e T e e T

Identification of Ill-Conditioned Plants —
A Benchmark Problem*

Elling W. Jacobsen! and Sigurd Skogestad?

1 Centre for Process Systems Engineering, Imperial College, London SW7 2BY,
United Kingdom.

2 Chemical Engineering, University of Trondheim — NTH, N-7034 Trondheim,
Norway.

Abstract: ) .

This note provides a simple process example from chemlc'a.l enginecring
which is proposed as a challenge problem for multivariable lde‘ntnﬁcatlon(i
The process considered is a simple heat-exchanger with. two inputs an
two outputs. It is strongly interactive and also ill—condltl‘med: A_ 9_“’5:
slow pole, resulting from the interactions, is dominating all the md}‘“d“
open-loop responses. Attempting to identify a model based on ﬁt:tmg- the
individual transfer-matrix elements will usually result in a multivariable
model which incorrectly has this dominant pole repeated. Su.ch a model,
although a reasonable model for the open-loop dynamics, y_lelds a poor
prediction of the process behavior under feedback control, in particular
when considering partial control. .

The note includes a description of the process, a file for generating °P_e’;'l
loop “experimental” data and an example demonstrating that class1f: "
identification employing an ARMAX-type of model yields a model whic
is poor for feedback control studies of the process.

1 Introduction

Most published work on the identification of dynamic models from ex?ggs
mental data has been concentrated on the single—input»single:output (S /
case. This is also reflected in the literature on process dynamics and contro ";
where linear dynamic models usually are obtained by fitting input-outpu
data from a plant. or nonlinear simulation to a low-order trans-ferjfunctlc;il.
In cases where the process is multivariable, the transfer-matrix 1s usua b)i
obtained by fitting the transfer-matrix elements indepcndel.l“y- However,does
taining reasonable models for the individual transfer-function ele‘:“ents toue
not guarantee a reasonable multivariable model. This 18 In Paftlc‘ﬂ?r_ ’ d
for ill-conditioned processes which is the subject of this note. Ill-?ondlglon:
processes are commonplace in the chemical process industry and include, lor
example, high-purity distillation columns (Skogestad et al. [6]).
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Skogestad and Morari [5] argue that fitting the transfer-matrix elements
independently may easily lead to poor models for ill-conditioned processes
unless one explicitly takes into account the coupling between the gains of the
different elements. In particular, one is not able to obtain a good model of
the low-gain direction of the plant, and the model will easily have the wrong
sign of the determinant of the steady-state gain matrix, and the model will be
useless for control studies. This problem may, however, usually be corrected
as the sign of the determinant and its approximate value in many cases is
known a priori (Kapoor and McAvoy [3], Jacobsen et al. [1]).

Another, and more fundamental problem in the identification of ill-con-
ditioned processes, is the fact that such plants often have a single “slow”
pole (large time-constant) which tends to dominate all responses of the plant
(Jacobsen and Skogestad [2]). This dominating pole is a result of interactions
in the process, and is thus shared by all the transfer-matrix elements. As
shown by Jacobsen and Skogestad [2], fitting the transfer-matrix elements
independently such that they all contain the dominating pole, will usually
result in an inconsistent model with several poles equal to the dominating
pole of the process. This inconsistency will result in a poor prediction of the
process under partial feedback control, that is, with only some of the process
outputs under feedback control.

The general literature on identification has so far not focused very much
on multivariable issues, and the particular problems that may be encountered
for ill-conditioned processes mentioned above, do not seem to have been dis-
cussed. In this note we therefore present data for an ill-conditioned process
which we believe represents a “new” and difficult problem in multivariable
identification.

We start the note by presenting a model and a set of input-output data

of a heat-exchanger which is ill-conditioned. In addition to providing data for
the process we also discuss briefly some specific process properties which are
.of interest for the identification problem. Having presented the problem we
employ a fairly standard identification technique and show that it results in an
inconsistent model which is poor for control studies of the plant. The objective
of the example is to demonstrate that obtaining reasonable models for the
individual transfer-matrix elements does not guarantee that the multivariable
properties have been reasonably captured.

