henson and Seborglg] identified singular points just in the desirable
operating range (the optimal steady state) in the control of the pro-
ductivity using the dilution rate D and the feed substrate concen-
tration sy, tespectively. In both cases, as they have pointed out,
the steady state gain is zero, and a singularity is not unexpected. It
is well-known that the applicability of exact linearization techniques
relies on the existence of stable zero dynamics and the strong relative
degree. Disturbance decoupling property is also very important since
there is not yet an explicit way to deal with disturbance rejection in
feedback design.

In this paper, these potential difficulties with the application of
exact linearization technique to a class of continuous bioreactors is
examined. We concentrate on input-output linearization since input-
state linearization can be viewed as a special case of input-output
linearization. Input-state linearization can have all the same prob-
lemns except unstable zero dynamics (no zero dynamics with input-
state linearization). Various control structures are compared. Simi-
lar studies have been done before. Agrawal and Lim’s evaluationll!
based on local controllability, local stability, the steady state gain
and input multiplicity. Menawat and Balachander12) noticed the
better interaction property with feed substrate concentration sy as
control input than that with dilution rate D. Henson and Seborglsl
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also evaluated different control structures using both input-state and
input-output linearization. The difference is that besides the classes
of continuous bioreactors considered are quite different, we empha-
size on analysis of zero dynamics, singular points and disturbance
decoupling property. In Section 2 we introduce the process and the
control objective. In Section 3 we briefly review the exact input-
output linearization theory. In Section 4 we study single loop control
structures with the dilution rate D, and in Section 5 the single loop
control with feed substrate concentration sy, and in Section 6 the
multivariable control. Finally in Section 7 we summarize the results.

2 Description of the Control Problem

2.1 The Process and Its Nonlinear Model

A continuous bioreactor in its simplest form is described by the fol-
lowing state equations:

5 =(-Dle 1

%:D(s,—s)——;—z (2)
where z and s are the state variables representing the cell mass con-
centration and the substrate concentration, respectively, D is the di-
lution rate, and s is the substrate concentration in the feed stream.
The kinetics of the cell mass production is defined in terms of the spe-
cific growth rate, p, and the yield of cell mass, Y. Equations (1) and
(2) are the results of the material balances on the cell mass and the
substrate in a constant-volume stirred tank reactor. Although this is
a very simple model, it is the most commonly used in the literature
and it does represent the dynamical behavior of many important bio-
logical processes or one stage of them which are characterized by the
growth of a single cell population from a single limiting substrate.

Here we assume a constant yield and assume that the specific
growth rate depends only on substrate concentration. Two com-
monly used kinetic models are:

1. Monod ie fim @
Knts
2. Substrate inhibition
fm? 4
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In the Monod law, the specific growth rate u(s) increases monotonely
with s and hence does not take account of any substrate inhibitory
effects at high concentrations. The second law is a modification of
the Monod law with one additional term accounting for possible sub-
strate inhibitory effects.

In this study, we assume both the dilution rate D and the feed
substratle conceniration s, can be vsed as manipulated variables. We
focus on the following three outputs:

yl=z %)
y2=s (6)
y3 = fuz (M

yl and y2 are simply the cell concentration and the substrate con-
centration, respectively. y3 can be interpreted as the productivity of

a purely growth associated product.
From equations (1) and (2) we can get the following steady state
model:

p=D
z=Y(§5-3)

(8
9
where ~ denotes steady state value. These steady state relationships
are very useful in the following analysis. In particular, equation (8)
shows that steady state specific growth rate, and hence the steady
state substrate concentration, is only determined by the dilution rate,
and is independent of the feed substrate concentration.

2.2 Linear Model

We are studying nonlinear control of bioreactors, a linear model
which approximates the plant around a steady state is not neces-
sary. However, as we will see, such a linear model can still provide
much important information.

Let X =[z-%,s—3T,and U = [D - D,sy - 57]T, where -
denotes steady state value. By using Tailor series expansion, we have

dX
- = AX + BU (10)
where 0 ,
_ Wz
A—[—{; —#-“VE] ()
B = [by bs] = [z‘/; 2] (12)

where the prime / denotes derivatives with respect to s. All the
variables in the A and B matrices, and subsequently in the following
transfer matrix, denote the steady state values. For simplicity we
have omitted ~. The input-state transfer matrix is

L}

et Bz
4 A
G(A) - [ r\:';;;r (A"'H]L/\““’?‘}] (13)
AMEE Du)(M+5F)

where in order to distinguish from the substrate concentration s we
have used A to denote the complex variable.

