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Abstract

Robust performance is said to be achieved if the performance specifications are met for all plants in
a specified set. Classical loopshaping was developed decades ago by Bode to design for robust performance
for SISO systems, where the uncertainty can be represented as a single complex A-block, and the sole
performance specification is an upper bound on the closed loop sensitivity. Uncertainty and performance
specifications are often not so simple—control problems often involve multiple performance specifications, and
uncertainty is sometimes more conveniently described as real parameter variations. Also, it is important for
multivariable systems that uncertainty may be present at different locations, for example actuator uncertainty
is located at the input of the plant whereas sensor uncertainty is located at the output of the plant.

Previous work by the authors extended classical loopshaping to multiple uncertainty and performance
blocks and to the design of decentralized controllers. The authors refer to this more general loopshaping
technique as robust loopshaping. In this article, we extend robust loopshaping to handle mixed real and
complex uncertainties, and to more advanced performance specifications. We show how to directly design
decentralized controllers such that stability or specified performance for the remaining system remain satisfied
when actuators/sensors become faulty or fail. The controllers can also be designed to remain stable with
arbitrary detuning of control loops. To the authors’ knowledge, this is the first controller synthesis method
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to design controllers with this form of failure-tolerance for systems with general performance and uncertainty
structure.

We also discuss the advantages and disadvantages of loopshaping the open loop transfer function or
the controller instead of the closed loop transfer functions.

1 Introduction

Loopshaping involves directly specifying a transfer function that parametrizes the controller based on mag-
nitude bounds on the transfer function. These bounds are either necessary conditions or sufficient conditions
so that the closed loop system satisfies desired stability and performance specifications. Examples of trans-
fer functions that parametrize the controller include the sensitivity S = (I + PK)™!, the complementary
sensitivity H = PK(I + PK)™!, and the open loop transfer function L = PK. The controller K is then
calculated from the specified transfer function.

Robust performance is said to be achieved if the performance specifications are met for all plants in a
specified set. Controller design methods can be classified as being either optimization methods, or not. The
optimization approach involves minimizing an objective function over the set of stabilizing controllers. The
optimization objective for robust control is to minimize the robust performance measure y over the set of
all stabilizing controllers, where j is a function of the nominal model, the controller, the model uncertainty,
and the performance specifications. How to solve this optimization problem for centralized controllers is an
open question—the ad-hoc “DK-iteration” method proposed by Doyle {8] is the only method of tackling the
optimization to date. The DK-iteration method assumes that all uncertainties are complex, involves iterative
optimization, has many fragile steps, and produces high order controllers. The DK-iteration method cannot
be used effectively to design decentralized controllers, or controllers that are tolerant to failures in actuators
Ol Sensors.

Loopshaping can be classified as a non-optimization approach. The advantages of loopshaping over
optimization approaches are that: 1) the controller can be kept simple, 2) decentralized controllers can
be designed, and 3) the properties of interest to the engineer are often directly in terms of the designed
loopshape.

The technique of loopshaping was introduced by Bode [2] for the design of feedback amplifiers. Doyle
et al. [9] review classical loopshaping, where the system is SISO, the uncertainty can be represented as
a single complex A-block, and the sole performance specification is an upper bound on the closed loop
sensitivity. Uncertainty and performance specifications are often not so simple—control problems often
involve multiple performance specifications, and uncertainty is sometimes more conveniently described as
real parameter variations. Also, it is important for multivariable systems that uncertainty may be present
at different locations, for example actuator uncertainty is located at the input of the plant whereas sensor
uncertainty is located at the output of the plant.

Skogestad and Morari [18, 19] extended classical loopshaping to multiple uncertainty and performance
blocks and to the design of decentralized controllers, where they used the parametrizing transfer functions
to be the sensitivity and complementary sensitivity. The method had the drawback of only giving sufficient
conditions for robust performance. Braatz et al. [5] extended the method by deriving necessary bounds for
meeting robust performance. Especially interesting is when the necessary and the sufficient bounds are very
close to each other—in this case the bounds are essentially necessary and sufficient.

This paper advances the work of Braatz et al. [5]. We extend the work to handle mixed real and
complex uncertainties, and more advanced performance specifications than can be addressed directly through
“DK-iteration”. We show how to directly design decentralized controllers such that stability or specified
performance for the remaining system remain satisfied when actuators/sensors become faulty or fail. The
controllers can also be designed to remain stable with arbitrary detuning of control loops. To the authors’
knowledge, this is the first controller synthesis method to design controllers with this form of failure-tolerance
for systems with general performance and uncertainty structure.

We develop an additional bound which is used when loopshaping the open loop transfer function L
or the controller K, namely a sufficient lower bound on a transfer function for robust performance to be
achieved. Skogestad and Morari [18, 19] looked at jointly loopshaping the sensitivity and complementary
sensitivity—we discuss in detail the advantages and disadvantages of loopshaping the open loop transfer
function or the controller instead.



Organization The remainder of this report is organized as follows. First we review the structured singular
value framework and some additional background material. Second, we present the robust loopshaping
bounds for mixed real/complex uncertainties. We then compare and contrast loopshaping via open loop
transfer functions with loopshaping via closed loop transfer functions. As an example we design a PD
controller for a DC motor with negligible viscous damping by loopshaping the open loop transfer function
L, and compare this with a controller designed via loopshaping S and H. Next we discuss how to design
robust controllers via loopshaping to meet gain and phase margin specifications, and give an example of this
method. Then we show how to design for multiple performance specifications using loopshaping, and how to
design for fault and failure tolerance. We give necessary and sufficient tests for versions of fault and failure
tolerance that have been defined previously in the literature. We then design a failure and fault tolerant
decentralized controller for a high-purity distillation column. The paper finishes with conclusions and some
ideas for future work.

2 Background

2.1 Robust Performance

The goal of any controller design is that the overall system is stable and satisfies some minimum performance
requirements. These requirements should be satisfied at least when the controller is applied to the nominal
plant, that is, we require nominal stability and nominal performance.

In practice the real plant P is not equal to the model P. The term robust is used to indicate that
some property holds for a set II of possible plants P as defined by the uncertainty description. In par ticular,
by robust stability we mean that the closed loop system is stable for all P e 1. By robust performance we
mean that the performance requirements are satisfied for all P ¢ 1. Performance is commonly defined in
robust control theory using the H,,-norm of some transfer function of interest.

Definition 2.1 The closed loop system exhibits nominal performance if
[|Z]|eo = supT(Z) < 1. (1)
Definition 2.2 The closed loop system exhibits robust performance if

”2”00 = SUPE(‘Z) < 1, VP E H. (2)
For example, for rejection of disturbances at the plant output, £ would be the weighted sensitivity

T =W SW,, S=(I+PK)?, (3)
S =W8W,, S=(I+PK)".
In this case, the input weight W, is often equal to the disturbance model. The output weight Wi is used
to specify the frequency range over which the sensitivity function should be small and to weigh each output
according to its importance. K is the transfer function of the controller.

Doyle [7] derived the structured singular value, p, to test for robust performance. To use p we must
model the uncertainty (the set II of possible plants P) as norm ‘bounded perturbations (A;) on the nominal
system. Through weights each perturbation is normalized to be of size one:

Ai]loo < 1. (4)

The perturbations, which may occur at different locations in the system, are collected in the block-diagonal
matrix Ay (the U denotes uncertainty)
Ay = diag{A;} (5)

and the system is arranged to match the left block diagram in Figure 1. The interconnection matrix M in
Figure 1 is determined by the nominal model (P), the size and nature of the uncertainty, the performance
specifications, and the controller (K).

Without loss of generality we assume that each A; and M is square [14]. The definition of y is:
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Figure 1: Robust Performance and the M — A block structure

Definition 2.3 Let M € C™*" be a square complez mairiz and define the set A of block-diagonal pertur-
bations by

i
A= {diag{é{Irl,---,6£I,k,6§+11,k+1,---,6nt,m,A,m+1,---,A,,} 8 ER,8; €C,A,, €CTX Y ri=n

e

Then pi A (M) (the structured singular value with respect to the uncertainty structure A) is defined as

0 if there does not exist A € A such that det(I — MA) =0,
-1

“a(M)= (7

min {7 (A) |det(I — MA) = 0} otherwise.
acA |

Partition M in Fig. 1 to be compatible with A = diag{Ay,Ap}:

(&)

My My |
M= u Me |
My M |

The following are tests for robust stability and robust performance [7]

Theorem 2.4 The closed loop system ezhibits robust stability for all ||Ayl||e < 1 if and only if the closed
loop system is nominally stable and

pa,(MuGe) <1 Ve, ()

Theorem 2.5 The closed loop system ezhibits robust performance for all ||Ayileo < 1 if and only if the
closed loop system is nominally stable and

pAM(jw)) <1 \8 (10)

where A = diag{Ay,Ap}, and Ap is a full square matriz with dimension equal to the number of outputs
(the subscript P denotes performance).