2 Process Description

The process we consider is a simple heat-exchanger where heat is transferred
between a cold and a hot flow (see Fig. 1). Each side of the heat-exchanger is
approximated as a single, perfectly mixed tank. Neglecting variations in liquid
volume and heat accumulated in the walls yields a model with two states. The
model derivation is given in Appendix 1. The linear model y(s) = G(s)u(s)
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Fig. 1. Simple heat exchanger

is given by

— 1 k11(1 4 218) k1s
G(s) = (14 n8)(1+ 729) ( k21 ka22(1 + 213)) ’ (1)
where 71 = 100; 7, = 2.44; 27 = 4.76; kyy = —koy = —1874; and k13 =
—kg; = 1785. Here y = [Tc Ty) is the cold and hot exit temperatures and
u = [gc gqu] are the cold and hot inlet flow rates. The first thing to note
about the model is that there are two pole-zero cancellations such that the
model contains only two and not four states. The model is also relatively
ill-conditioned with a steady-state condition number of 41. The physical ex-
planation for the ill-conditioning is simply that the two exit temperatures are
almost the same (T¢ =61.59°C and Ty =63.41°C in our case), and it is very
difficult to change them independently. In particular, it is difficult to make
them closer or further apart (this is the low-gain direction of the process)
whereas we may easily make them both hotter or colder (this is the high-gain
direction of the plant). An analysis of the model reveals that the slow pole
—1/7 is related to the high-gain direction of the plant while —1/7; is related
to the weak direction. The steady-state gain related to the slow pole is hence
41 times larger than the gain related to the fast pole.

The open-loop responses of the process model (1) are almost pure first-
order responses with a time-constant equal to 1. Thus, a reasonably good fit
of the individual transfer-matrix elements is obtained by first-order transfer-
functions with time-constant 7, = 100 min. However, the resulting model

_ 1 k11 ku) 9
G(s) = 14+ 7s (kzl k22 @

contains two poles at ~1/7; and is thus inconsistent with the true process (1)
which has only one pole at this location. The inconsistency results in a poor
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prediction of the process under partial control, i.e., with one feedback loop
closed (Jacobsen and Skogestad [2]). To avoid the inconsistency it is at least
necessary to identify also the faster pole —1/r;. Furthermore, the identified
model must be such that its minimal realization only contains a single slow
pole. Of course, if one starts from a model structure where this information
is included, then the identification becomes simpler. The challenge is to see
if one is able to identify a good model without providing such information
which is usually not available in a practical situation. We believe this is a
problem which has not been properly addressed in identification theory, and
which seems to cause problems for many classical identification methods.

2.1 The Identification Problem

In Appendix 2 we provide a Matlab file for generating open-loop “exper-
imental” data using the linear model (1). The data are produced using a
multivariable experiment, i.e., simultaneous perturbations in the two inputs.
Noise is added to the inputs as well as the outputs.
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Fig. 2. Input and output data used for identification of heat-exchanger. The data
Were generated with the Matlab file given in Appendix 2

'Figure 2 shows the 100 min. input sequence (including noise) and the
resy

lting outputs generated using the Matlab file. The inputs to the process
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contain 3% white noise, while the outputs have white noise with variance
0.03°C (which is very small compared to practical situations).

The identification problem is to come up with a reasonable multivariable
dynamic model based on these data alone, i.e., based on the noise-free inputs
and the noisy measurements. One should not supply any knowledge about the
special multivariable structure of the model as given by (1). The identified
model is intended to be used for feedback control studies, and two different
cases are of interest.

1. Partial control: Output y, is controlled using input u; while y, is left
uncontrolled.
2. Multivariable control: Both y; and y; are controlled using both inputs.

In both cases the responses to set-point changes as well as disturbances in the
inputs should be considered and compared with those of the correct model
(1). The intention of the challenge problem is that one should identify the
model based on open-loop data only. If one is allowed to use closed-loop data
we believe the identification becomes simpler.

