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Abstract

The objective of this chapter is to give the reader a basic knowledge of how robustness
problems arise, and what tools are available to identify and avoid them.

We first discuss possible sources of model uncertainty, and look at the traditional meth-
ods for obtaining robust designs, such as gain margin, phase margin and maximum peak
criterions (M-circles). However, these measures are difficult to generalize to multivariable
systems.

As an introductory example to robustness problems in multivariable systems we then
discuss two-point control of distillation columns using the LV configuration. Because of
strong interactions in the plant, a decoupler is extremely sensitive to input gain uncertainty
(caused by actuator uncertainty). These interactions are analyzed using singular value
decomposition (SVD) and RGA-analysis. We show that plants with large RGA elements
are fundamentally difficult to control, and that decouplers should not be used for such
plants. It is shown that other configurations may be less sensitive to model uncertainty.

At the end of the chapter we look at uncertainty modelling in terms of norm bounded
perturbations (A’s). It is shown that the structured singular value, y, is a very powerful
tool to analyze the robust stability and performance of multivariable control systems.
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1 Robustness and uncertainty

A control system is robust if it is insensitive to differences between the actual system and
the model of the system which was used to design the controller. Robustness problems are
usually attributed to differences between the plant model and the actual plant (usually called
model/plant mismatch or simply model uncertainty). Uncertainty in the plant model may have
several origins:

1. There are always parameters in the linear model which are only known approximately or
are simply in error.

o

Measurement devices have imperfections. This may give rise to uncertainty om the ma-
nipulated inputs in a distillation columns, since they are usually measured and adjusted
in a cascade manner. In other cases limited valve resolution may cause input uncertainty.

3. At high frequencies even the structure and the model order is unknown, and the uncertainty
will exceed 100% at some frequency.

4. The parameters in the linear model may vary due to nonlinearities or changes in the
operating conditions.

Other considerations for robustness include measurement and actuator failures, constraints,
changes in control objectives, opening or closing other loops, etc. Furthermore, if a control design
is based on an optimization then robustness problems may also be caused by the mathematical
objective function, that is, how well this function describes the real control problem.

In the somewhat narrow use of the term used in this chapter, we shall consider robustness with
respect to model uncertainty, and assume that a fixed (linear) controller is used. Intuitively, to
be able to cope with large changes in the process, this controller has to be detuned compared
to best response we might have achieved when the process model is exact.

To consider the effect of model uncertainty it needs to be quantified. There are several ways
of doing this. One powerful method is the frequency domain (socalled H-infinity uncertainty
description) in terms of norm-bounded perturbations (A’s). With this approach one can take
into account also unknown or neglected high-frequency dynamics. This approach is discussed
towards the end of this chapter. Readers who want to learn more about these methods than we
can cover in this short chapter, may consult the books by Majiejowski (1989) and Morari and
Zafiriou (1989).

The following terms are useful:

o Nominal stability (NS). The system is stable with no model uncertainty.

e Nominal Performance (NP). The system satisfies the performance specifications with no
model uncertainty.

e Robust stability (RS). The system is stable also for the worst-case model uncertainty.

o Robust performance (RP). The system satisfies the performance specifications also for the
worst-case model uncertainty.



2 Traditional methods for dealing with model uncer-
tainty

2.1 SISO systems

For SISO (single-input-single-output) systems one has traditionally used gain margin (GM) and
phase margin (PM) to avoid problems with model uncertainty. Consider a system with open-loop
transfer function g(s)c(s), and let gc(jw) denote the frequency response. The GM tells by what
factor the loop gain |gc(jw)| may be increased before the system becomes unstable. The GM is
thus a direct safeguard against steady-state gain uncertainty (error). Typically we require GM
> 1.5.

The phase margin tells how much negative phase we can add to gc(s) before the system becomes
unstable. The PM is a direct safeguard against time delay uncertainty: If the system has a
crossover frequency equal to w,, (defined as |ge(jw.)| = 1), then the system becomes unstable
if we add a time delay of § = PM/w.. For example, it PM = 30° and w. = 1 rad/min, then
the allowed time delay error is 8 = (30/57.3)[rad]/1[rad/min] = 0.52 min. It is important to
note that decreasing the value of w. (lower closed-loop bandwidth, slower response) means that
we can tolerate larger dead-time errors. For example, if we design the controller such that PM
= 30° and expect a dead-time error up to 2 min, then we must design the control system such
that we < PM/0 = (30/57.3)/2 = 0.26 rad/min, that is, the closed-loop time constant should
be larger than 1/0.26 = 3.8 min.