Multiple performance objectives can be tested similarly using block-diagonal Ap. Note that the issue of
robust stability is simply a special case of robust performance.

It is a key idea that u is a general analysis tool for determining robust performance. Any system with
uncertainty adequately modeled as in (4) can be put into M — Ay form, and robust stability and robust
performance can be tested using (9) and (10). Standard programs calculate the M and A [1], given the
transfer functions describing the system components and the location of the uncertainty and performance
blocks A;.
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Figure 2: General decentralized control structure
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Figure 3: Definition of the linear fractional transformation Fi(N,T).

2.2 Decentralized Control
Decentralized control involves using a diagonal or block-diagonal controller (see Figure 2)
K =diag {K;}. (11)

This includes controllers that can be made block-diagonal by reordering the measured variables and manip-
ulated variables.
Some reasons for using a decentralized controller are

tuning and retuning is simple

they are easy to understand
e they are easy to make failure tolerant
e implementation and maintenance is simpler

These reasons explain the predominance of decentralized controllers in applications.

The design of a decentralized control system involves two steps. First the control structure must
be selected. This involves the choosing of the actuators and sensors and the pairings between the chosen
actuators and sensors. Methods of selecting the control structure for uncertain systems are presented in
[5, 14]. The second step is the design of each SISO (or block) controller K;. These controllers can be
designed using the robust loopshaping method discussed in this paper.

2.3 Linear Fractional Transformations

We will define the special linear interconnection structure called the linear fractional transformation (LFT).
The lower LFT denoted Fi(N,T) is defined by (see Figure 3)

Fy(N,T) = N1y + Ni2T(I — NpyT) "' Noy. (12)

Fy(N,T) is well-defined if and only if the inverse of I — N2, T exists. A superscript is sometimes used on N,
e.g. NT, to denote that N depends on the choice of T

The subscript [ on Fj is used to denote that the lower loop of N is closed by T'. When the upper loop is
closed, the transfer function between inputs and outputs is the LFT F,(N,T) = Nay+No1 T(I—-Nyy T)~ ! Nys.
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Figure 4: Equivalent representations of system M with perturbation A. T'is chosen to be a parametrization
of the controller K.

2.4 Sensitivity and Complementary Sensitivity

The complementary sensitivity H and the sensitivity S are defined by
H=PK(I+PK)™, S=(I+PK)" (13)

These functions are useful in the loopshaping design of SISO controllers. For loopshaping design, H and S
will be considered as parametrizations of the controller K. Note that S+ H = 1I.
Define P to be the block-diagonal part of the plant corresponding to the block structure of the
decentralized controller K. If
K= diag{Kl, .K2, tety .Km}, (14)

then B
P = diag{Pu,ng,---,Pmm}. (15)

Define the block-diagonal complementary sensitivity by H= 13K(I+15K) L and the block-diagonal sensitivity
by S I+ PK )~!. The block-diagonal complementary sensitivity and block-diagonal sensitivity are useful in
the loopshaping de81gn of decentralized controllers. For decentralized controller design, H and S will be the
parametrizations of the block-diagonal controller K. Note that H+S=1

2.5 Parametrize Controller as a Function of T

To use the theorems derived in this paper an LFT of M must be found in terms of T (see Fig. 4), where
T parameterizes the controller we are to design. In many cases, this is easily done by inspection. In other
cases, a procedure in [18] is used. For loopshaping, T' is usually chosen to be H, S, L, K, H, S, or L (see
Braatz et al. [5] for derivation of the equations that follow).

To get N, begin with the interconnection structure in terms of G and K. The generalized plant ¢
is determined by the nominal model, the location and magnitude of the uncertainties, and the performance
specifications. The generalized plant G is found directly by rearranging the system’s block diagram.! We
can calculate N for T = H (denoted as N¥) directly from G:

N = (16)

Gu G P71
Gan 0 '

For T = S, L, and K, respectively, we have

Gii + G12P7 Gy —Gpa P71

NS = , 17
Gt 0 (17)
G p-1
NE— | Gu G2 (18)
Gy GnP™!
NE =@, (19)

L The subroutine sysic does this in p-tools [1].



and for decentralized control,

; Gn G P!
" _ 11 12
N = Gy I-— Pp_l ' (20)
NS — Gu +GuP Gy —GpP™! (21)
PP Gy I-pp1t |’
NE— Gn GpPt (22)
Gn GnP! |’

A simple program can be written that calculates N¥, N5, NP N Nﬁ, NS, and NI given the
transfer functions describing the system components and the location of the uncertainty blocks A;.

3 Robust Loopshaping Bounds

Controllers which satisfy robust performance can be designed via robust loopshaping. To perform robust
loopshaping, the robust performance conditions are expressed as norm bounds on the transfer function 7.

A sufficient condition was derived by Skogestad and Morari [18] for robust performance based on
7 (T) being small enough. It was shown that this bound on @ (T) was the tightest bound possible, i.e. if
we have a Ty with 7 (71) larger than the bound given in [18], then there exists a Ty with 7 (T2) = 7 (T1)
where T3 does not meet robust performance. The tightest necessary upper and lower bounds were derived in
[5]. & (T') must be between the upper and lower necessary bounds. Comparing the necessary and sufficient
bounds gives a measure of the conservativeness of loopshaping design. When the necessary bound and the
sufficient bound are very close to each other, we have essentially necessary and sufficient bounds for robust
performance in terms of @ (T'). Below we also present an additional bound, the sufficient lower bound, which
is useful when loopshaping design using open loop transfer functions (e.g. K and L).

Consider a system in M — A form as shown in Figure 4. The interconnection structures in Figure 4
are equivalent. M is written as a linear fractional transformation of the transfer function of interest, namely
T. We define the set of all norm-bounded perturbations

vBAr ={Ar|Ar € Ar,7(Ar) <7}, (23)

and also it near-complement
vBAT = {AT |AT c AT,?(AT) > 'y} . (24)
The robust loopshaping bounds are briefly described below (see Braatz et al. [5] for proofs, a thorough

description, and several examples of the use of the bounds for designing SISO and decentralized controllers).

Theorem 3.1 (Sufficient Upper Bound for Robust Performance [18, 19]) Let M = F;(N,T) = Nu1+
N1aT(I — NooT) "' Ny, let k be a given constant, and define

fler)= max . tA (Fi (N, A7) (25)

T€cr

Assume

(’L) det(I - N22T) :,é 0,
(i)  f(0) = pa(Nu1) <k, and (26)
(7i1)  f(o0) > k.

Let ¢ solve

fesr) = . (21)
Then pp (M) <k if
7 (T) < . (28)



Remark 3.2 (Remarks Regarding Assumptions) Assumption (i) will hold for any well-posed problem.
If assumption (i1t) does not hold, then any T will give pp (M) < k—the uncertainty and performance weights
would have to be very weak for this to be the case. Assumpiion (if) may or may not hold. For reasonable
choices of uncertainty and performance weights, assumption (73) will hold for low frequencies when T =S or
S and will hold for high frequencies when T = H, H, L, or K. This will be illustrated in more detail later.

Remark 3.3 (Remarks Regarding Calculation) Theorem 3.1 is a restatement of a result in [18, 19].
In fact, Skogestad and Morari [18] show that Thm. 3.1 remains valid if f(cr) is replaced by

) ~ N Nip
fler) = M[AAT] ([ kerNay  kepNoo }) : (29)

This means that the sufficient upper bound can be calculated through iterative u calculations. Actually, the
sufficient upper bound can be calculated via one scaled p calculation, as is discussed by Braatz et al [5].

Theorem 3.4 (Sufficient Lower Bound for Robust Performance) Let M = Fi(N,T) = Ni1+Ni2T(I-
N22T)—1N21, let k be a given constant, and define

elcr) = max _ pa(Fi(N,A7)). (30)
ATECTBAT
Assume
(@) det(I — Ny T') # 0,
(i"")  e(0) = max pp (Fi(N,Ar)) >k, and (31)
AreAr

(i) e(c0) < k.

Let cf,! solve

e(ch) = k. (32)
Then pp (M) < k if
7(T) > cf. (33)

Remark 3.5 (Remarks Regarding Assumptions) Assumption (i) will hold for any well-posed problem.
If assumption (ii"") does not hold, than any T will give ua (M) < k—the performance specifications are
trivially achieved in this case. For reasonable choices of uncertainty and performance weights, assumption
(i4i""") will hold for low frequencies when loopshaping K or L. This bound never exists when loopshaping with
closed loop transfer functions (with reasonably chosen weights).

Remark 3.6 (Remarks Regarding Calculation) The sufficient lower bound can be calculated through a
scaled pi calculation whenever Ar is repeated scalar. This will happen when designing an SISO controller,
or a decentralized controller for robust performance.

