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Abstract

In this paper we give an overview of some of the tools
available for linear conmtrollability analysis. We present a
procedure which may be described by the following main
steps;

1. Generate model

2. Scale the plant

3. Compute controllability measures
4. Analyze controllability

In the paper we raise issues in all of these categories. An
FCC reactor is used as an example.

1 Introduction

A common procedure is to design a plant based on steady-
state considerations, and then add on a control system at
a later stage of the project. This may be acceptable if one
at the early design stage can assess whether the plant will
be easy to control or not.

Consider for example the benchmark example released
by Tennessee Eastman (Downs, 1990). This is an inte-
grated plant with reaction, separation and recycle. An
analysis of the plant model reveals that it is unstable, has
a high degree of interaction and a complicated dynamic
behavior. One may proceed and try to design a control
system for this plant. However, before embarking on this
it would certainly be useful to know how well this process
may be controlled with the best possible controller, that
is, what is the controllability of the plant.

A plant with few “inherent control limitations” has
good “achievable control performance” and is called “con-
trollable” or “dynamic resilient”. Since a plant’s dynamic
resilience can not be altered by change of the control al-
gorithm, but only by design modifications, it follows that
the term dynamic resilience provides a link between pro-
cess design and process control.

Unfortunately, in standard state-space control the term
“controllability” has the rather limited definition in terms
of Kalman’s state controllability, and this was the rea-
son why Morari (1983) introduced the term “dynamic re-
silience”. However, in engineering practice a plant is called
“controllable” if it is possible to achieve the specified con-
trol objectives (Rosenbrock, 1970). We will use the term
“controllability” in this more general sense, and use the
term “state controllability” to avoid confusion.
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Rosenbrock (1970) gives a thorough discussion of the
issues of state controllability and state observability, and
also defines the term “functional controllability”, which
for SISO systems is equivalent to requiring g(s) # 0 and
for MIMO system det(G(s)) £ 0. He also introduces
the important notion of right half plane (RHP) (trans-
mission) zeros for multivariable systems. Morari (1982)
and Stephanopoulos (1982) give good discussions on the
issues of control structures and controllability of integrated
plants. An initial approach towards quantitative analysis
of controllability is given by Morari (1983) who makes use
of the important notion of “perfect control”, that is, the
best achievable control performance. Perkins (1989) gives
a good survey of the literature up to 1989.

2 Control objectives and limi-
tations

To examine the controllability of a plant a mathematical
model is needed. It is important to stress that for control
considerations it is the initial part of the response, corre-
sponding to the closed-loop time constant, that is of main
interest. In particular it is important to get a good model
of possible RHP-zeros, time delays, and of the interactions
in the interesting frequency range. The steady-state be-
havior is usually of minor interest. Omne exception is the
“sign” of the plant, i.e., detG(0), which must be known.
Otherwise it is does not really matter very much what
would have happened after several hours if the plant was
left uncontrolled. The reason why chemical engineers are
often very preoccupied about the steady-state is that this
is our natural way of thinking, and because steady-state
models are often easily available.

In this paper we consider linear transfer function mod-
els on the form

y(s) = G(s)u(s) + Ga(s)d(s) (1)
where u is the vector of manipulated inputs, d the vector
of (physical) disturbances, and y is the vector of outputs
(controlled variables). The objective is to keep the error
e = y — r small, where r is the vector of reference signals
(setpoints). G(s) and Ga(s) are transfer matrices, that
need not be square.

The main objective of the control system is to keep the
outputs y close to their setpoints r and to reject distur-
bances (often called “load changes”). The ideal controller
will accomplish this by inverting the process such that the
manipulated input becomes v = G~'r — G~*Gqd. In prac-
tice, something close to this may be achieved with with



feedback control. With u = C(s)(r — y), the response of
the system is
y=Tr+ SGa4d (2)

u=G'Tr -G 'TGud (3)

Here the sensitivity is S = (I + GC)™! and the com-
plementary sensitivity is T' = GC(I + GC)™. It follows
from this that at low frequencies where feedback is effective
(w < wB), S=0and T = I and the controller corresponds
to inversion of the plant. Consequently ideal control (in-
version) requires fast feedback (high bandwidth).