Mazimum peak criterions. In practice, we do not have pure gain and phase errors. For example,
in a distillation column the time constant will usually increase when the steady-state gain
increases. A more general way to specify stability margins is to require the Nyquist locus of
ge(jw), to stay outside some region of the -1 point (the “critical point™) in the complex plane.
Usually this is done by considering the maximum peak, M, of the closed-loop transfer function
T.

M, = max |T(jw)l: T = ge(l + gc)™! (1)

The reader may be familiar with M-circles drawn in the Nyquist plot or in the Nichols chart.
Typically, we require M, = 2. There is a close relationship between M, and PM and GM.
Specifically, for a given M we are guaranteed
GM > 1 L. PA > 2arcsi ! > L
M > +—A—l—t, M > _allcsm(m) > —
For example, with M, = 2 we have GM > 1.5 and PM > 29.0° > 1/M, [rad] = 0.5 rad.

Comment: The peak value, M, of the sensitivity function, S = (1 + gc)~! may be used as an
alternative robustness measure. 1/M, is simply the minimum distance between gc(jw) and the
-1 point. In most cases the values of M, and M, are closely related, but for some “strange”
systems it may be safer to specify M, rather than ;. For a given value of M, we are guaranteed
GM > ﬁh,iff and PM > 2 arcsin(g37) > 71+ )



2.2 MIMO systems

The traditional method of dealing with robustness for multivariable (MIMO) systems (e.g.,
within the framework of “optimal control”, LQG, etc.) has been to introduce uncertain signals
(noise and disturbances). One particular approach is the LTR (Loop Transfer Recovery) method
where unrealistic noise is added specifically to obtain a robust controller design. One may say
that model uncertainty generates some sort of disturbance. However, this disturbance depends
on the other signals in the systems, and thus introduces an element of feedback. Therefore, there
s a fundamental difference between these sources of uncertainty (at least for linear systems):
Model uncertainty may introduce instability whereas signal uncertainty may not.

For SISO systems the main tool for robustness analysis has been GM and PM, and as noted
above these measures are related to specific sources of model uncertainty. However, it is difficult
to generalize GM and PM to MIMO systems. On the other hand, the maximum peak criterions
may be generalized easily. The most common generalization is to replace the absolute value by
the maximum singular value, for example, by considering

M, = mlfmx&(T(jw)); T =GC(+GC)! (3)

The largest singular value is a scalar positive number which at each frequency measures the
magnitude of the matrix T. As shown later this approach has a direct relationship to important
model uncertainty descriptions and is used in this chapter.

Comment: In Chapter 11 a different generalization of M, to multivariable systems is used: First
introduce the scalar function W(jw) = det(/ + GC(jw)) — 1 (for SISO systems W(w) =
G'C(jw)) and then define L, = |W/(1 + W)|. The maximum peak of |L.| (in dB) is denoted
L™ and is used as part of the BLT tuning method.) For SISO systems L7** = M,.

Even though we may easily generalize th® maximum peak criterion to multivariable systems, it
is often not useful for the following three reasons:

1) In contrast to the SISO case, it may be not sufficient to look at only the transfer function 7'
Specifically, for SISO systems GC = CG, but this does not hold for MIMO systems. This means
that although the peak of T (in terms of &(7'(jw)))) is low, the peak of Ty = CG(I+CG)™! may
be large. (Comment: The transfer function T is related to relative uncertainty at the output of
the plant, and T at the input of the plant.)

2) The singular value may be a poor generalization of the absolute value. There may be cases
where the maximum peak criterion , eg. in terms of a(T), is not satisfied, but in reality the
system may be robustly stable. The reason is that the uncertainty generally has “structure”,
whereas the use of the singular value assumes unstructured uncertainty. As shown below one
should rather use the structured singular value, i.e. u(T).

3) In contrast to the SISO case, the response with model error may be poor (RP not satisfied),
even though the stability margins are good (RS is satisfied) and the response without model error
is good (NP satisfied). In the next section we give a multivariable example where the maximum
peak criterion is easily satisfied using a decoupling controller (in fact, we have GC(s) = CG(s) =
0.7/sI, and the values of M, and M, are both 1). Yet, the response with only 20% gain error
in each input channel is extremely poor. To handle such effects in general one has to define the
model uncertainty and compute the structured singular value for RP.
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The conclusion of this section is that most of the tools developed for SISO systems, and also
their direct generalizations such as the peak criterions, are not sufficient for MIMO systems.