To show this, we need the following lemma:

Lemma 3.7 (LFT of Inverse) Consider an LFT in terms of A, Fi(N, A). Define

- Nii — Ni2Nyp'Noy  Nia Nyt
N = - 22 _122 . (34)
_N22 Nay N22

Then the following equality holds: R
Fy(N,A) = R(N,A™). (35)



Proof: The equality follows from the definition of the lower LFT and some simple algebraic manipulation.
QED.
If Ap i3 repeated scalar, then

elcr) = max__ pa (Fi(N,Ar)) (36)
ATECTBAT
= max__ pa (Fi (N,6I)) (37)
slecrBAr
= T os—1
B (1/6)113E~XBATMA(FI (N"S I)) (38)
T arenBar A<F’ (N’AT)) (39)
= fler). (40)

Thus the method for calculating the sufficient upper bound on o (T) discussed in Remark 3.3 can also be
used to calculate the sufficient lower bound on & (T) whenever Ar is repeated scalar. This fact was used by
Howd [11] to design decentralized controllers via loopshaping the IMC filter parameter.

Theorem 3.8 (Necessary Upper Bound for Robust Performance) Let M = Fi(N,T) = Nu+NppyT(I—
Ny T) 1Ny, let k be a given constant, and define

gler)= min__ pa(F1(N,Ar)). (41)
ATGCTBAT

Assume

() det(I — NpsT) # 0,
(ii’) g((]) = A;Iéi‘l’iT ,LLA(FI(N, AT)) < k, and (42)
(118")  g(o0) > k.

Let c3* solve

g(er*) = k. (43)
Then pa (M) < k only if
7 (T) < . (44)

Remark 3.9 (Remarks Regarding Assumptions) Assumption (i) will hold for any well-posed problem.
If assumption (ii') does not hold, than no T will give up (M) < k—when T parametrizes the controller
K, this implies that no controller with the given structure esists that will achieve robust performance. If
assumption (iii') does mot hold, then the optimization (41) is too conservative to give a useful necessary
upper bound on T. For reasonable choices of uncertainty and performance weights, assumption (7ii") holds
for high frequencies when loopshaping K or L. This bound always ezists when loopshaping with closed loop
transfer functions (with reasonably chosen weights).

Remark 3.10 (Remarks Regarding Calculation) Braatz et al [5] show how to calculate the necessary
upper bound (and the necessary lower bound discussed below) when A is repeated scalar. No method currently
exists for calculating the necessary bounds for general Ag.

Theorem 3.11 (Necessary Lower Bound for Robust Performance) Let M = Fi(N,T) = N1+ N T(I-
N2 T)"INyy, let k be a given constant, and define

hicr) = N emi]%A KA (Fi (N, Ar)). (45)
TCCT T

Assume
(l) det(I - N22T) :,é 0,
(i")  h(co) = min pp (Fi(N,Ar)) <k, and (46)
ATEA

T

(113") h(0) = ,LLA(NH) > k.



Let c'j:’ solve
h(c¥) = k. (47)

Then pp (M) < k only if
7(T) > . (48)

Remark 3.12 (Remarks Regarding Assumptions) Assumption (i) will hold for any well-posed prob-
lem. If assumption (ii") does not hold, than no T' will give up (M) < k—uwhen T parametrizes the controller
K, this implies that no controller with the given structure ecists that will achieve robust performance. This
will be discussed more later. Assumption (iii") may or may not hold. For reasonable choices of uncertainty
and performance weights, assumption (iii) will hold for high frequencies when T =5 or S and will hold for
low frequencies when T = H, H, L, or K. This will be illustrated in more detail later.

General Remarks

Remark 3.13 Note that the sufficient upper bound and the necessary lower bound cannot both exist at the
same frequency. Actually, when a robustly performing controller ezists (assumption (4”) must hold in this
case), and provided that robust performance is not trivial to satisfy (so assumption (¥i) holds), exactly one
bound ezxists for each frequency. Similarly, the sufficient lower bound and the necessary upper bounds cannot
both ezist at the same frequency. Actually, when a robustly performing controller ewists (assumption (i)
must hold in this case), and provided that robust performance is not trivial to satisfy (so assumption (4i”’)
holds), exactly one bound ezists for each frequency.

Remark 3.14 Many parameterizations T exist for the controller K, for example K can be parameterized
by the sensitivity S, the complementary sensitivity H, the block diagonal sensitivity S, the block diagonal
complementary sensitivity H, the open loop transfer function L = PK, or just the controller K. Controllers
can also be designed via loopshaping the IMC filter F [9] or the IMC filter time constant A [11].

Remark 3.15 The norm bounds on different T’s can be combined over different frequency ranges. For
example, for Ty = S and Ty = H, robust performance is achieved if either of the conditions 7 (S(jw)) < ¢s
or 7 (H(jw)) < em is met for each w. This is important when guaranteeing robust performance when
loopshaping closed loop transfer functions.

Remark 3.16 The bounds given by each theorem are the tightest bounds possible. For ezample, if we have
a Ty with@ (Ty) larger than c* defined by Theorem 3.1, then there exists a Ty with 7 (T3) = @ (T1) where
T, does not meet robust performance.

Remark 3.17 The least conservative bounds are obtained when Ar is a Tepeated scalar block. For this rea-
son, the repeated scalar block (i.e. assuming all loops are identical) is used when designing fully-deceniralized
controllers for robust performance via loopshaping. When designing controllers to have failure tolerance
properties, it can be useful to allow A to consist of independent 1 x 1 blocks when calculating sufficient
bounds for robust stability. This is ezplained in Section 7.2.

Remark 3.18 It is straightforward to use Lemma 8.7 to derive alternative bounds in terms of o(T). In this
paper we focus on achieving bounds on T (T).

4 Controller Design via Loopshaping

In robust loopshaping design, the nominal closed loop transfer functions are specified directly based on
necessary bounds and sufficient bounds for robust performance. In a previous paper [5], we focused on
loopshaping with the sensitivity and the complementary sensitivity for SISO systems, and with the diagonal
sensitivity and diagonal complementary sensitivity when designing fully-decentralized controllers.

When designing controllers via loopshaping we need to satisfy separate conditions to guarantee nomi-
nal stability. For example, when designing an SISO controller via loopshaping closed loop transfer functions,

10



nominal stability is guaranteed by specifying stable S and H and by satisfying the interpolation conditions

[9]
H(z;) =0 and S(z;) =1 for all closed right half plane zeros z;, (49)

and

S(p;) = 0 and H(p;) = 1 for all closed right half plane poles p;. (50)

The interpolation conditions are equivalent to the condition that the right half plane poles and zeros of the
plant cannot be cancelled by the controller. These conditions are easy to satisfy when there are few right
half plane poles and zeros; when there are more then the Internal Model Control (IMC) method can be used
to stabilize the system, and the filter can be designed via loopshaping (for details see [15, 9]). Guaranteeing
nominal stability is more difficult in the multivariable case. See [22] for a detailed discussion of stability for
multivariable systems. A conservative loopshaping method for guaranteeing nominal stability is in [19].

There are many advantages to designing controllers via loopshaping closed loop transfer functions.
One advantage is that the properties of interest to the engineer are specified directly by the nominal closed
loop transfer functions. For example, the sensitivity is directly related to the capability of the closed loop
system to reject disturbances at the output of the plant. The complementary sensitivity is directly related
to the closed loop speed of response and the insensitivity of the output to measurement noise. Thus directly
specifying the closed loop transfer functions allows “intuition” in the design procedure. Also, it is easy to
specify gain and phase margins when loopshaping the sensitivity S, as will be shown in Example 2b. When
designing controllers via loopshaping closed loop transfer functions, robust performance can be guaranteed
using sufficient bounds on the sensitivity and complementary sensitivity (e.g. see [5]). As will be shown
in Example 2a, robust performance cannot be guaranteed using sufficient bounds on open loop transfer
functions.

_A simple form is usually chosen for S and H, and the controller is calculated via K = P~'HS™! or
K = P~'HS-'. A disadvantage of designing controllers via loopshaping closed loop transfer functions is that
in practice the order of the controller is larger than the order of the plant. It is difficult to design a controller
with a specified structure when specifying closed loop transfer functions. The advantage of loopshaping
design using open loop transfer functions (e.g. L or K) is that the controller complexity (e.g. PID, or low
order) is directly specified. It is difficult to do this using other robust controller design methods. For example,
the DK-iteration method proposed by Doyle [8] gives controllers of very high order, though the order can be
somewhat reduced using model reduction [1].

The next section will show how to use the necessary and the sufficient bounds to design a controller
via loopshaping L. Then we show how to design robust controllers with specified gain and phase margins.
We then show how to meet multiple performance specifications, including such goals as failure tolerance and
fault tolerance.