On the other hand, inherent limitations of the system
prevent fast control. These limitations may include a close
to singular plant such that the necessary inputs signals
become large, non-minimum phase characteristics such as
time-delay and RHP-zeros, constraints on the input vari-
ables and model uncertainty. These limitations make it
desirable to have a low bandwidth. If these requirements
for high and low bandwidth are in conflict then controlla-
bility is poor.

3 Scaling of variables

The relative gain array (RGA) has the advantage of being
scaling independent, but for other controllability measures
it is crucial that the variables are scaled properly. In gen-
eral, the variables should be scaled to be within the inter-
val -1 to 1, that is, their desired or expected magnitudes
should be normalized to be less than 1 at each frequency.
Recommended scalings:

¢ Inputs (u): Normalize u; with respect to its allowed
range.

¢ Outputs (y): Normalize e; with respect to its allowed
range.

¢ Disturbances (d): Normalize di with respect to its
expected range.

To achieve this we scale the transfer matrices G and
G4. For example, we assume that at each frequency gq(jw)
(or the columns in G4(jw)) is scaled such that the worst
(largest) disturbance corresponds to |d(jw)| = 1.

Comment: In this paper we scale directly the transfer
matrices G and Gq and assume that the expected or al-
lowed magnitude of the signals d, u, e and r does not vary
with frequency. If their magnitudes vary then we should
rather scale the signals using frequency-dependent weights.
This signal approach is also more general, for example, if
the setpoints do not have same size as the allowed errors
(as we implicitly have to assume).

4 Tools for controllability anal-
ysis

In this section we will briefly discuss a number of methods
for evaluating controllability.

All measures are controller independent. We first
present general measures, and special measures for decen-
tralized control are given towards the end.

4.1 Functional and state controllability

Probably the first thing that should be checked is that
the plant is functional controllable. Essentially, a plant is
not functional controllable if the rank of G(s) is for all s
less than the number of outputs we want to control. For
square plants the requirement is that we should not have
det G(s) # 0 (Rosenbrock, 1970). A typical example when
a plant is not functional controllable is when an entire row
of G(s) is zero (“there is no downstream path to a par-
ticular output”). Another case is, for example, in a heat
exchanger network where we have two control inputs (by-
passes) that can only effect the two control outputs (tem-
peratures) by transferring heat through the same stream
(the downstream paths coincide) (seec Mathisen and Sko-
gestad, 1992).

For unstable plants it should be checked that the un-
stable states are state controllable and state observable,
but otherwise this issue is not of particular interest, as
states that we really care about should be included in the
output vector y.

4.2 RHP-zeros and time delays

A zero is defined as values for s for which G(s) looses rank,
and for square plants that may computed as the solutions
to detG(s) = 0 (a more careful definition involving the
system matrix may be needed in the case the model has
internal pole-zero cancellations). A right half plane (RIP)
transmission zero of G(s) limits the achievable bandwidth
of the plant. This holds regardless of the type of controller
used (Holt and Morari, 1985). Plants with RHP transmis-
sion zeros within the desired bandwidth should be avoided.
If we use a multivariable controller then RHP-zeros in the
elements do not imply any particular problem. However, if
decentralized controllers are used, then we generally avoid
pairing on elements with ”significant” RHP-zeros (RHP-
zeros close to the origin), because otherwise this loop may
go unstable if left by itself (with the other loops open).

the If an RHP transmission zero cannot be avoided, it
should preferably be at as high a frequency as possible, and
liein a plant direction (Morari and Zafirou, 1987) such that
it affects an output where the performance requirements
(as required, e.g., for disturbance rejection) are lax.

Time delays have essentially the same effect as RHP-
zeros with wp < 1/0 where 6 is the time delay.

4.3 RHP-poles

Poles of G(s) in the right half plane also put limitations
on the control system through stability considerations.
The bandwidth of the closed-loop system must be above
the frequency of the RHP-pole to ensure a stable system.
Freudenberg and Looze have derived some interesting re-
lationships which quantify the effect of RHP-poles and
RHP-zeros. These are summarized in Hovd and Skoges-
tad (1992, this Symposium). If there are RHP zeros and
RHP-poles in the same direction, it is important that the
RHP-pole at p is located at a higher frequency than the
RHP-zero at z,i.e., p > 2.