3 A multivariable simulation example

This idealized distillation column example shall introduce the reader to deteriorating effect of
model uncertainty, in particular for multivariable plants. The example is taken mainly from

Skogestad et al. (1988)

3.1 Analysis of the model

We consider two-point (dual) composition control with the LV configuration as shown in Fig.la.
The overhead composition of a distillation column is to be controlled at yp = 0.99 and the bot-
tom composition at zp = 0.01, with reflux L and boilup V as manipulated inputs for composition

control, i.e.,
Y 2AY (AL
y“(ms>’ “‘(A\/)

This choice is often made since L and V have an immediate effect on the product compositions.
By linearizing the steady-state model and assuming that the dynamics may be approximated
by first order response with time constant 7 = 75 min, we derive the following linear model in
terms of deviation variables

Ayn)_ LV(AL> v, L (0.878 —0.864)
(ATB =G r) (b)_rs—{—] 1.082 —1.096 (4)

Here we have normalized the flows such that the feed rate F=1. This is admittedly a very
crude model of a distillation column. Specifically, a) the parameters may vary drastically with
operating point, b) there should be a high-order lag in the transfer function from L to xp to
represent the liquid flow down to the column. and ¢) higher-order composition dynamics should
also be included. However, the model is simple and displays important features of the distillation
column behavior. The RGA-matrix for this mode! is at all frequencies

RGAGY) = ( 35.1 —36.1)

D
~36.1  35.1 ()

The large elements in this matrix indicate that this process is fundamentally difficult to control.

Interactions and ill-conditionedness

Consider the case with no composition control. The effect on top composition of a small change

in reflux L with V constant is -
Ayp(s) 0.878
yp(s) =
YR = Tas 4 1

If we increase L by only 0.01 (that is, L/F is increased 0.4% from 2.7 to 2.701) then we see
that the steady-state increase in yp predicted from this linear model is 0.00878 (that is, yp
‘creases from 0.99 to 0.99878). This is a rather drastic change and the reason is that the

AL(s)

o



column operation is very dependent on keeping the correct product split D/F (with V' constant
the increase in L yields a corresponding decrease in D), that is, the column is very sensitive to
changes in the ezternal flows, D and B.

Similarly, if we increase V by only 0.01 (with L constant) we see that the predicted steady-state
change in yp is -0.00864. Again, this is a very large change, but in the opposite direction of
that for the increase in L.

We therefore see that changes in L and V counteract each other, and if we increase L and V
simultaneously by 0.01, then the overall steady-state change in yp is only 0.00878 — 0.00864 =
0.00014. The reason for this small change is that the compositions in the column are only weakly
dependent on changes in the internal flows (i.e., changes in the internal flows L and V' with the
external flows D and B constant).

Summary: Since both L and V affect both compositions, yp and zg, we say that the process is
“interactive”. Furthermore, the process is “ill-conditioned”, that is, some combinations of AL
and AV (corresponding to changing external flows) have a strong effect on the compositions,
whereas other combinations of AL and AV (corresponding to changing internal flows) have a
weak effect on the compositions. The condition number, which is the ratio between the gains in
the strong and weak directions, is therefore large for this process (as seen below it is 141.7).

Singular Value Analysis of the Model

The above discussion shows that this column is an ill-conditioned plant, where the effect (the
gain) of the inputs on the outputs depends strongly on the direction of the inputs. To see this
better, consider the SVD of the steady-state gain matrix

G=UsvT (6)
or equivalently since VI = V!
Gt =a(G)u, Guv=g(Gu
where

Y =diag{c.a} = diag{1.972,0.0139}
V= (6 o) _( 0.707 0.708)
=8 = 0708 0.707
(0.625 0.781 )

|

U={ww={g73 _0.625

The large plant gain, 5(G) = 1.972, is obtained when the inputs are in the direction (26) =0

(_0(':%8). Since AB = —AD = AL — AV (assuming constant molar flows and constant feedrate)
this physically corresponds to the largest possible change in the external flows, D and B. From

the direction of the output vector & = (ggg?), we see that it causes the outputs to move in the

same direction, that is, mainly affects the average composition ¥2E22  All columns with both
products of high purity are sensitive to changes in the external flows because the product rate
D has to be about equal to the amount of light component in the feed. Any imbalance leads to
large changes in product compositions (Shinskey, 1984).