5 Loopshaping with Open Loop Transfer Functions

In Example la we derive loopshaping bounds on L for an SISO plant. The corresponding bounds for K are
immediately given by the bounds for L, since |L| = |P|-|K|. In Example 2a, we apply these bounds to
design a controller for a DC motor with negligible viscous damping.

5.1 Example la—Loopshaping L for SISO Plant

Assume that we are interested in disturbance attenuation, then our performance condition is to keep the
norm of the sensitivity function & (S) = |S| small. If we let our frequency dependent performance bound be
1/|wp|, then robust performance is satisfied if & (S) < 1/|wp| for all plants in our uncertainty description.
Let the set of possible plants be given in terms of multiplicative uncertainty of magnitude |wo| (see Fig. 5).
Robust performance is satisfied if and only if p (M) < 1 for all frequencies where

A
A=|"° , (51)

Ap

M= on on ’
pr' pr

11
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Figure 5: The plant with output uncertainty Ao of magnitude wo(s). Robust performance is satisfied if
7 (wp( + PK)™) < 1for all Ao with lAolleo < 1.

and H is the complementary sensitivity function. The generalized plant G is found from inspection to be

G G 0 0 woP
G = Gu Gw = | wp wp|—-wpP |. (52)
21 Ga T 1 | —p

To loopshape with L, we calculate N* from G using (18):

G G P71

NL =
Ga1 Goa P71

=| wp wp —wp |. (53)

5.1.1 Sufficient Bounds on L

Theorem 3.1 gives the sufficient upper bound on L for robust performance to be achieved. The upper bound
is c4*, where c¢* at each frequency solves

0 0 wo

w w —w =1. 54
“Ead| o )
L ¢ ~¢r

Ar has the same structure as L, namely 1 x 1, so diag{A,Ar} = diag{Ao,Ap,Ar} is a 3 x 3 diagonal
matrix with independent blocks.

Theorem 3.1 gives us that a (M) < 1 for all frequencies for which |L| is lower than ¢7*. An analytical
expression can be derived for u in (54) from the definition of u. Using this expression, ci* can be solved
analytically. We find that for each frequency

1— |wp|

M<le=|Ll<c* = . 55
HA(M) < 1= L] <o = T, (55)
Similarly, the sufficient lower bound theorem gives
NA(M)<1¢|L|>C"LI:1—+M. (56)
1—|wo

The expressions for ¢}* and c}! above are most easily derived from

on ’on
UJPS pr

1
14+ L

} = |woH| + |wpS| = + |wp (57)

pa (M) = M[AOAP] [ onLL’

combined with the triangle inequality [e.g., use |1 — |L|| < |1 + L| £ 1+ |L| (see [9] for details)].
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Notice that the sufficient upper bound on |L| is defined only for |wp| < 1 (typically true for high
frequencies), and the sufficient lower bound on |L| is defined only for |wo| < 1 (typically true for low
frequencies). These conditions correspond to the requirement that pa (N11) < 1 holds for the sufficient
upper bound to be defined in Thm. 3.1, and to the requirement that e(co) < k holds for the sufficient lower
bound to be defined in Thm. 3.4.

5.1.2 Necessary Bounds on L

For the necessary bounds to exist in Theorems 3.8 and 3.11, we need

0 0 wo
min f A F wp wp —wp [,AL| | <L (58)
- [ P] 11 -1

The above minimization can be solved analytically to give

0 0 wo
Igin,u,[Ao } F wp wp —wp yAL :1nin{|w0|,|'wp]}. (59)
L
p 1 1 -1

This equation is most easily derived using (57). The left hand minimization in (59) is achieved for A7' — 0
when |wo| < |wp| and for Ay, = 0 when |wo| > {wp|.

A necessary condition for robust performance is that for each frequency either |wo| or |wp| is less
than one. This will be assumed in the following derivation of the necessary bounds, since if this condition is
not met, then robust performance cannot be met by any controller.

Necessary Upper Bound on L Theorem 3.8 gives the tightest necessary upper bound on L for robust
performance to be achieved. The upper bound is c}*, where ¢}* at each frequency solves

0 0 wo
min  f§ 13] wp wp —-wp |,AL =1 (60)
aclzeps " [A0 4 ]
P 1 1 -1
Theorem 3.8 gives us that for fta (M) to be less than 1 it is required that |L| is lower than c}*. The
minimization in (60) can be solved analytically to give the following expression for c}*:

1—|wp|

PAM) <1=|L| <" = (61)

|wo| - 1.

Again the expression for ¢7* is most easily derived from (57) combined with the triangle inequality.

Necessary Lower Bound on I Theorem 3.11 gives the tightest necessary lower bound on L for robust
performance to be achieved. The upper bound is ¢}/, where ¢ at each frequency solves

0 0 wo
F wp wp —wp |,Ap =1. (62)

min M [Ao ]
Ap 1 1 -1

lap(ILe

Theorem 3.11 gives us that for 1o (M) to be less than 1 it is required that |L| is larger than ¢, The
minimization in (62) can be solved analytically to give the following expression for c}':

|wp| — 1
1 — |wol

(63)

pa(M) <1=>|L|>c} =

13



Again the expression for ¢? is most easily derived from (57) combined with the triangle inequality.

Notice that the necessary upper bound on |L| is defined only for |wo| > 1 (typically true for high
frequencies), and the necessary lower bound on |L| is defined only for |wp| > 1 (typically true for low
frequencies). These conditions correspond to the requirement that g(oco) > 1 holds for the necessary upper
bound to be defined in Thm. 3.8, and to the requirement that gt (N11) > 1 holds for the necessary lower
bound to be defined in Thm. 3.11.

Remark 5.1 All the above bounds are derived in [9] using the triangle inequality. The condition required
for the necessary bounds to ezist, min{|wol, |wp|} < 1, is the second “algebraic constraint” in [9]. The
advantage of Theorems 3.1, 3.4, 3.8, and 3.11 is that the bounds can be calculated for arbitrary uncertainty
descriptions including mized real and complez, and for the design of fully-decentralized controllers.

5.2 Example 2a—DC Motor with Negligible Viscous Damping

Description Assume the nominal transfer function is the double integrator
P(s) = ! 64
()= (64)

This could describe a DC motor with negligible viscous damping. The nominal model, uncertainty descrip-
tion, and performance specifications for this example come from Braatz et al. [5].
We are interested in good tracking over a bandwidth of about 1. If |S| < 1/|wp|, where

10
$S3+2s2 425+ 1’

wp = (65)
then the tracking error is at most 10% over the desired closed loop bandwidth. The true plant is assumed
to have a time-delay, which was covered by a multiplicative uncertainty of magnitude |wo| in [9], where

0.21s

Yo =01s+1

(66)
This performance and uncertainty description is that of Example la; analytical expressions for the necessary
bounds and the sufficient bounds are given there.

Loopshaping Design for Robust Performance Braatz et al. [5] design robust controllers for this
plant via loopshaping the closed loop transfer functions—the sensitivity and the complementary sensitivity.
Nominal stability was satisfied using the interpolation conditions (50). By combining sufficient bounds on
H and S over different frequency ranges, robust performance was guaranteed by the resulting design. The
robust controller designed in [5] with the smallest value for ;1 was given by

15 .2 4 1
—168 t35+1

K=o+

(67)
Fig. 6 is a plot of the structured singular value for robust performance using this design.

The structure of this controller designed by specifying closed loop transfer functions is somewhat
awkward, with a right half plane zero at s = 4/3. When loopshaping an open loop transfer function, we can
directly specify the structure of the controller. We could try to design a PID controller, but it is clear that
the integral term is not needed and would add additional phase lag which would be difficult to counteract
using the derivative term. Thus we will design a PD controller by loopshaping L.

The formula for a PD controller, where the derivative action is assumed to be effective over one decade,
is
Tms+1

K=k—7——,
0.1lmps+1

(68)

where k is the gain and 7p is the derivative time.
The loopshaping bounds on L are given in Fig. 7. The open loop transfer function for an example
design (k = 10, 7p = 0.5) is also shown. Dropping the second order term in s in the numerator of K in (67)
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Figure 6: Structured singular value plot for controller in [5] designed via loopshaping closed loop transfer
functions.
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Figure 7: Loopshaping bounds on L for Example 2a. The solid line is |L], the dotted line at low frequencies
is the sufficient lower bound, the dotted line at high frequencies is the sufficent upper bound, the dashed line
is the necessary upper bound, the dashed-dotted line is the necessary lower bound.
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Figure 8: Bode magnitude and phase plots for the open loop transfer function L.
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Figure 9: Structured singular value plot to test for robust performance for the controller designed in Example
2a.

gives us a numerator time constant of 0.5—we take this to be the derivative time 7. The gain was then
chosen to ensure that the loopshape I would satisfy the low and high frequency necessary conditions (this
gave k = 10). The Bode magnitude and phase plots for the resulting loopshape are given in Fig. 8.