3 MISO-Identification using an ARMAX-type model

In this section we employ a fairly standard identification technique to the data
generated using the Matlab file given in Appendix 2. We employ the Matlab
System Identification Toolbox (Ljung [4]) and use MISO-identification with
an ARMAX-type model structure. In the identification we fit each output
with a strictly proper second order model which is the same structure as the
true model (1). The model resulting from this identification is given by

[ )

—2025(5.218s + 1) 1871(0.0263s + 1)
(20275 + 1)(110.75 + 1)  (2.027s + 1)(110.75 + 1)

G(s) = 3)

—~1795(—0.09335 +1)  2049(3.947s + 1)
\ (14045 + 1)(110.5s+ 1) (1.404s + 1)(110.55 + 1)

The identified model (3) has a minimal realization with 4 states. Figure 3
compares the noise-free open-loop step responses of model (3) with those of
the “true” model (1).

We see from the responses that we have obtained a reasonable identifica-
tion of the individual SISO-transfer functions. Furthermore, we see from the
identified model that we have been able to obtain reasonable estimates for the
two poles —1/7, and —1/7,. However, the multivariable interactions have not
been captured as the model (3) has multivariable zeros at —0.0217 = —1/46.1
and —0.426 = —1/2.35 which do not cancel the poles. This also becomes clear
if one considers the singular values of the true (1) and fitted (3) model respec-
tively. The true model (1) has, as mentioned previously, a low-gain direction
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Fig. 3. Open-loop step responses of identified model (3) (dashed lines) and correct
model (1) (solid lines). Labels g;; denotes corresponding transfer-matrix element

with a single fast pole —1/7;. However, the low-gain direction of the fitted
model (3) has a significant part of its dynamics related to a slow pole around
-1 / 1.

Figure 4 compares the closed-loop responses of the correct model (1) and
the identified model (3) when output 1 is controlled with input 1 using the
proportional feedback law u; = K.y; with K. = 0.015. We see that the iden-
tified model yields a good prediction for the controlled output y;. However,
for the uncontrolled output y, there is a large discrepancy between the pro-
cess represented by (1) and the identified model (3). For the correct model
the single slow pole is moved by the feedback controller and the response in
the uncontrolled output y, is as fast as for y1, while the identified model (3)
contains an excessive slow pole which is left in the partially controlled model
and results in a slow settling in output Ya.

4 Discussion

The noise levels of the data provided in this note are relatively small compared
to what one should expect in a practical situation. Increasing the noise levels
will mainly change the results obtained in a qualitative manner, that is, the
excessive slow pole in the identified model will become even more marked.
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Fig. 4. Closed-loop responses of identified model (3) (dashed lines) and correct
model (1) (solid lines) to step disturbance of magnitude 0.001 in the hot flow u,.
Output y; controlled by u; gc using proportional controller with gain K. = 0.015

An additional problem which may be encountered at higher noise levels is
that of obtaining the correct sign of the determinant of the steady-state
model. However, as mentioned in the introduction, this is usually a less crucial
problem as the sign and approximate value of the determinant in many cases
is known a priori.

The input sequence used to generate the “experimental” data in Appendix
2 are based on low-pass filtered PRBS signals with a minimum time between
changes of 5 minutes, an experiment time of 100 minutes, and a sampling rate
of 1 minute. Prolonging the time for the experiment with this set of input
sequence does not seem to improve the identification.

It is worth noting that although we used a low-pass filtered input sequence,
the main model error was at rather low frequencies, while the high frequency
behavior of the process was reasonably well captured in the identified model.
This may indicate that an input sequence with even more emphasis on low
frequencies would yield better results. Indeed, with 500 minutes of exper-
iments and a minimum time between changes of 25 minutes, we obtained
better results as we have more information in the low-frequency region.

Even if the experiment time is fixed to 100 minutes, we do not rule out the
possibility that a different input sequence may yield better results. The prob-
lem is how to determine the best possible input sequence when the process
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dynamics and multivariable interactions are largely unknown.

5 Conclusions

— We have presented a model and input-output data for an ill-conditioned
process which we believe represents a “new” problem in the identification
of multivariable dynamic models.

— The application of a standard identification technique (MISO ARMAX)
to the process data yielded an inconsistent model with an excessive num-
ber of slow poles compared to the process, and hence a poor model for
feedback control studies.