The two open-loop poles are —u and —p'z/Y. The former is
always stable , while the latter is stable if and only if u’ > 0. For
bioreactors with monoincreasing cell growth rate, for example, the
Monald model, u4' can never be less than zero, hence this kind of
bioreactors will theoretically be open loop stable at any steady states.
However, for any bioreactor whose cell growth rate has a maximum,

it will be open loop unstable at substrate inhibition level (4’ < 0).
The plant is locally state uncontrollable at any steady state with ect
only one control variable D, but still stabilizable with a fixed mode ",‘--' o

-4 which disappears from the first column of the transfer matrix.

When s/ is used as the only control variable, the plant is locally state -

controllable everywhere except those satisfying g/ = 0. Since B has
full rank, multivariable control is always controllable.

sem b Y
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2.3 Control Objective

The control objective is to attain and maintain the desired steady
state. The set-point usually comes from quality control specifications
or a steady state optimization of some performance index. In the
latter case, the set-point can also be updated on-line by a top-level
optimizer.

3 Exact Input-Output Linearization

We give a brief review of the exact input-output linearization theory.
For simplicity we consider control affine SISO systems:

£ < j2) + (e (14)

y = h(z) (15)
where u € R is the control input, z € R" is the state vector,y € R
is the controlled output, f(z) and g(z) are n-dimensional smooth
functions on R", h(z) is a smooth function on R™.
The nonlinear system is said to have a relative degree of r at the
point zg if for all z in a neighbourhood of zo

LyLih(z) =0, VO<i<r—1 (16)

L,L;’lh(z) #0 17)

where Lh is the Lie derivative, i.e. Lyh = §f(z).
If a nonlinear system has a finite relative degree, one can always

construct a nonlinear state coordinate transformation n = ¢(z) such
that

¢i(z) = L'h(z), 1<i<r (18)
L#i(z)=0, r+1<i<n (19)
This transforms the nonlinear system into the normal form:
dry .
=iy, 18igr-1 (20)
dﬂr r r—1
Sk = a(n) + Blmu = Ljha) + L Ly W(ahu,  (21)
B o yn), r41<isn (22)
y=mn (23)

It is then obvious that the nonlinear state feedback control law

1 r—1

_ k r
u= L’L—}_lh(v - kgoak+ll4!h - L!h) (24)
will make the system linear from v to y, i.e.
r—1
Y+ 3 ary® = v (25)

k=0
A linear controller can then be designed for the linearized system. If
the objective is to track a setpoint y,,, one simple way is to let
v=ao [(u - y)dr (26)
Note that this linearizing control law makes the last n — r state
variables of 7 unobservable from the output. Internal stability re-
quires those unobservable modes to be stable. To be precise, we

need the concept of zero dynamics, which is a generalization of the
concept of zeros to nonlinear systems. Let us partition the state

“vector as
B (=[m.nl, z=[n41 .. ) (27)
“ Then eq. (22) can be rewritten as
dz .
a =7((2) (28)
/
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‘Here we have

Zero dynamics of a nonlinear system is defined as

dz

7 = 10:2)

(29)
This is equivalent to the dynamics with the output y(t) constrained
to identically zero. Exact input-output linearization is, in fact, a
nonlinear analog of placing poles at plant zeros, hence cancels the
zero dynamics and leads to z unobservable. It is obvious now that
the zero dynamics must be stable to guarantee internal stability.

Remark: The applicability of exact input-cutput linearization de-
pends on the existence of relative degree and on the stability of zero
dynamics. However, both relative degree and stability of zero dy-
namics are local properties of a nonlinear system. This local nature
greatly complicates the applicability problem. It is no longer so sim-
ple as whether or not applicable to a system. Zero dynamics of a
nonlinear system may be stable in some operating regions but unsta-
ble in others. Similarly, a nonlinear system may has singular points
where the relative degree cannot be defined. So applicability only
applies to specific operating region of a nonlinear system.