We see from Fig. 8 that the derivative term adds phase lead to the loopshape, which is needed to
stabilize the system since the plant has phase lag of 180°. We see from Fig. 7 that the sufficient bounds are
satisfied for high and low frequencies. It is impossible to satisfy the sufficient bounds on L at crossover—
this will be true in general when loopshaping with an open loop transfer function. Also, though nominal
stability cannot be guaranteed a priori while loopshaping L, it was still easy to stabilize the system by
adding the necessary phase lead at crossover. The closed loop poles with the above PD controller are
{—13.8,-3.10 & 2.213}.

Fig. 9 is a plot of the structured singular value for the PD controller. The maximum u is equal to
1.14, which is larger than for the previous design (67).

The optimal PD controller was found through optimization to have parameters

k = 8.395, D = 0.5594, (69)

which gives a u value of 1.10. We see that the PD controller designed via loopshaping L is very close to
optimal.

A natural question to ask is why the p value is so much larger for the PD controller than for the
controller designed via closed loop loopshaping in (67). One reason is that the controller in (67) has a
much faster time constant (0.01 vs. 0.05). Another reason is that the PD controller stabilizes the system
by introducing only phase lead at crossover (no RHP zeros), and since the derivative time is active over
only one decade, the PD controller can introduce only a limited amount of phase lead at crossover. It is
interesting to note that the optimal PD controller which has derivative time active over two decades (and so
has a faster time constant and can introduce more phase lead) has a peak p value of 0.954, which satisfies
robust performance.

It is interesting to consider the high and low frequency limits for the necessary and the sufficient
bounds.

The necessary and the sufficient upper bounds exist only at high frequencies; this tends to always
be the case. The necessary upper bound at high frequencies requires that L roll off sufficiently fast. Since
L = PK is strictly proper, L must approach 0 at high frequencies. Note that when |wo| >> 1 > |wp]
the upper bounds coincide—this coincident bound is then a necessary and sufficient upper bound for robust
performance. In this case, the upper bounds (55,61) both approach

1 — |wp]

ool (70)
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This would be expected to hold only at high frequencies because here the uncertainty is largest and the
performance requirements are small. The upper bounds do not coincide for high frequencies in Fig. 7
because the uncertainty weight is very lenient for this example [wo(c0) = 2.1].

The necessary and the sufficient lower bounds exist only at low frequencies. The necessary lower
bound requires that L have sufficiently high gain at low frequencies. Since L has a double integrator, L must
approach oo at low frequencies. The lower bounds coincide when |wp| >> 1 > |wo|. In this case, the lower
bounds (56,63) both approach

|we|
T Jwol (7D
lwp| >> 1 > |wo| usually holds at low frequencies because here the performance requirements are large (for
example, for integral control |wp| approaches infinity as s approaches zero) and the uncertainty is small.
As expected, the lower bounds nearly coincide for low frequencies in Fig. 7. The bounds would overlap at
low frequencies if integral action had been an explicit performance requirement. Since the plant is a double
integrator, integral action is satisfied automatically.

From Fig. 7 we see that we have |L| >> ¢/ at low frequencies and |L| << ¢j* at high frequencies. This
suggests that the closed loop system can meet a more stringent performance specification at low frequencies
and be robust to more uncertainty at high frequencies. We see from Fig. 9 that the structured singular value
is much less than 1 at low and high frequencies, which confirms our judgment that the performance and
stability requirements are lenient at low and high frequencies. An increase in the steady-state performance
and the high frequency uncertainty requirements would lead to a “flatter” structured singular value plot.

6 Gain and Phase Margins for SISO Plants

Gain and phase margin goals are easy to quantify in terms of the sensitivity. The proofs of the following
lemmas are left to the reader.

Lemma 8.1 The sensitivity and gain margin (GM) are related by

GM

1SGwgm)l = 3y =7 (72)

where Wy, 18 the frequency of the leftmost intersection of |L(jw)| with the negative real axis in the SISO
Nyquist plot.

Lemma 6.2 The sensitivity and the phase margin (PM) arve related by
1
S(Jwpm )| =
1$Gem) V2(1 = cos(PM))’

where Wy, 18 the frequency of the leftmost intersection of |L(jw)| with the unit circle in the SISO Nyquist
plot.

(73)

The frequencies wy, and wym, and commonly referred to as the gain and phase crossover frequencies [12].

To make sure that specified gain and phase margins are met, the sensitivity is shaped to be less
than the values given by right hand sides in (72) and (73). The loopshaping bounds (and perhaps a design
iteration) suggest where the gain and phase crossovers will be. Below we give an example illustrating this
technique. But first we must review the loopshaping bounds on S and H for an SISO plant.

6.1 Example 1b—Loopshaping S and H for an SISO plant

The complete set of loopshaping bounds on the sensitivity and complementary sensitivity were derived by
Braatz et al. [5]. These bounds are reviewed here because they will be needed in Example 2b.
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Sufficient Upper Bounds on Sensitivity and Complementary Sensitivity The sufficient upper
bounds for |H| and |S| are

1 — |wp|

M<l<=|H <cgf=——"— 1if lwp|< L. 74
1-—- |wo| .

My<l<=|S| < =———"— if |lwo|< 1. 75

,LLA( ) | | S |w0l+!wP| | O| ( )

The sufficient lower bound does not exist for closed loop transfer functions.

Necessary Bounds on Sensitivity and Complementary Sensitivity We show in [5] that for the
necessary bounds to exist we need

min {|wo|,|wp|} <1 V. (76)

This will be assumed in the following derivation of the necessary bounds, since if this condition is not met,
then robust performance cannot be met by any controller.
The necessary upper bounds for |H| and |S| are [5]

HA(M) < 1= |H| < e ={ TeglTwr (17)

1+|wp] .
s e if lwo| < 1.

(wgh

(i oot

wp|—|wo

L+|wol i
PrSERET if lwp| < 1.

/J,A(M) <l= |S| < Cgu

(78)

Note that the necessary upper bound is defined for all frequencies provided that min{|wo|,|we|} < 1.
The necessary lower bounds for |H| and |S| are

1 — lws
pa (M) <1= |H|>c} = _L-lwel if |lwp| > 1. (79)
lwol — |wp
l—|wo| .
M<1=|8|>c¥ =—""—"" if|uwo|>1 80
,U,A( ) || S |7~UP[_|1UO| I l ( )

6.2 Example 2b—DC Motor with Time Delay and Negligible Viscous Damping

Description Assume the nominal transfer function is

1 20-—s
P(S):s_2.20+s'

(81)

This could describe a DC motor with negligible viscous damping and a time delay of 0.1 s. The time delay
is modelled with a first order Padé approximation. The uncertainty description covers the error introduced
by this approximation.

The uncertainty and performance specifications are the same as in Example 2a, except that margin
specifications must also be met—the gain margin must be greater than 3, and the phase margin must be
greater than 45°. From (72) and (73) we see that specifying these margins is equivalent to specifying that
|S(jwgm )| < 1.5 and |S(jwpm )| < 1.31.

Loopshaping Design for Robust Performance In Example 1b we listed the bounds for S and H. The
upper plot in Fig. 10 gives the loopshaping bounds on H and the lower plot gives the bounds on S. The
complementary sensitivity H and sensitivity S are shown for an example design.

Our design approach is to find an S that satisfies nominal stability and has the sufficient bound on
S satisfied for one part of the frequency range and the sufficent bound on H satisfied for the other part of
the frequency range so that robust performance is guaranteed for all frequencies. This procedure has been
described in detail by Braatz et al. [5].
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Figure 10: Loopshaping bounds on H and S for the first design in Example 2b. The upper plot is for H
and the lower plot is for S. The dashed lines are necessary upper bounds, the dashed and dotted lines are
necessary lower bounds, and the dotted lines are sufficient upper bounds.
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Figure 11: Structured singular value plot to test for robust performance for the first design in Example 2b.

To have internal stability, the two plant poles at s = 0 and the plant zero at s = 20 cannot be
canceled by the controller. So for nominal internal stability, S = (1 + PK)™" must have two zeros at s =0
(interpolation condition (50)), and must satisfy S(20) = 1 (interpolation condition (49)). Since the plant is
strictly proper and the controller must be proper, S must also satisfy S(co) = 1.

Let us try the following form for $ which gives a nominally stable system:

A%g? s+a

5= TR et (52)
where x :
200 +1
= W(ZO + b) — 20, (83)

and b is arbitrary. For simplicity, we initially take b = 1/X so that the denominator time constants of
S are equal. The complementary sensitivity H is given by H = 1 — S. The controller calculated from
K = (SP)"'(1 — S) is improper, and so is augmented with the second order filter

1

(0.01s + 1)2 (84)

before calculating gain and phase margins and the structured singular value. The closed loop poles are
calculated to ensure that nominal stability is still satisfied by the augmented controller.