Nomenclature

A - heat transfer area (m?)

cp - heat capacity (kJ/°Ckyg)

G(s) - process transfer-matrix for effect of inputs u
gij(8) - transfer matrix element i,

gc - cold inlet flow (m3/min)

qu - hot inlet flow (m3/min)

Tc - cold outlet temperature (°C)

Ty - hot outlet temperature (°C)

U - heat transfer coefficient (kJ/m? °Cmin)
Vc - liquid volume cold side (m3)

Vi - liquid volume hot side (m?)

Greek symbols
71 - dominant (largest) process time-constant (min.)
T2 - smaller process time-constant (min.)

Subscripts
s - setpoint change
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Appendix 1. Simple model of heat exchanger

Consider a simplified heat exchanger with one mixing tank on each side as
shown in Fig. 1. Assume constant volumes, V, on each side, and constant
values of p and cp. A heat balance for the cold and hot side then yields

dT :
‘l’c—dt(2 = q—?(TCi - Tc) + ac(Tu — Tc) (4)
9c
dT;
mt = (T — Th) - an(Th — Tc) (5)
H
where ¢* denotes the nominal (steady-state) flow, and
1% UA
Tc=—; ac= ——— (6)
qc pcqccerc
W UA
T™H = —:'{‘; OH = — (M
u PHIHCPH

Linearizing the model assuming UA and thus « constant (independent of

flow and temperature), introducing deviation variables, and taking Laplace
transforms yields

rosTe(s) = Toi(s) — To(s) + (T — Ta)"—‘;é—“’ + ac(Ta(s) - Te(s)  (8)

8
musTh(s) = Tui(s) — Tu(s) + (T — Tﬁ)qiqgl — an(T(s) — To(s)) (9)
H
where the superscript * denotes steady-state values. In the following we will
assume 7c = Ty = 7 = 100 [min},ac =ap =a=20and qg = ¢y = ¢* =
0.01 [m3/min] (see data in Table 1). Rearranging yields

(73) 0 () +or ()

where
Ga(s) = (rs+1)(-rls+1+a) ("'3"'(:'*"' Ts+oi+a) (11)

and

o =cuo (B @ ) 09
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Inserting the numerical values finally yields -

_ 0.02439 21(1 + 4.76s) 20
Ga(%) = (7005 7 1)(2.4305 + 1) ( 20 21(1+4.765) ) (19
-3659 O
and G(s) = G4(s) - ( 0 3659)
Vu=Vo|gc=qu |Tci|Tui| Tc | Tu UA p cp
m® |m¥/min|°C|°C| °C | °C |kJ/°Cmin|kg/m®|kJ/°Ckg
1 0.01 25 1100/ 61.59 | 63.41 300 | 500 3.0

cp and p are equal for the hot and cold side.

Table 1. Steady-state data for heat-exchanger (see also Fig. 1)

Appendix 2. Matlab-file for generating input-output
data of heat-exchanger

% This file generates inputs, u, and outputs, y,

% for heat exchanger identification problem:

rand(’normal’);

A=[-.21 .20;.20 -.21];B=[-36.5853 0;0 36.5853];C=eye(2);D=zeros(2);
%PRBS-signals (low-pass filtered):
ql=1.5e-3x[-1-1-1111-1-11111111111-1-1J;
q2=3.5e-3x-1-1-1-1-1-11-1-1-1-1-1-111-1-1-1-1-1};

% Inputs last for 5 minutes (sampling time 1 min.):

for i=1:length(ql),

u(14-5%(i-1):5%i,1)=q1(i)*ones(5,1); u(1+5%(i- 1):5%i,2)=q2(i)*xones(5,1);
end

%Noisy inputs for simulation:
usim(:,1)=u(:,1)40.03*max(u(:,1))*rand(100,1);
usim(:,2)=u(:,2)+0.03xmax(u(:,2))xrand(100,1);

% Obtain noise-free outputs:

t=1:100;

ysim=lsim(A,B,C,D,usim,t);

% Noise on outputs has variance 0.03 degrees centigrades:
y(:,1)=ysim(:,1)+0.03xrand(100,1);
y(:,2)=ysim(:,2)+0.03xrand(100,1);