The low plant gain, o(G) = 0.0139, is obtained for inputs in the direction (23) =v= (:.;(?f).
From (3) we observe that this physically corresponds o changing the internal flows only (AB =
_AD = 0), and from the output vector ¥ = (_00":;5) we see that the effect is to move the outputs
‘1 different directions, that is, to change yp — «p. Thus, it takes a large control action to move
the compositions in different directions, that is, to make both products purer simultaneously.
The condition number of the plant, which is the ratio of the high and low plant gain, 1s then

¥(G) = 8(G)/e(G) = 1417 (7)

The RCA is another indicator of ill-conditionedness, which is generally better than the condition
number, because it is scaling independent. The sum of the absolute value of the elements in the
RGA (denoted |[RGA[: = |RG Ajjl) is approximately equal fo the minimized (with respect
to input and output scaling) condition number, ~*(G). In our case we have ||RGA| = 138.275
and 7*(G) = 138.268. We note that the minimized condition number is quite similar to the
condition number in this case, but this does not hold in general.

3.2 Use of decoupler

For “tight control” of ill-conditioned plants the controller should compensate for the strong
directions by applying large input signals in the directions where the plant gain is low, that
is, a “decoupling” controller similar to G~ in directionality is desired. However, because of
uncertainty, the direction of the large inputs may not correspond exactly to the low plant-gain
direction, and the amplification of these large input signals may be much larger than expected.
As shown in the simulations below. this will result in large values of the controlled variables y.
leading to poor performance or even instability. Consider the following decoupling controller
(or equivalently a steady-state decoupler combined with a Pl controller):

k - by (L4 T5s 20 94— .
Quyzfgwlw):1(+‘>)<UJL 3] 48T

. — .1 -
39.432 —31_997> , ki =0.7mm (8)

8

We have GC = 0.7/sI. In theory. this controller should counteract all the directions of the plant
an give rise to two decoupled first-order responses with time constant 1/0.7 = 1.43 min. This
is indeed confirmed by the solid line in Fig.2 which shows the simulated response to a setpoint
change in top composition.

3.3 Use of decoupler when there is model uncertainty

[n practice, the plant is different from the model and the dotted lines in Fig.2 show the re-
sponse when there is 20% error (uncertainty) in the gain in each input channel (“diagonal input
uncertainty”):

AL =123, AV =03AV. (9)

AL and AV are the actual changes 0 the manipulated fow rates. while AL, and AV, are the
desired values (what we believe the inputs are) as specified by the controller. It is important
to stress that this diagonal input uncertainty. which stems from our inability to know the exact

-1



values of the manipulated inputs, is always present. Note that the uncertainty is on the change
in the inputs (flow rates), and not on their absolute values. A 20% error is reasonable for process
control applications (some reduction may be possible, for example, by use of cascade control
using flow measurements, but there will still be uncertainty because of measurement errors).
Anyway, the main objective of this chapter is to demonstrate the effect of uncertainty, and its
exact magnitude is of less importance.

The dotted lines in Fig.2 shows the response with small model uncertainty. It differs drastically
from the one predicted by the model, and the response is clearly not acceptable; the response
is no longer decoupled, and Ayp and Azp reach a value of about 2.5 before settling at their
desired values of 1 and 0. In practice, with for example a small time delay added at the outputs,
this controller would give an unstable response.

There is a simple physical reason for the observed poor response to the setpoint change in yp.
To accomplish this change, which occurs mostly in the “had” direction corresponding to the
low plant gains, the inverse-based controller generates a large change in the internal flows (AL
and AV), while trying to keep the changes in the external flows (AB = —AD = AL — AV)
very small. However, uncertainty with respect to the values of AL and AV makes it impossible
to make them both large while at the same time keeping their difference small - the result is
a undesired large change in the external flows, which subsequently results in large changes in
the product compositions because of the large plant gain in this direction. As discussed below,
this sensitivity to input uncertainty may be avoided by controlling D or B directly, for example,
using the DV- configuration.

3.4 Alternative controllers: Single-loop PID

Unless special care is taken, most multivariable design methods (MPC, DMC, QDMC, LQG,
LLQG/LTR, DNA/INA, IMC, etc.) vield similar inverse-based controllers, and do generally not
yield acceptable designs for ill-conditioned plants. This follows since they do not explicity take
uncertainty into account, and the optimal solution is then to use a controller which tries to
remove the interactions by inverting the plant model.