The concept of singular point can also be precisely defined. A

point zo is a singular point if there exist a k and a point z # zg such
that

LyLEh(z) # 0 (30)
LyLih(z0) =0 (31)
Disturbance Decoupling
For a nonlinear system with disturbance of the form
dr
5 = /(&) + 9(z)u + p(z)d (32)
y = h(z) (33)

The relative degree of disturbance d can be defined analogously, i.e.
a disturbance d has a relative degree of p at the point zo if for all z
in a neighbourhood of zg

LyLyh(z) =0, VO0<i<p-1 (34)

Ly, Ly h(z) £ 0 (35)

It has been shown in [3]:

¢ Disturbance d can be decoupled from the output using only
feedback control if p > r.

o Disturbance d can be decoupled from the output using feedfor-
ward /feedback control if p = 7.

¢ Disturbance d cannot be decoupled from the output unless
derivatives of disturbance is used in control law if p < r.

Using derivatives for control is generally not practical. Henceifp < r,
disturbance rejection must be considered in feedback control design.
However disturbance rejection cannot be handled explicitly yet in
exact linearization control. Neither can model uncertainty.
Remark: Though we review only the results of SISO systems here,
it does introduce the relevant concepts and issues which will be dis-
cussed in this paper. For more details about MIMO systems, readers
may refer to [10]. Exact input-output linearization even applies to
general nonlinear systems which are not control and (or) disturbance
affinel?), though only numerical solutions are available in general.

4 Single Loop Control with the
Dilution Rate D
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Zero Dynamics

Zero dynamics usually depends on the choice of both control vari-
able and controlled variable. However, as we will show, zero dynam-
ics will almost not depend on the specific controlled variable when
the dilution rate D is used as the control variable. Since D appears
on the right side of each of the state equations, the relative degree
is 1 no matter z or s is the controlled variable. In fact, the relative
degree is 1 for all of the controlled variables which are both control-
lable and functions of state variables only (namely not including the
input D). Since the relative degree is 1, the zero dynamics is of order
1. By eliminating D from (1) and (2) we have

dz
= = 36
= K (36)
where
) S B (37)

z Y
It can be easily shown that z is uncontrollable. Hence z and any
of the controllable outputs constitute a new coordinate basis of the
state space. Indeed equation (36) is the zero dynamics for all the
controllable outputs and it is also in the normal form. The cause for
a common zero dynamics is the state uncontrollability. Since there
must be some “zero-pole” cancellation in an uncontrollable system,
the one-order zero dynamics must be the same as the uncontrollable
dynamics which is independent of the choice of output.

From equation (36) we see that this zero dynamics is globally sta-
ble. This is indeed a very desirable property. The relative stability,
however, depends on operating points. It is very poor at substrate
limiting range (low substrate concentration). Finally we must point
out that, if the output function involves control input D, the rela-
tive degree is zero. Then the zero dynamics is of order 2. Besides
equation (36), there is an additional differential equation of the zero
dynamics which may be unstable.

4.1 Output yl

When the dilution rate D is used as the only control variable and
the cell concentration z is the output, this control scheme is called
turbidostat. Although this is not a very good control scheme as
have pointed out by many authors, this is the first one which have
ever been studied and this is also the one which have been most
extensively studied. The reason may be that the dilution rate D is
the direct and easy way for control and that the measurement of cell
concentration is relatively reliable.

In this case, we have

yl=h=12z (38)
Lyh = -z (39)
Lih=pz (40)
The control law
1
D= _;(aoj(yl,,—:)dr—alz—p:r) (41)

will make the closed loop system input-output linear with a transfer

function ao

T(e) = s +ays+ag

(42)
Singular Point

L,k = —z = 0 means wash-out, so it is not possible to have
singular points under normal operation condition.
Disturbance Decoupling

Disturbance sy has a relative degree of 2 (see section 5.1), which
is larger than that of the control input, so disturbance will be com-
pletely decoupled by the feedback control law., This means that the

controlled output will not be affected by disturbance sy at all. This
is verified by simulation result.
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4.2 Output y2