4.4 Singular value analysis

The singular value decomposition of any matrix G is G =
USVH with the matrix & having the singular values o; on
the main diagonal. There will be rank(G) singular values.



The singular values are directly related to the vector 2-
norm. Specifically, we have for y = Az that

o(4) < Wl < 54)
ll=ll2
where #(A) is the maximum singular value, and g(A) the
minimum singular value of A. We may choose the direc-
tions for z such that either the lower or upper bounds in
(4) is tight.

An SVD on G and Gy is useful for examining which
manipulated input combinations have the largest effect and
which disturbances give the largest output variations. For
example, applied to distillation the singular value analy-
sis shows that much less control action is needed to move
top and bottom compositions in the same direction (i.e.,
mole fraction of light component z increases or decreases
in distillate and bottoms simultaneously) as the opposite.

Minimum singular value and input magnitudes.
o(G) was introduced as as a controllability index by Morari
(1983). From (3) and (4) we get that the input needed for
tracking at a sinusoidally varying reference signal r(jw) is
given by (Perkins, 1989)

*)

1 [lwl2 1
a(G) ~ |Irll- ~ «(G)

Here we have used the fact that g(G™') = 1/5(G) and
a(G™") = 1/g(G). Since r may have any direction, we see
that a small value of g(G) implies that large input mag-
nitudes may be needed, and such plants are undesirable
(Morari, 1983). If the variables have been scaled in accor-
dance with the recommendations above then a requirement
for avoiding input constraints for unitary setpoint changes
is approximately (since we are looking at the 2-norm and
not infinity-norm of ») that g(G(jw)) > 1,Vw. This mea-
sure is useful also at steady-state. For SISO plants it sim-
ply corresponds to requiring |g| > 1, and otherwise pre-
ferring designs where the steady-state gain is as large as
possible. For decentralized control it is desirable to pair
on elements with |gi;| > 1.

For perfect control of square plants we need u =
~G~1G4d. If we have several disturbances that all are less
than 1 in magnitude (i.e., ||| < 1), then the input mag-
nitude (measured in terms of the infinity-norm) needed for
perfect rejection of the worst disturbance is given by

Q)

-1
lulloo = IG™" Galloo (6)
which is equal to the largest row-sum of the matrix GGy,
A frequency dependent plot of the elements in G~ G give
useful information about the possibility for reaching input
constraints, and which disturbances that cause problems.

4.5 Condition number

The ratio between the largest singular value () and the
smallest nonzero singular value (¢), is often denoted the
condition number, ¥(G) = ?%l Plants with a large condi-
tion number are called ill-conditioned, and require widely
different input magnitudes depending on the direction of
the desired output. Note that y(G) depends on the scal-
ing of the inputs and outputs, and it is important that
these are scaled properly. There is a close relationship be-
tween the optimally scaled condition number, v*(G), (min-
imize 9(G) with respect to input and output scaling) and

the magnitude of the RGA-elements (e.g., Skogestad and
Morari, 1987).

If v is large, then the plant is sensitive to unstructured
(uncorrelated) input uncertainty (Skogestad et al., 1988).
However, unstructured uncertainty is often unrealistic.

4.6 Relative gain array (RGA)

The most widespread controllability measure is probably
the RGA which was introduced by Bristol (1966). Sko-
gestad and Hovd (1990) give a thorough survey of the
frequency-dependent RGA and its properties. For a square
plant G(s) the relative gain is defined as the ratio of the
“open-loop” and “closed-loop” gains between input j and
output 1. It is defined at each frequency as

(3yi/a“j)m¢.‘

and a RGA-matrix is computed from

A(jw) = G(jw) x (G (jw))"

Aij(8) = = i ()[G 7 (s))s (M

(®)

where x denotes element-by-element multiplication. It is
worth noting that the RGA is independent of scaling, and
must only be rearranged (not recomputed) when consider-
ing different control pairings.