The simplest way to make the closed-loop system insensitive to input uncertainty is to use a
simple controller, for example two single-loop PID controllers, which does not try to make use
of the details of the directions in the plant model. The problem with such a controller is that
little or no correction is made for the strong interactions in the plant, and then even the nominal
response (with no uncertainty) is relatively poor. This is shown in Fig.3 where we have used
the following PID controllers (Lundstrém et al., 1991)

yp— L: N.=162;7; =41 min;7p = 0.38 min (10)
tg—V: N.= -39 =0.83 min;7p = 0.29 min (11)

The controller tunings yield a relatively fast response for xp, and a slower response for yp. As
seen from the dotted line in Fig.3 the response is not very much changed by introducing the
model error in Eq.9.

In Fig.4 we show response for a socalled “mu-optimal” controller (see Lundstrém et al., 1991)
which is designed to optimize the worst-case response (robust performance) as discussed towards
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the end of this chapter. Although this is a multivariable controller, we note that the response is
not too different from that with the simple PID controllers, although the response settles faster
to the new steady-state.

3.5 Alternative configurations: DV-control

The process model considered above, which uses the LV-configuration, is fundamentally difficult
to control irrespective of the controller. In such cases one should consider design changes which
make the process simpler to control. One such change is to consider the DV-configuration where
L rather than D is used for condenser level control (Fig.1b). The independent variables left for
composition control are then D and V.

(231;8) — GPY(s) (KZ‘IB((:))) (12)

Comment: It is somewhat misleading to consider this a design change, because the change from
LV- to DV-configuration is accomplished by a change in the level control system. However,
many engineers consider the level control system to be such an integral part of the process as
to consider it as part of the design — although this is of course not strictly true.

To derive a model for the DV-configuration assume constant molar flows and perfect control of
level and pressure (these assumptions may easily be relaxed). Then AL = AV — AD and we

have
(39-(3 ()

and the following linear model is derived from Eq.-:

pvi a1 1> 1 (0.878 —0.864)
Gl =G M( 0 1) 75s+1 \0.014 —0.014 (14)
This process is also ill-conditioned as ~(GPY) = 70.8. However, the RGA-matrix is
oDV 04D 0.55)
RGA(GT) = (0.55 0.45 (1)

The diagonal elements are about 0.5, and this indicates a strongly interactive system. However,
‘1 this case the RGA-elements are not large. and we may use a decoupler to counteract the
interactions.

Simulations using a decoupler are shown in [fig.5. As expected the nominal response is perfectly
decoupled. Furthermore, as illustrated by the dotted line in Fig.5, the decoupler also works well
when there is model error. The reason why the model error does not cause problems in this case
is that we have one manipulated variable (AD) which acts directly in the high-gain direction
for external flows, and another (AV) which acts in the low gain direction for internal flows. We
may then make large changes in the internal flows, V. without changing the external flows, D.
This was not possible with the LV-configuration. where we had to increase both L and V in
order to increase the internal flows.

The RGA-behavior for various other configurations are treated in detail by Shinskey (1984) for
the static case, and by Skogestad et al. (1990) for the dynamic case.
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3.6 Limitations with the example: Real columns

It should be stressed again that the column model used above is not representative of a real
column. In a real column the liquid lag, 0, (min), from the top to the bottom, makes the
initial response for the LV configuration less interactive and the column is easier to control
than found above. It turns out that the important parameter to consider for controllability is
not the RGA at steady-state (with exception of the sign), but rather the RGA at frequencies
corresponding the closed-loop bandwidth. For the LV-configuration the RGA is large at low
frequencies (steady-state), but it drops at high frequencies and the RG A-matrix becomes close
to the identity matrix at frequencies greater than 1/0..

Thus, control is simple, even with single-loop PI or PID controllers, if we are able to achieve
very tight control of the column. However, if there are significant measurement delays (these are
gypically 5 min or larger for GC analysis), then we are forced to operate at a low bandwidths,
and the responses in Figs.2-4 are more representative. Furthermore, it holds in general that one
should not use a steady-state decoupler if the steady-state RGA-elements are large (typically
larger than 5).

In a real column one must pay attention to the level control for the DV configuration. This is
because D does not directly affect composition, but only indirectly through its effect on reflux L
through the level loop. In practice, it may be a good idea to let the condenser level controller set
L+ D rather than L. In this case a change in D from the composition controller will immediately
change L without having to wait for the level loop.