This control scheme is the nutristat. It has also been studied very
early. In this case, we have

y2=h=s (43)
Loh =575 (44)
Lih= —%s (45)
The control law
1 B
D= = s(ao /(y2,,, —s)dr—a15+ 7:) (46)

will make the closed loop system input-outpﬁt linear with a transfer
function of the form of (42).
Singular Point

Similarly, Lyh = sy — s = 0 means wash-out, so it is not possible
to have singular points under normal operation condition, either.
Disturbance Decoupling

In this control scheme, the relative degree of disturbance sy is 1
since s; appears on the right side of equation (2). Since the rela-
tive degree of control input is also 1, feedback control is no longer
sufficient for the disturbance decoupling. However, we can still com-
pletely decouple the disturbance by using a feedforward-feedback
control. The disturbance s, must be measured on-line and the mea-
sured value should be used in the control law (46) instead of the
nominal value. This result is also verified by simulation.

4.3 Output y3

In this case, we have

y3=h=Buz (47)
Loh = —fBpz + Bu'z(sy ~ ) (48)
Lyh = fp’z - ﬂ%’-zz (49)

The control law
ao [(y3ap — y3)dr — a18uz — Bulz + ﬂf‘ﬁ
—Buz + Bp'z(s; ~ 3)

will make the closed loop system input-output linear with a transfer
function of the form of (42).

Singular Point

D=

(50)

Lgh = —Buz + fu'z(sy —8) =0 (81)

is equivalent to
z=0 (52)
or —p+p(sy-98)=0 (53)

So, in this control scheme, besides the trivial singular point z = 0, we
do have nontrivial one which satisfies equation (53). For both Monald
law and substrate inhibition law, equation (53) has one solution.
The linearizing feedback control will fail in this singular point. More
unfortunately, this singular point is within the desirable operating
range as we can show that this singular point coincides with optimal
steady state, i.e. the maximum steady state productivity. By noting
the steady state relationships (10) and (11), we have

dh -

75 = U -9 -#l (54)

Since the steady state gain is zero at optimal steady state, an infinite
control gain seems necessary to make the feedback system globally
linear. Hence this singularity is not unexpected. < » -~ * ' ¥

This singularity was firstly identified by Lien and Wang(' 1l for

a plant with Monald law. They also proposed a p‘:‘lold.iﬁled feedback

inearizi law, e using —22 " instead of
linearizing control law, l.e. using LR instead o m,

where ¢ is a small positive parameter. This modified linearizing con-
trol applies only to nonlinear systems which are open loop stable at
singular points. By adjusting the parameter ¢, one can arbitrarily
approach the original feedback linearizing law as close as one wishes
in everywhere except singular points. The feasibility of the modified
control law for this control scheme was shown by their simulation
results.
Disturbance Decoupling

The relative degree of disturbance sy is also 1. So a feedforward-
feedback control is necessary and sufficient for a complete disturbance
decoupling.

5 Single Loop Control with the Feed Sub-
strate Concentration sy

Only recently has the feed substrate concentration s; been used as
control variable. Menawat and Balachander!1?] have noticed the
harmful interaction when dilution rate D is used as the control vari-
able. Here the harmful interaction means that the interaction does
not enhance but resists the response of the controlled variable, hence
makes the response sluggish and require large control action. The
interaction will enhance the response of the controlled variable if the
feed substrate concentration sy is used as the control variable and
hence can get better robustness in the sense to meet the control
objective in minimum effort.

Here we have
r=[%Pe) o= (2]

5.1 Output yl

In this case, we have

yl=h==z (55)

Lyh=0 (56)
Lyh=(u-D)e (57)

LyLsh = w'zD (58)

Lih = (p - DYz + p'z(-Ds — T#,-z) (59)

The control law

sy = ip(ao [(ylep — 2)dr — a1z — az(p - D)z (60)
—(1 - D)*z + p'z(Ds + §z))

will make the closed loop system input-output linear with a transfer
function

20 (61)

T()= S +as? +as+ao

Zero Dynamics

Since the relative degree is 2, there is no zero dynamics.
Singular Point

LyLsh = 0 means z = 0 or y’ = 0. z = 0 is the trivial singular
point. g’ = 0 is only possible for substrate-inhibited plants. So, for
plants with monoincreasing specific growth rate, for example, Mon-
ald law, it is impossible to have noatrivial singular point. However,
for substrate-inhibited plants this control scheme does have singular
point at the substrate concentration with maximum specific growth
rate. More unfortunately, this singular point is often within or close
to the desirable operating range since in most cases a sufficiently high
specific growth rate is necessary. EER ha

Unlike the singular point in section 4.3, here the steady state gain
at the singular point is not zero as it can be easily seen from (9) or



(13) that the steady state gain is always equal to the yield ¥. The
physical reason will be explained later.