Plants with large RGA-values are ill-conditioned (y(G)
is large) irrespective of input and output scaling. Trian-
gular plants yield A = I, and plants where A is different
from I are called interactive (G has significant offdiagonal
elements). It is established that plants with large RGA-
values, in particular at high frequencies, are fundamen-
tally difficult to control. In particular, it is known that
one should never use decouplers in such cases because of a
strong sensitivity to (structured) input uncertainty in each
channel, i.e., one should never use a controller with large
RGA-values (Skogestad and Morari, 1987).

The relative gains A;j give a direct measure of the sen-
sitivity of the plant to independent element-by-element un-
certainty (which actually occurs relatively rarely): G(jw)
becomes singular (and the plant impossible to control
at this frequency) if any element gij(jw) changes by
—1/Xi;(jw), thus large RGA-elements imply that G(jw)
is close to singularity.

For interactive plants which do not have large RGA-
elements, a decoupler may be useful. In particular, this
applies to the case where the RGA-elements vary in mag-
nitude with frequency (e.g., between 0 and 2), and it may
be difficult to find a good pairing for decentralized control
(see below). A steady-state decoupler may be used if the
directions do not change too much with frequency.

4.7 Disturbance sensitivity

We will only give a short presentation of measures for eval-
nating disturbance sensitivity, as they are treated in more
detail in the paper “Controllability measures for distur-
bance rejection” by Skogestad and Wolff also at this meet-
ing.

Open-loop disturbance sensitivity. For one dis-
turbance ¢ the open-loop disturbance sensitivity is di-
rectly given by the i’th element of the vector g4, that is
(%"-‘&‘L)w = gq4i. If appropriately scaling has been applied
and any of the elements in G4 are larger than 1 then control
is needed to get acceptable performance.



Consider a SISO plant. Typically, |gd4| is larger than
1 at low frequencies and drops to zero at high frequen-
cies. The frequency wq where |g4(jw)| crosses 1 is then of
particular interest, since it yields the minimum bandwidth
requirement for feedback control, i.e., wp > wq. wq is thus
a measure of the controllability that one needs to impose
on the system. If the plant has a RHP-zero at s = z
then we must require z > wq (It is stressed that all these
relationships involving RHP-zeros and RHP-poles are ap-
proximate).

For MIMO plants we have a bandwidth region ranging
from wp (worst direction, g(GC)) to wg (best direction,
&(GC)). For a single disturbance consider the frequency
wq where ||g4|2 crosses 1. Then we must require that wp >
wq and we may have to require wp > wq (depending of the
direction of the disturbance).

Disturbance condition number. To study specifi-
cally the direction of a disturbance, Skogestad and Morari
(1987) introduced the disturbance condition number of the
matrix A

-1

va(a) = Logdle 5 ) %)

llgall2
where A may be G or L = GC. The disturbance condition
number of G, v4(G), tells us for a particular disturbance
how much larger the input magnitude needs to be to reject
a unit disturbance, compared to if the disturbance was in
the best possible direction of the plant (corresponding to
the direction of &(G)).

4.8 Partial disturbance sensitivity

The {following measure is useful when considering if one
may let one of the outputs be uncontrolled, for example,
if the original control problem is difficult. Recall, that the
open-loop disturbance sensitivity for an output ¢ and dis-

Byi

turbance k is (8dk = g4ik- The corresponding distur-
ws

bance sensitivity with all the other outputs I # ¢ perfectly
controlled can be expressed as

(52)
dadx

We denote this measure the partial disturbance gain
(PD@G). The term partial is used since the system is only
partially controlled. For simultaneous disturbances we
should evaluate the worst overall effect of them by taking

the 1-norm (sum of element magnitudes). This gives rise
to a combined PDG-matrix, denoted Gpps with elements

=[G Galik /(G

uj Y

(10)

[Gepalis = Y NG Gaul/IG™ 5l (1)

It it desirable to find an “uncontrolled pairing” u; —y; for
which the Gppg-element is less than 1. Note that also the
steady-state values of Gppg are important.