The loopshaping bounds in Fig. 10 suggest that we try A ~ 0.2. Plotting S and H for different values
of X near 0.2 shows that the necessary bounds on S and H are satisfied for 0.16 < A < 0.18. The design
shown in Fig. 10 is for A = 0.18. Since the sufficient bound on § is satisfied for w < 3.8 and the sufficient
bound on H is satisfied for w > 4.0, we expect robust performance to be approximately satisfied. The
structured singular value is plotted in Fig. 11, and the peak p value is 0.998.

We calculated the margins for several controllers with A in the range from 0.16 to 0.18. We found
that A = 0.18 gives the best margins of all the controllers that satisfy robust performance and are given by
(82), (83), and b = 1/A. The margins, with their respective crossover frequencies, are

GM =293 < 3, Wgm = 13.9,
PM = 38.7° < 45°, Wpm = 4.93.

The margin specifications are not satisfied.
It is easy to modify the design to improve the margins. The peak in the sensitivity occurs at w = 7.83,
which is between wp, and wym. This suggests that we should be able to improve the margins by reducing
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Figure 12: Loopshaping bounds on H and S for the second design in Example 2b. The upper plot is for
H and the lower plot is for S. The dashed lines are necessary upper bounds, the dashed-dotted lines are
necessary lower bounds, and the dotted lines are sufficient upper bounds.

the peak in the sensitivity. This can be done by choosing b = 10/). Again we augment the controller with
the second order filter (84) before calculating margins and the structured singular value.

The loopshaping bounds are given for A = 0.28 in Fig. 12. The necessary bounds on S and H are
satisfied for all frequencies. Since the sufficient bound on $ is satisfied for w < 4.4 and the sufficient bound on
H is satisfied for w > 3.5, 1 must be less than 1 for all frequencies. The structured singular value is plotted
in Fig. 13. The peak u value of 0.96 is less than 1, as implied by the satisfaction of the sufficient bound on
S and/or H for each frequency. The closed loop poles are {—116.1 + 44.5i, —20.0, —15.5, —6.92, —2.75}, so
the system is nominally stable.

The margins for this design are

GM =3.02 > 3, Wgm = 19.6,
PM = 47° > 45°, Wpm = 5.42.

Both the crossover frequencies and the peak in the sensitivity is shifted to higher frequencies. The peak in
the sensitivity is reduced from 1.85 to 1.65, and this results in the improved margins.
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Figure 13: Structured singular value plot to test for robust performance for the second design in Example
2b.

7 Multiple Performance Specifications

Robust loopshaping is easily extended to design controllers to meet multiple performance specifications. For
example, one might want a controller that remains stable under slow sensor drift or variations in actuator
or sensor gain (this is referred to as fault tolerance). If there are sensors or actuators that are prone to
failures, then we would like to specify that the closed loop system remain stable or satisfy some minimum
performance whenever these sensors/actuators fail (this is referred to as failure tolerance). Also, often spec-
ifications are in terms of nominal performance and robust stability, instead of robust performance. Multiple
performance specifications are easy to handle using loopshaping—the bounds are calculated individually for
each specification, and the most restrictive bounds are used for loopshaping.

7.1 Nominal Performance + Robust Stability

Often the designer prefers to give specifications not in terms of robust performance, but in terms of nominal
performance plus robust stability. For example, the specifications for the 1990-92 ACC Benchmark Problem
[3, 4] are that the overshoot and settling time should be minimized for the nominal plant, and that stability
is satisfied for some set of plants. Separate specifications are used whenever the designer expects that an
overall robust performance specification will lead to an overly conservative design.

7.2 Fault Tolerance

Fault tolerance refers to the ability of the control system to meet some performance specifications even when
actuators and sensors become faulty. It is easy to include fault tolerance specifications through an additional
1 condition. Below we show how to do this for the commonly occuring faults of gain variation and slow drift.

Gain Variation To develop a system that maintains a given performance even under gain variation in the
actuators or the sensors, just treat the gain variation as real parametric uncertainty.

Below we show how to treat actuator gain variations for two cases: 1) without additional uncertainty,
and 2) with additional uncertainty. A similar development can be done for sensor gain variations or for
combined variations in actuator and sensor gains. For stability of fully-decentralized control systems without
additional uncertainty, sensor gain variations are equivalent to actuator gain variations.

The nominal controller is defined to be K (s). Then the controller with gain variation can be described
by IA{(S) = EK(s), where E = diag{e;}, and €100 < € < € pigh. We can write the set of E described by
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the gain variation as E = E 4+ W, A", where E = diag{e;}, W, = diag{w;},

& = fi,high;'fi‘fow’ (85)

Wi = fi,highz_fi,lnw, (86)

and A" is a diagonal A-block with real independent uncertainties.
Standard block diagram manipulations are used to arrive at the M — A block structure in Fig. 1,
where A = A" and
M = —(I + K(s)P(s)E)"*K(s)P(s)W,. (87)

Stability is obtained for all variations in gain if and only if pa-r(M) < 1.
To design such controllers via loopshaping, we need to have the expression for the G matrix in Fig. 4.

This matrix is
0 I

. (88)
—PW, -PE

The NT matrices needed for calculating loopshaping bounds are determined using (16)-(22).

If we are interested in maintaining stability or performance with respect to other perturbations, then
the expressions for M and G are somewhat more complicated. The designer should avoid asking for the
full performance under large variations in actuator/sensor gains; otherwise the designed controller will be
conservative, i.e. will perform sluggishly even when the actuators and sensors behave perfectly. Let the
original system be described by G(s) with uncertainty A.

The new A matrix is A = diag{A, A’ }. The new M matrix is

M= éll + élgEI{(I — GZZEI{)_1é21 élz(I -+ EI{(I — é22EI{)_1GA22)T/T€. (89)
B K(I - GyuEK) Gy K(I — G BK) ' Gy W,

The new G matrix is R . .
Gu GuW, GpE

G=| 0 o 1| (90)
Gu GuW, GyE

Slow Drift It is quite common for a sensor reading to slowly drift. This slow drift does not affect closed
loop stability (provided the measurement sensitivity [gain] is unchanged), and can be treated as a slow
disturbance at the output of the plant that must be rejected by the controller. This is included as an
additional specification in defining robust performance. The disturbance weight is chosen to have higher
gain at low frequency and a time constant approximately equal to the time constant of the sensor drift. For
example, the disturbance weight could be chosen to be

(Td”'ft/l())s +1

=M
was) Tarifts +1

(91)

where M is the magnitude and 744 is the time constant of the sensor drift. Fig. 14 is a bode magnitude
plot of the disturbance weight for M = 0.2 and 74,;5: = 10.
Another reasonable choice for the disturbance weight is the integrator

wq(s) = —. (92)

7.3 TFailure Tolerance

Conventional feedback control designs for a MIMO plant may result in poor performance, or even instability,
in the event of actuator or sensor outages, even though it may be possible to control the plant using only
the surviving inputs and outputs. Failure tolerance refers to the ability of the control system to meet some
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Figure 14: A disturbance weight to describe slow sensor drift.

(weaker than normal) performance specifications even though a prespecified set of actuators and sensors fail.
Typically we will design the control system to be failure tolerant to only those actuators and sensors which
we suspect might fail—otherwise the designed controller could be overly conservative.

For an example illustrating the importance of designing failure tolerant controllers, consider a distil-
lation column where the setpoints are the top and bottom compositions. Composition measurements are
often too stow for effective control, so usually the controller is designed to use temperature measurements.
The drawback of using temperature measurements only is that it is then impossible to have zero steady-state
error in the compositions. Thus it is advantageous to design the control system that uses temperature mea-
surements, and also uses composition measurements when these are available. Composition analyzers are
typically prone to failure. When a composition measurement fails, the control system should be capable of
giving acceptable performance using only temperature measurements. Such a controller is said to be failure
tolerant.

Even though the importance of designing failure tolerant controllers is clear, relatively few design
methods have been proposed (see Veillette et al [21] for a survey). None of these methods, except for the
method of Veillette et al [21], gives guarantees on system performance. The method of Veillette et al [21]
designs for nominal performance, i.e. the satisfaction of a bound on the H-norm of some transfer function
of interest. The robust loopshaping method is the only method which designs failure tolerant controllers for
robust performance.

The first step in designing a failure tolerant control system is to specify which sensor/actuator com-
binations are expected to fail. Then a performance specification is chosen for each set of sensor/actuator
failures. Sometimes the requirement on the failed system is only that the closed loop remains stable. Once
the different performance specifications are set, then robust loopshaping bounds can be calculated for each
separate p-problem and the most restrictive robust loopshaping bounds are used to design the controller.
This approach will be illustrated in Example 3.