Note that the plant is not asymptotically stable at this singular
point. Hence even the modified linearizing control proposed by Lien
and Wang is not applicable.

Disturbance Decoupling

Since the relative degree of the distnrbance I’ is 1 which is smaller
than that of the control input, disturbance decoupling is impossible.
Hence disturbance rejection must be considered in feedback design.

5.2 Output y2

Though we can get good interaction by using s, as the control vari-
able, the control scheme using sy to control y2 is not feasible. The
reason is that the controlled output y2 = sis independent of the feed
substrate concentration sy at steady states.

5.3 Output y3

In this case, we have

y3 =h =0uz (62)
Lgh = Bu'zD (63)
Lyh'= Bu(p ~ D)z — Bu'z(Ds + ) (64)

The control law

oo (W - y3)dr — ayBuz — Bu(p — D)z + Bp'z(Ds + §2)
! Bu'zD

(65)
will make the closed loop system input-output linear with a transfer
function of the form of (42).

Zero Dynamics

Since the relative degree is only 1, the zero dynamics is of order
1. In fact, equation (1) is the zero dynamics. To transform it to the
normal form, we must let y3 = y3. By noting y3 = Bpz = BDz, we

have
dz

y3 -
— — —4 —— = -— 6
= =w-D) D(5p z) = D(z - 2) (66)
Let

z=z-32 (67)
we get the normal form zero dynamics

dz

==~ 8

I Dz (68)

This zero dynamics is also globally stable. Moreover, the relative
stability is independent of the operating points. However, when the
feed substrate concentration sy is used as the control variable, we
may have unstable zero dynamics if a different output is chosen. For
example, we can easily seen from transfer matrix (13) that we will
have unstable zero dynamics if y =z — 8 is chosen as the output.
Singular Point

The singular point here are exactly the same as in section 5.1.
For substrate-inhibited plants this control scheme has one nontrivial
singular point at p' = 0. It can be easily shown that the steady state
gain at this nontrivial singular point is not zero, either. Indeed it is
pDY. Henson and Seborgls] also noticed a singular point at w=0
in this control scheme for a more complicated plant with three state
variables (product concentration is included). Though the singular
points are in the same place by chance, they are physically different.
In their case the singular point is not unexpected since the singular
point is also the optimal steady state and the steady state gain is
zero at the singular point as in section 4.3. Here the singular point
is not an optimal steady state since the productivity y3 increases
monotonely with the feed substrate concentration sy, and the steady
state gain at singular point is not zero but ADY.
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Disturbance Decoupling

Since the relative degree of the control input sy and that of the
disturbance D are both equal 1, a feedforward-feedback control is
necessary and sufficient for a complete disturbance decoupling.

5.4 More on Singular Points

We identified a singular point at u' = 0in both section 5.1 and 5.3.
We also pointed out that the steady state gain at this singular point
is not zero. Then what is the physical reason? The answer is output
uncontrollability here. A nonlinear system is outpul controllable at
# if and only if the system matrices A, B and C from the local
linearization at T satisfies .

rank[CB CAB ... CA™1'B] = p, pnumber of the outputs (69)

With the A and B matrices in Equations (11) and (12), and the
C matrix as oh

C=5;

it can be shown that the bioreactor is output uncontrollable at all
the (trivial and nontrivial) singular points met in this paper.

(70)

When s is the control input, weare still able to find an output in
which control structure there is no singular point at u' = 0 though the
singular pointat p' =0 exists no matter y1 or y3 is used as controlled
output. For example, we can choose y = z + 3, then at u' =0 the
system does not have singularity and is output controllable.

An infinite control action seems necessary in exact linearization
control strategies when the output is uncontrollable. In fact it can be
shown that output uncontrollability is a sufficient but not necessary
condition for singularity.