For the case § = i (that is, we have paired up the
uncontrolled output with the output we want in manual),
the PDG is equal to the ratio between the CLDG (see
below) and the corresponding RGA-element:

(%) = bir [ i

Ui Yigi

(12)

4.9 Relative order and phase lag

The relative order is sometimes used a controllability mea-
sure (e.g., Daoutidis and Kravaris, 1992). The relative
order may be defined also for nonlinear plants, and for lin-
ear plants it corresponds to the high-frequency rolloff, that
is, the pole excess of the transfer function. Of course, we
want the inputs to directly affect the outputs, and the rel-
ative order should be small. However, the usefulness of the
concept of relative order is rather limited since it depends
on the modeling detail. In fact, a more useful measure to
consider is the phase lag of the model at the bandwidth
frequencies, for decentralized control we want to pair on
variables where the phase lag is as small as possible, and
it should be less than -180° (see Balchen, 1988).

4.10 Special measures for decentral-
ized control.

Pairing and use of RGA. For decentralized control of
stable plants one should always try to pair on positive
steady-state RGA-elements. Otherwise one will with inte-
gral control get instability of either 1) the overall system,
2) the individual loop, or 3) the remaining system when the
loop in question is removed. Hovd and Skogestad (1992)
have extended the use of the steady-state RGA to unstable
plants.

However, also for decentralized control the most im-
portant frequency regions is around the closed-loop band-
width, and we usually prefer pairings corresponding to rel-
ative gains close to 1 (with the other elements close to zero)
in the this frequency region.

PRGA. One inadeqnacy of the RGA (eg., McAvoy,
1983, p. 166) is that it may indicate that interactions is
no problem, but significant one-way coupling may exist.
This follows since the RGA is equal to the identity matrix
(I) when G(s) is triangular. To overcome this problem
Hovd and Skogestad (1992) introduced the performance
relative gain array (PRGA). The PRGA-matrix is defined
as

[(s) = Guiag(s)G(s)™" (13)

where Gaiag(s) is the matrix consisting of only the diag-
onal elements of G(s), i.e., Gaiag = diag{gii}. Note that
the diagonal elements of RGA and PRGA are identical,
but otherwise PRGA does not have all the nice algebraic
properties of the RGA. For example, PRGA is indepen-
dent of input scaling, but it depends on output scaling.
This is reasonable since performance is defined in terms of
the magnitude of the outputs. Note that PRGA = G;!
where G, is obtained by input scaling of G such that all
the diagonal elements are 1 (at all frequencies).

As is clear from 14 below, we prefer the PRGA-
elements to be small at low frequencies, but at high fre-
quency we want the PRGA-matrix to be triangular (i.e.,
G(jw) triangular) with the diagonal elements (correspond-
ing to the chosen pairings) close to 1.

CLDG and RDG. Consider decentralized control.
Then at low frequencies the closed-loop response for loop
when also all the other loops are closed is (Skogestad and
Hovd, 1990):

ei v — Ty 4 22k gy

I, I. (14)

w < wp



Here L; = giici, ¥i; is the PRGA and 6;x the Closed-loop
Disturbance Gain (CLDG) defined by

bik(s) = gii(s)[G(s) ' Ga(s)]ix = [[Galix  (15)

To get a better interpretation of the RGA and CLDG con-
sider the case when only one loop is closed at the time.
Then at low frequencies the closed-loop response for loop
1 is with all the other open is

w<wp (16)
Comparing the closed-loop responses for loop § given in
(14) and (16), we see that closing the other loops has the
following effect: 1) The changein the effect of setpoint i is
given by the relative gain, Ai; = ¥ii. 2) The open-loop dis-
turbance gain gq is replaced by the closed-loop disturbance
gain, 8;x. Thus, the change in the effect of disturbance &
is given by the ratio between 8;x and gq4ix. This ratio turns
out to be identical to the relative disturbance gain (RDG)
of Stanley et al. (1985). We have

(au - )
def Fdy v

ik
- 17
B;k (au ) gdik ( )
Bd)

Yjiigs

For decentralized control frequency-dependent plots of
6ix may be used to evaluate the necessary bandwidth re-
quirements in loop ¢, that is, at low frequencies the loop
gain L; must be larger than 6;x in magnitude to get accept-
able performance. Thus, designs with small CLDG-values
are preferred. Note that the elements of CLDG may be
significantly different from G4 when the PRGA-matrix is
different from I.