4 The RGA as a simple tool to detect robustness prob-
lems

4.1 RGA and input uncertainty

We have seen that a decoupler performed very poorly for the LV-model. To understand this
better consider the loop gain GC. The loop gain is an important quantity because it determines
the feedback properties of the system. [For example. the transfer function from setpoints, ys.
to control error, e = y, — ¥, is given by ¢ = Sy, = (I + GC)'ys. We therefore see that large
changes in GC due to model uncertainty will lead to large changes in the feedback response.
Consider the case with diagonal input uncertainty, A;. Let A, and A, represent the relative
uncertainty on the gain in each input channel. Then the actual (“perturbed”) plant is

Gyls) = G+ 80 Ar= () 22) (16)

and the perturbed loop gain with model uncertainty becomes
G,C =G +2,)C = GC+ GAIC (17)

If a diagonal controller C(s) (eg., two PI's) is used then we simply get (since A is also diagonal)
G,C = GC(I +A) and there is no particular sensitivity to this uncertainty. On the other hand,
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with a perfect decoupler (inverse based controller) we have
C(s) = k(s)G7H(s) (18)

where k(s) is a scalar transfer function. for example. k(s) = 0.7/s, and we have GC = k(s)I
where I is the identity matrix, and the perturbed loop gain becomes

G,C = G,(I + ANC = k(s)(I + GAG™) (19)

For the LV-configuration studied above the error term becomes

(20)

GLVAI(GLV)-l — (351A1 — 341A2 —277A1 + 277A2>

43.2A, — 43.2A, -34.1A; + 35.1A,

This error term is worse (largest) when A, and A, have opposite signs. With A; = 0.2 and

Ay = —0.2 as used in the simulations (Eq.9) we find
JAYS LV A—1 13.8 —11.1> .
G ANGT) T = (17.2 ~13.8 (21

The elements in this matrix are much larger than one, and the observed poor response with
uncertainty is not surprising. Similarly, for the DV configuration we get

GPYAL(GPY) = <—0.0‘2 0.18)

0.22  0.02

—_
[SV]
o

The elements in this matrix are much less than one, and good performance is maintained even
in the presence of uncertainty on each input.

The observant reader may have noted that the RGA-elements appear on the diagonal in the
matrix GEVA(GEY)=" in (20). This turns out to be true in general as diagonal elements of the
error term prove to be a direct function of the RGA (Skogestad and Morari, 1987)

(GAG™!); = SU_ A(G)A; (23)

Thus, if the plant has large RGA elements and an inverse-hased controller is used, the overall
system will be extremely sensitive to input uncertainty.

Control implications. Consider a plant with large RGA-clements in the frequency-range corve-
sponding to the closed-loop time constant. A diagonal controller (eg., single-loop PI’s) is robust
(insensitive) with respect to input uncertainty, but will be unable to compensate for the strong
couplings (as expressed by the large RGA- elements) and will yield poor performance (even
nominally). On the other hand, an inverse-based controller which corrects for the interactions
may yield excellent nominal performance, but will be very sensitive to input uncertainty and
will not yield robust performance. In summary, plants with large RGA-elements around the
crossover-frequency are fundamentally difficult to control, and decouplers or other inverse-based
controllers should never be used for such plants (The rule is never to use a controller with large
RGA-elements). However, one-way decouplers may work satisfactory.
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4.2 RGA and element uncertainty/identification

Above we introduced the RGA as a sensitivity measure with respect to input gain uncertainty.
In fact, the RGA is an even better sensitivity measure with respect to element-by-element
uncertainty in the matrix.

Consider any complex matrix G and let A;; denote the {7'th element in it’s RGA-matrix. The
following result holds (Yu and Luyben, 1987):

The (complez) matriz G becomes singular if we make a relative change —1/);j in its 1j-th
element, that is, if a single element in G is perturbed from gi; to gpij = gij(1 — ’\LIJ.)

Thus, the RGA-matrix is a direct measure of sensitivity to element-by-element uncertainty and
matrices with large RGA-values become singular for small relative errors in the elements.

Example. The matrix GI¥ in (4) is non-singular. The 1,2-element of the RGA is A\2(G) =
—36.1. Thus the matrix G becomes singular if g, = —0.864 1s perturbed to gpiz = —0.864(1 —
1/(—36.1)) = —0.840.