6 Multivariable Control

Here we use both the dilution rate D and the substrate concentration
sy as control inputs, and choose the state variable z and s as the
controlled outputs. Note that the plant is no longer control linear
when both inputs are used for control. This difficulty can be avoided

by using F = Dsy instead of sy as one control input. Then we have
-7 -[
v = F ] y - s
_ [ b= -z 0
A [ 3]
and
Lh=h=y (71)
-z 0
h={7" | (72)
Lsh = [_“;z] (73)
The control law
u = (Lyh) (Ao / (4op - )7 — A1y — Lgh) (74)

will make the closed loop system input-output linear with a transfer
function matrix

T(s) = (8*] + A1 + Ao) "' Ao (75)

If we choose diagonal Ap = diag{aon, aoz2} and
A, = diag{ajn1,a122}, we will also have input-output decoupling, ie.

(76)

e don1 8022
T(s) = diag {33 +ans+am' ¥ +anst+ am}




Fromn (74) we are able to derive the control law in original control
inputs D and s;. In the case of input-output decoupling, we have

!
D= —;(aon/(y:pl - z)dr — a7 - ur) (1)
F = Ds+ (ag /(y,pz —8)dr — ey + 5—1) (78)
1 b
sy=s+ 5(“022 /(yuﬂ = 8)dT —ajpp8 + 7”) (79)

(77) and (79) are the real control law used in implementation. This
control law can also be derived directly by using the method in ]
for general nonlinear systems.

Zero Dynamics

Both outputs have relative degree of 1, the sum is 2. So there js
no zero dynamics.
Singular Point

If D and F are the control inputs, we see from (72) that there is
only a trivial singular point z = 0. However, if D and s; are used
instead, we see from (79) that there is one more singular point at
D = 0. This singular point can also be identified explicitly using
the method in [7]. D = 0 is a nontrivial singular point as this can
happen in normal operation. Though D = 0is possible, it is unlikely
for a well-designed control system. So this singular point is not very
important in practice. Moreover, we can eliminate this singular point
by setting Dpin =€ > 0.

The reason there is a singular point at D = 0 when 87 is used
instead of F is that F is not a completely independent variable.
When D =0, s; can still vary independently, but F' must equal to
0. However this constraint is not considered.

Disturbance Decoupling

We no longer have disturbance since both inputs are used for
control.

7 Conclusions

The potential difficulty with the application of exact linearization
technique to a class of continuous bioreactors is studied. A complete
analysis of zero dynamics, singular points and disturbance decoupling
is done for each control structure. Results can be summarized as
following:

1. When D is the only control input, the zero dynamics is globally
stable and independent of the specific controlled output as long
as it is a function of state variables only, When sy is the only
control input, the zero dynamics is globally stable if the output
is z or Buz. However unstable zero dynamics is possible if other
outputs are selected.

2. Besides the singular point already identified by Lien and
Wa.ng{n] in the control of productivity using D, we also find
a singular point at the substrate concentration with maximum
specific growth rate for substrate-inhibited processes when sy is
the only control input and when either the cell concentration z
or productivity is the controlled output. This singular point is
often within or closer to the desirable operating range. Unlike
the former, this singular point is not the optimal steady state,
and the steady state gain at this singular point is not zero. The
physical reason seems related to local output controllability,
The bioreactor is output uncontrollable at all the (trivial and
nontrivial) singular points met in this paper. The singular
point at the substrate concentration with maximum specific
growth rate is not inherent to control input sy, i.e. ‘we are
still able to find outputs which do not have singularity and are
controllable at this point.
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3. For disturbance decoupling, feedback control is sufficient in the
control of z using D; feedforward-feedback control is necessary
and sufficient for all the others except the control of z using
sy. It is impossible to have disturbance decoupling in the con-
trol of z using sy, disturbance rejection must be considered in
feedback design.

4. Besides the improvement of dynamics performance, the multi-
variable controller does not suffer from the unstable zero dy-
namics, singular point and disturbance decoupling.

This study shows the importance of control structure selection
in the application of exact linearization control. By choosing an
alternative control structure we may eliminate or relieve the problems
with exact linearization control. By relieve we mean, for example,
moving the singular points far away from the desirable operating
range and/or having stable zero dynamics in a larger range.
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