5 More detailed analysis.

In some cases a more detailed analysis which includes find-
ing the optimal controller may be desirable. A suitable
tool for this is the Structured Singular Value (SSV or u).
However, this requires a careful definition of the model
uncertainty and performance specification and will not be
treated here.

6 Example: FCC

We will use a model of a Fluid Catalytic Cracker to illus-
trate the principles above. A plant model with 5 states
based on the model of Lee & Grovers is given by Hovd
and Skogestad (1991). The model has three inputs, three
outputs and by chance there are also three disturbances.

Fa T iy
e=| Fc ]| y=| Ty d=| Ta
k. Ty Fy

The meaning of the variables should be clear from
fig. 1, except for k. which is the rate constant for coke
formation and is a direct function of feed composition.

The steady-state elements of the disturbance matrix

Ga (appropriately scaled) are
—13.61
-3.89

1.66 0.36
Gag= | 047 0.23
1.86 0.56 —15.30

(18)

Products

Regenerator

Feed oil

Figure 1: FCC reactor.

RGA for FCC example (Preferred pairing)

2 ——rrrr—

1.8h
16 -\\ —ul-y2

14} \

--u2-yl

Frequency

Figure 2: RGA-elements, |A;;(jw)|, for proposed pair-
ings.

indicating that feedback is necessary to reject the distur-
bances. The plant has a set of complex conjugate RHP
transmission zeros at w = 0.1 rad/min, but no poles in the
RHP. The expected closed loop bandwidth must thus be
less than about 0.1 rad/min. The steady-state gain matrix
(appropriately scaled) is

10.16  5.59 1.43
G(0)={ 1552 —8.36 —0.71 (19)
18.05 0.42 1.80
and the steady state RGA becomes
0.99 1.50 —1.47
A(O)=| 097 —042 045 (20)
—0.96 —0.08 2.04

An objective is to control this plant using decentralized
control, and we see that there is only one possible set of
pairings (u1 — y2, uz — y1 and uz — ya) that corresponds
to pairing on positive RGA-elements. The magnitude of
these three elements as a function of frequency is shown
in Fig. 2. Two of these elements are close to zero in the
bandwidth region so this choice of pairings will display
serious interactions at intermediate frequencies.
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Figure 3: Elements of combined PDG-matrix, Gppg-

Consequently, decentralized control is difficult. An-
other simple controller is a static decoupler combined with
decentralized control. However, as can be expected from
the large variations in the RGA with frequency, this does
not work well. For example, with a steady-state decoupler
G(0)™! the interactions at higher frequencies, e.g. as seen
from A(G(jw)G(0)™!), are extremely large.

From an SVD, we see that the interactions lie mainly
in the outputs of the plant, while the inputs are reasonably
decoupled in the directions of the different singular values.
The condition number v equals 44.5 at low frequencies,
increasing logarithmically from around 0.01 rad/min.

The CLDG (as well as the elements of G4 and G™'Gy)
indicate that disturbance 3 (oil flowrate) gives the largest
bandwidth requirement and will be most difficult to reject.

Since control using simple controllers seems difficult we
next consider the matrix G ppg of combined partial distur-
bance gains, to see if there are any pairings that may be left
uncontrolled, and still get acceptable control performance -
this will be the case if there is one element in Gppe which
is less than 1 at all frequencies. At steady-state we get

9.0 3.3 0.84
GPDG(O) =1 159 200 1.6
17.3 4.7 0.81

The corresponding frequency-dependent plot is shown
in fig. 3, and we see that the three lowest (best) curves are
for u3 in manual (solid lines), and of these the lowest is for
ys uncontrolled, followed by y» uncontrolled.

For the case with output y3 uncontrolled and input us
in manual, we get a 2 X 2 system that will reject distur-
bances in the uncontrolled output ys for all frequencies.
The RGA for this 2 x 2 system, denoted Hicks control
structure, shows that interaction is significantly reduced
with A =2 I at frequencies above w = 0.003 rad/min. Also,
in this case there is no multivariable RHP-zero. Hovd and
Skogestad (1991) have looked at this process in detail and
it is interesting to note that they reached the same conclu-
sion with respect to the best 2 x 2 subsystem.

It is important to note that our analysis has not re-
quired any controller design or simulation.
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