Below we discuss a very strong notion of failure tolerance in which closed loop stability is required for
any combination of actuator failures. We then extend this notion to uncertain systems. Similar definitions
can be given for sensor failures.

Integrity Integrity is defined by Campo and Morari [6].

Definition 7.1 The closed loop system demonstrates integrity if K(s) = EK(s) stabilizes P(s) for all
E c & where
£1j0 = {E =diag(e;) | e € {0,1},i =1,...,n}. (93)

Note that for a system to demonstrate integrity, the plant P(s) must be stable.
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A closed loop system which demonstrates integrity remains stable as subsystem controllers are arbi-
trarily brought in and out of service. Note that integrity does not imply sensor or actuator failure tolerance
unless the failure is recognized and the affected control loop taken out of service.

It is clear that whether a system demonstrates integrity can be tested through 2" stability (eigenvalue)
determinations [6].

Robust Integrity We can generalize the definition of integrity to include robustness. Robust integrity is
defined below.

Definition 7.2 The closed loop system demonstrates robust integrity if the system is stable with I~((s) =
EK(s) for all E € & )¢ and all A € BA where

&jo = {F =diag(e) | & € {0,1},i=1,...,n}. (94)

Note that for a system to demonstrate robust integrity, the plant must be stable under all allowed pertur-
bations. Note also that robust integrity implies integrity.

A closed loop system which demonstrates robust integrity remains robustly stabilized as subsystem
controllers are arbitrarily brought in and out of service. Robust integrity does not imply sensor or actuator
failure tolerance unless the failure is recognized and the affected control loop taken out of service.

It is clear that whether a system demonstrates robust integrity can be tested through 2” nominal
stability (eigenvalue) and 2" robust stability () calculations.

7.4 Fault and Failure Tolerance

A very strong notion of fault tolerance was defined by Campo and Morari [6] for fully-decentralized con-
trollers. The requirement is that the closed loop system remains stable under arbitrary detuning of the
controller gains. For fully-decentralized control systems, this is equivalent to arbitrary detuning of the
actuator/sensor gains.

Decentralized Unconditional Stability The following definition of decentralized unconditional stability
is slightly modified from that of Campo and Morari [6].

Definition 7.3 Assume K(s) is fully-decentralized. The closed loop system is decentralized unconditionally
stable (DUS) if K(s) = EK(s) stabilizes P(s) for all E € £p where

&p = {E =diag(e;) | & € (0,1),i = 1,...,n}. (95)

Note that for DUS to make sense the plant P(s) must be stable.
A closed loop system which is DUS remains stable as the gains of each controller subsystem are
independently detuned. The following result is a computable necessary and sufficient condition for DUS.

Theorem 7.4 Assume K(s) is decentralized. Define A to be a diagonal A-block with independent real
uncertainties. Then the closed loop system is DUS if and only if
(I+ 2K(s)P(s))"' K(s)P(s) is stable and

,M,(_%(I + %K(s)P(s))‘lK(s)P(s)) <1, Vo (96)

Proof: Let E = W, = (1/2)I in (87). The conditions par(~3(I + 1K (s)P(s)) " K(s)P(s)) < 1, Yw and
(I+ 1K(s)P(s))~1K(s)P(s) is stable ensure that the closed loop system is stable for all & € (0,1). QED.
The closed loop system cannot be DUS when the controller K(s) has poles in the open right half
plane—this is because some minimum amount of feedback is required to have closed loop stability.
To calculate loopshaping bounds to meet the y condition in Thm. 7.4, we need the expression for the
G(s) matrix in Fig. 4. This matrix is given by (88) with E = W, = (1/2)I:
0 I

G = . (97)
-(1/2)P —(1/2)P
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Robust Decentralized Unconditional Stability We can generalize the definition of DUS to include
robustness. Clearly with arbitrary detuning of single loop controller gains it is not reasonable to ask for
performance of the arbitrarily detuned system to be better than open loop. But it could be reasonable to
expect that the system remains robustly stable under arbitrary detuning of single loop controller gains.

Definition 7.5 Assume K(s) is decentralized. The closed loop system is robust decentralized uncondition-
ally stable (RDUS) if the system is stable with K(s) = EK(s) for all E € £yp and all A € BA where

&p = {E =diag(e;) | & € (0,1),1 =1,...,n}. (98)

Note that for RDUS to be satisfied, the plant must be stable under all allowed perturbations.
The following result is a computable necessary and sufficient condition for RDUS.

Theorem 7.8 Assume K(s) is decentralized, and that the uncertain system is described by é’(s) and A.
Define A" to be a diagonal A-block with independent real uncertainties. Then the closed loop sysiem is
RDUS if and only if M(s) is stable and
,UA(M) <1, V‘-"a (99)
where A = diag{A, A"}, and
G+ 3G K(I - 1GpuK) Gy LG+ 1K - 1GnK)™Gy)
-1 .

s _ 14 : LE(T — Ly K)-1C
K(I-1GnK) Gy LK(I — LG K) G

(100)

Proof: Let E = W, = (1/2)I in (89). The conditions pta(M) < 1, Vw and M(s) stable ensure that the
closed loop system is stable for all ¢; € (0,1) and A € BA. QED.

The closed loop system cannot be RDUS when the controller K(s) has poles in the open right half
plane—this is because some minimum amount of feedback is required to have closed loop stability.

To calculate loopshaping bounds to meet the p condition in Thm. 7.6, we need the expression for the
G(s) matrix in Fig. 4. This matrix is given by (90) with E = W, = (1/2)I

G (1/2)Gia (1/2)Gra
G= 0 0 I . (101)
G (1/2)Gyy  (1/2)Gaa

Remark 7.7 Actually, the definition of DUS given by Campo and Morari [6] requires that the system is
stable for all €; € [0,1]-—we will refer to this version as CDUS (closed DUS).

When K(s) is stable, a necessary and sufficient test for CDUS is given by Thm. 7.4 except with the
condition p < 1 replacing p < 1 in (96).

When K(s) is an integral controller, Nwokah and co-workers [13, 16, 17] claim to derive a computable
necessary and sufficient condition for CDUS (though they mistakenly rvefer to CDUS as Decentralized Integral
Controllability), but it is quite simple to show that their results are incorrect. CDUS can be checked through
a finite number of stability and p tests—just use Thm. 7.4 to check the interior of the e-hypercube, and test
the boundary® (the points, edges, faces, etc.) through additional u tests. The number of u-tests required
grows rapidly with the size of the system. It is not known if all these p tests ave really needed. The reason
CDUS cannot be tested by one p test is that setting the proportional gain to zero in a controller with integral
action will remove the feedback around the integrator, which will then be a limit of instability. This problem
is only of a mathematical nature—it does not correspond to a physical problem since the integral action is
turned off when the proportional gain is set to zero. A problem formulation that avoids this mathematical
artifact is currently being investigated.

When K(s) is integral, the p test in Thm. 7.4 is a tight necessary condition for CDUS, so as long as
1 approaches 1 only at zero frequency and is strictly less than 1 for all other frequencies, then the designer
can feel fairly confident that the system s CDUS.

CRDUS can be defined similarly, and a similar discussion applies as for CDUS.

2The boundary of the e-hypercube is the set of detuned systems with at least one of the ¢; = 0 or 1.
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Figure 15: High Purity Distillation Column in DV configuration

Robust Decentralized Detunability Detuning a controller refers to changing some parameter in the
controller or in the control synthesis procedure so that the control action becomes less aggressive. For
example, in Linear Quadratic Control detuning refers to increasing the magnitude of the control weight. In
decentralized Internal Model Control, detuning refers to increasing the IMC filter time constants in each
single loop controller [11]. The special case of detuning the single loop controller gains in a decentralized
controller was discussed earlier in the sections on DUS and RDUS.

Hovd [11] introduced the following very general definition for robust decentralized detunability.

Definition 7.8 For a given design method, a closed loop system is robust decentralized detunable (RDD) if
each single loop controller can be detuned independently by an arbitrary amount without endangering robust
stability.

Whenever the controller is detuned by varying parameters in the controller, RDD can be tested via a p test
where the variation in parameters is covered by real uncertainty (the real uncertainty must be independent
for arbitrary detuning). Both the robust performance and the “RDD” loopshaping bounds are plotted and
the most restrictive of the bounds are used in the design. The resulting controller meets robust performance
and gives a system which is RDD. The procedure is illustrated in Example 3.

In Example 3 we design a decentralized controller via loopshaping H and S. For this design proce-
dure, the closed loop system is RDD if the time constants for the single loop controllers can be increased
independently by an arbitrary amount without endangering robust stability.