The result above is primarily an important algebraic property of the RGA, but it also has some
important control implications:

1) Consider a plant with transfer matrix G(s). If the relative uncertainty in an element at a given
frequency is larger than [1/A;;(jw)| then the plant may be singular at this frequency. This is
of course detrimental for control performance. However, the assumption of element-by-element
uncertainty is often poor from a physical point of view because the elements are usually always
coupled in some way. In particular, this is the case for distillation columns: We know that the
column will not become singular and impossible to control due to small individual changes in
the elements. The importance of the result above as a ~proof” of why large RGA-elements imply
control problems is therefore not as obvious as it may first seem.

2) However, for process identification the result is definitely useful: Models of multivariable
plants, G(s), are often obtained by identifying one element at the time, for example, by using
step or impulse responses. From the result above it is clear this method will most likely give
meaningless results (eg., the wrong sign of the steady-state RGA)if there are large RGA elements
within the bandwidth where the model is intended to be used. Consequently, identification must
be combined with first principles modelling if a good multivariable model is desired in such
cases.

Example. Assume the true plant model is

C,_(O.STS —0.864)
"7 \1.082 —1.096

By extremely careful identification we obtain the following model:

o (0.87 —o.ss>
"Ny —1.08
This model seems to be very good, but is actually useless for control purposes since the RGA-
elements have the wrong sign (the 1,1-clement in the RGA is —47.9 instead of +35.1). A
controller with integral action based on G, would yield an unstable system.
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Comment: The statement that identification is very difficult and critical for plants with large
RGA-elements may not be true if we use decentralized control (single-loop PI- or PID-controllers)
In this case we usually do not use the multivariable model, but rather tune the controllers based
on the diagonal elements of G only, or by trial-and-error under closed loop. However, if we
decide on pairings for decentralized control based on the identified model, then pairing on the
wrong elements (eg., corresponding to negative RGA) may give instability.

The implication for distillation columns is that one must be careful about using LV-configuration
when identifying a model for the column. Rather, one may perform test runs with another
configuration, for example the DV configuration, at least for obtaining the steady-state gains.
The gains for the LV-configuration may subsequently be derived using consistency relationships
between various configurations (recall Eq.14). Alternatively, the steady-state gains for the LV-
model could be obtained from simulations, and test runs for changes in L and V are used only
to determine the initial dynamic response (in this case one has the additional advantage that it
is not necessary to wait for the responses to settle in order to obtain the gain).

5 Advanced tools for robust control: p-analysis

So far in this chapter we have pointed out the special robustness problems encountered for MIMO
plants, and we have used the RGA as our main tool to detect these robustness problems. We
found that plants with large RGA elements are 1) Fundamentally difficult to control because of
sensitivity to input gain uncertainty, and decouplers should not be used, and 2) are very difficult
to identify because of element-by-element uncertainty.

We have not yet addressed the problem of analyzing the robustness of a given system with plant
G(s) and controller C(s). In the beginning of this chapter we mentioned that the peak criterions
in terms of M were useful for robustness analysis for SISO systems both in terms of stability
(RS) and performance (RP). However, for MIMO systems things are not as simple. We shall
first consider uncertainty descriptions and robust stability and then move on to performance.
The calculations and plots in the reminder of this chapter refer to simplified LV-model of the
distillation column, using the controller with steady-state decoupler + PI-control.

5.1 Uncertainty descriptions

To illustrate that most sources of uncertainty may be represented as norm-bounded perturba-
tions with frequency-dependent magnitudes (*weights”), we shall consider a SISO plant with

nominal transfer function 5
e— 5

1+ 7s
The parameters k, § and r are uncertain and/or may vary with operating conditions. Assume

that the relative uncertainty in these three parameters is given by, 71, 2 and r3, respectively,
A general way to represent model uncertainty is in terms of norm-bounded perturbations, A;.

g(s) =k (24)

Then the set of possible (or “perturbed”) values of the parameters are given by
".p = l\‘(l + 'I'lAl); IAll S l (25)

13



0p = 0(1 + 7‘2A2); |A2| S 1 (26)
7 = T(1 + r3A3); [A3] <1 (27)

Note that the A;’s in the reminder of this chapter are normalized to be less than 1 in magnitude.

1) First consider the gain uncertainty. For example, assume that k may vary + 20%, so that
r. = 0.2. Note that the perturbation on & given by (25) may be represented as a relative (or
multiplicative) uncertainty as shown in Fig.6 with the weight w = ry = 0.2. In general, the
magnitude of the weight vary with frequency, but in this case with only gain uncertainty it is
constant.