7.5 Example 3—Robust Fault/Failure Tolerant Decentralized Controller De-
sign for a High-Purity Distillation Column

7.5.1 Description

For this example we will use the loopshaping bounds to design a robust fault/failure tolerant decentralized
controller for the high-purity distillation column given in [19] and discussed in more detail in [20]. The
nominal model is:

1

T Ths+1

(102)

—0.878 0.014
—-1.082 —0.014 |
This nominal model may correspond to a high-purity distillation column using distillate and boilup as

manipulated inputs to control top and bottom composition (see Fig. 15) using measurements of the top and
bottom compositions. The uncertainty and performance weights are

5s+ 1 7s+ 1
s+l =025 . 103
0.255 + 1’ wr(s) s (103)

wI(s) =0.1
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Figure 16: The plant with input uncertainty A; of magnitude wy(s). Robust performance is satisfied if
7 (wp(f + PK)-I) < 1 for all Ay with ||Asle < 1.

The robust performance condition is a bound on the sensitivity, i.e. (S) < 1/|wp|, VP € II. The input
uncertainty includes actuator uncertainty and neglected right half plane zeros of the plant. The performance
bound implies integral action and a closed loop bandwidth of at least 1/7. The uncertainty block Aj is a
diagonal 2 x 2 matrix (independent actuators) and the performance block Ap is a full 2 x 2 matrix. Fig. 16
is a block diagram of the system.

7.5.2 Loopshaping Design For Robust Performance and Fault/Failure Tolerance
Robust performance is satisfied if and only if pa (M) < 1 for all frequencies where

A

A= (104)

prP 'pr

M= —w;P~'HP —w;P~'H ’
Ap

NH and N5 can be found by inspection or G could be found and the equations in Section 2.5 could be used.
M = Fy(NH, H), where

Z 0 0 ; —wr P! - . .
Nl = W= T | V=[P 1| NE=1-PPTL (105)
wpP wpl —wpPP~
M= FI(NS,E'), where
o [ —wil —w P ] P1] o . - . .
NS = | TEE T = | | N =B PPt | N =T-PPTL (106)
0 0 wpI

Note that the equation (35b) given in [19] is incorrect.

Applying Theorems 3.1, 3.8, and 3.11 with N H gives the sufficient upper bound and the necessary
upper and lower bounds on H for robust performance to be achieved. Similarly, applying the theorems using
N?® gives the corresponding bounds for s.

The loopshaping bounds for H = hI and S = sI are plotted in Fig. 17. Braatz et al [5] describe how
to use the robust loopshaping bounds to design h and s to meet robust performance. The form for h was
chosen to be

1
h= i 107
V" +1 (107)
Since s = 1 — h, we have
As
= . 108
As+1 (108)

It was found that for A = 4 the sufficient bound on k was satisfied for w > 0.45, and the sufficient bound on
s was satisfied for w < 0.45. Combining the sufficient conditions over the different frequency ranges ensured
that u < 1 for all frequency (Fig. 18 is the u plot for robust performance). Nominal stability was shown
to be satisfied by calculating the closed loop poles using the full plant P. The controller corresponding to
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Figure 17: Robust performance loopshaping bounds for Example 3. The upper plot is for h and the lower
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Figure 18: Structured singular value plot to test for robust performance in Example 3.

S=sIand H=~hIis
755+ 1

K=(SP)"'(I-9)= ”

1
0 T 0.014

__1_ 0
0.878 . (109)

Now we want to design a controller that meets some fault/failure tolerance specifications. First we
will design the controller so that the closed loop system is RDD. Then we test that the resulting closed loop
system demonstates integrity, robust integrity, DUS, and RDUS.

RDD Todesign for RDD, we plot in Fig. 19 the loopshaping bounds for robust stability where A+ is chosen
to be a diagonal block with independent elements (the bounds are calculated by applying the Thm. 3.1 on
the appropriate submatrices of N and N° in (105) and (106)).

The closed loop system is RDD if the system remains robustly stable as the controller is dynamically
detuned. Dynamic detuning for this example refers to increasing the single loop closed loop time constants
A. A careful consideration of Fig. 19 shows that either the sufficient bound on & or the sufficient bound on
s is satisfied for all frequencies for all A; > 1.8; thus the system given by A =4 is RDD. A less conservative
bound on the A; can be derived by directly loopshaping A (see [11] for details), but deriving the bounds
using h and s allows a direct comparison of the robust performance bounds in Fig. 17 and the RDD robust
stability bounds in Fig. 19. This comparison shows that the bounds in Fig. 17 are more restrictive, and only
these are used to loopshape the controller.

7.5.3 Fault/Failure Tolerance Analysis of Design

We will now test the closed loop system with the designed controller to ensure that is satisfies integrity,
robust integrity, DUS, and RDUS.

Integrity The following four transfer functions are stable for A = 4:

P, [(e1,€2) = (0,0)]; (110)

My = —w; P 'HP, [(e1,€2) = (1,1)]; (111)
—wi Ky (14 Py Ky) "' Py, [(€1,€2) = (1,0)]; (112)
—wrK3(1 4 Py K1) ' Pay, [(e1,€2) = (0,1)]; (113)

thus the system has integrity.
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Figure 19: Robust stability loopshaping bounds for Example 3. The solid lines are h and s for A = 1.8. The
widely spaced dotted line is the sufficient bound for h. The thinly spaced dotted line is the sufficient bound
for s.

Robust Integrity To test robust integrity for a 2 x 2 system, we need to check robust stability for four
failure conditions. Nominal stability was tested above (for testing integrity), so we need test only the p
conditions here.

We have robust stability when all loops are turned off provided P(I 4+ wsAy) is stable. That P(I +
wyAy) is stable follows since P, wy, and Ay are stable.

Robust stability for the overall system is satisfied since g, (M11) = 0.3 < 1. Robust stability for the
cases when exactly one loop has failed is satisfied since

frap, (—wrKi(1+ PuKi) ™ Pu) =012 < 1, [(e1,€2) = (1,0)]; (114)
}lAI,n(—’wIKz(]. + P22K2)_1P22) =0.12< 1, [(61,62) = (0, 1)] (115)
(116)

Since all four conditions are satisfied, the system demonstrates robust integrity.

DUS, RDUS Since DUS is implied by RDUS, we will only test RDUS here.

The G and A matrices needed to apply Thm. 7.6 are derived directly from the block diagram in
Fig. 16:
0 —’w]I
P P

: A=A;. (117)

Fig. 20 is the p plot to test condition (99). As expected, the value y approaches 1 at zero frequency. We see
that u << 1 for all frequencies away from w = 0. As expected, p rapidly increases towards 1 at very low
frequencies because the integrators cause a stability problem here as either of the ¢; approach zero. Since
1 < 1, the system demonstrates RDUS.

RDD vs. RDUS Let us look at the set of controllers which are given by dynamically detuning the system.
This set is
755+ 1

e 0
0.878X, . (118)
b

—
0 T D.0T4A:

K =(SPy'\(I-8)=

We see that for this example dynamically detuning the system exactly corresponds to decreasing the single
loop controller gains. Thus, for this example, RDD is equivalent to the interior x test (99) for RDUS. This
will not be true in general.
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Figure 20: Structured singular value plot (upper and lower bounds) to test for RDUS in Example 3.

8 Conclusions

The complete set of robust loopshaping bounds have been derived for mixed real/complex uncertainties.
Low-order robust controllers can be designed by loopshaping open loop transfer functions. Closed loop
transfer functions can be loopshaped to meet gain and phase margins specifications. Robust controllers that
meet multiple performance specifications are designed by using the most restrictive bounds for loopshap-
ing. Necessary and sufficient tests were derived for versions of fault and failure tolerance that have been
defined previously in the literature. It was shown how to design robust fault/failure tolerant controllers via
loopshaping. The technique was applied to design a failure and fault tolerant decentralized controller for a
high-purity distillation column.

9 Future Work

The robust loopshaping bounds can be calculated with off-the-shelf software whenever the controller is SISO
or fully-decentralized. More work is needed to enable the calculation of the bounds in the general case. These
bounds have wider applicability than just for controller design—Braatz et al [5] showed that the loopshaping
bounds have direct application to the problem of robust control structure selection (i.e. choosing actuators,
sensors, and pairings for control purposes).

It would be useful to have more examples which use robust loopshaping to design controllers. In
particular, an example with mixed real/complex uncertainty is need. More multivariable examples are
needed—especially interesting would be loopshaping decentralized PID controllers using the diagonal open
loop transfer function L. Controllers designed via loopshaping are less complicated and more intuitive than
designs provided by DK-iteration. On the other hand, DK-iteration may give controllers with a smaller u
value. It would be useful to compare designs from the two methods. The authors are currently working on
this.

When K and G are both stable, simple sufficient tests exist for determining integrity (see Fujita
and Shimemura [10]). Since CDUS implies integrity, Thm. 7.4 (with the g < 1 test replaced by p < 1,
see Remark 7.7) gives a sufficient test for integrity when K and G are stable. It should be investigated if
this test is less conservative for determining system integrity than the tests in [10]. This is currently being
investigated.
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