2) Now, consider the time uncertainty in (26). We want to represent also this uncertainty as a
relative perturbation. To this effect use the approximation e~ &~ 1 — x (which is good for small
x) and derive

e 0ps = 08028 oy o 98(1 — 1rofsA,)

or since the sign of A, may be both positive or negative

oD

e %% = e7%(1 4w, Ay); wy(s) = rybs (2

)

w, is the weight for the relative error generated by the time delay uncertainty. With this
approximation w, is 0 at steady-state, reaches 1 (100%) at the frequency 1/(6r2) (which is
inverse of the time delay uncertainty) and goes to infinity at high frequencies.

Comment: It is also possible to make other approximations for the time delay uncertainty.
Skogestad et al. (1988, 1991) use an approach where one considers numerically the relative un-
certainty generated by the time delay. This results in a complex perturbation Aq, but otherwise
in the same w,, except that it levels ofl at 2 at high frequencies. This approach is used in the
computations discussed below. (However. for other rcasons we would probably have preferred
to not let w, level off at 2 if we had redone this work today.)

We now have two sources of relative uncertainty. Combination of these give an overall 2 x 2
(real) perturbation block, A, with A; and A, on its diagonal. To simplify, we may include the
combined effect of the gain and time delay uncertainty using a single (complex) perturbation
by adding their magnitudes together, that is. w = |r| + |we|, or approximately

w(s) =1y + rals (29)
For example, with a 20% gain uncertainty and a time delay uncertainty of & 0.9 min (6r, = 0.9
(min]), we obtain w(s) = 0.2 4 0.9s.
3) We may also model the time constant uncertainty with norm-bounded perturbations, but we
should preferably use an “inverse” perturbation. For example, we may write

1 1 (1 + wyAy)-" () r3T$
= IPVAW . s) =
1478 147s waSa) i 14 71s

(30)

For distillation columns, the time constant 7 often varies considerably, but we shall not include
this uncertainty here. The reason is that the time constant uncertainty (variations) is generally
strongly coupled to the gain uncertainty such that the ratio k,/ Ty stays relatively constant. Note
that k,/7, yields the slope of the initial response and is therefore of primary interest for feedback
control.

14



5.2 Conditions for Robust stability

By Robust Stability (RS) we mean that the system is stable for all possible plants as defined
by the uncertainty set (using the A;’s as discussed above). This is a “worst case” approach,
and for this reason one must be careful about not including unrealistic or impossible parameter
variations. This is why it is recommended not to include large individual variations in the gain,
k, and the time constant, 7, for a distillation column model.

Now, consider the distillation column example with combined gain and time delay uncertainty.
For multivariable plants it makes a difference whether the uncertainty is at the input or the
output of the plant. We will here consider input uncertainty, and the weight wy then represents,
for example, variations in the input gain and neglected valve dynamics. We assume the same
magnitude of the uncertainty for each input. The set of possible plants is given by

G,(s) = GUI +wir); Af = (AO‘ g ) (31)
2

where A; represents the independent uncertainty in each input channel. This is identical to
Eq.(16), except that w; yields the magnitude, since A; is now normalized to be less than 1.
Note that Aj is a diagonal matrix (it has “structure”). We assume that the system without
uncertainty is stable (we have NS). Instability may then only be caused by the “new” feedback
paths caused by As-block. Therefore, to test for RS we rearrange Fig.6 into the standard form
in Fig.7 where A in our case is the matrix Ay and M = —w,;C(I + GO)Y''G = —wT). M
is the transfer function from the output to the input of the Aj-block. To test for stability we
make use of the “small gain theorem”. Since the A-block is normalized to be less than 1 at
all frequencies, this theorem says that the system is stable if the M-block is less than 1 at all
frequencies. We use the singular value (also called spectral norm) to compute the magnitude
(norm) of M. Robust stability is then satisfied if at all frequencies, w

(M) =a(w/T(jw)) <1 (32)

However, (32) is generally conservative for the following two reasons: 1) It allows for A to be
complex, 2) It allows for A to be a full matrix. It is actually the second point which is the main
problem in most cases.

The structured singular value, (M) of Doyle (eg.. sce Skogestad, Morari and Doyle, 1988), is
defined to overcome these difficultics, and we have that RS is satisfied if and only if at all w

pa(M) = palw/Ty) <1 (33)

This is a tight condition provided the uncertainty description is tight. Note that for computing
1 we have to specify the block-structure of A and also if A is real or complex. Today there
exists very good software for computing p when A is complex. The most common method is to
approximate u by a “scaled” singular value:

pa(M) < mina(DAID™) (34)

where D is real matrix with a block-diagonal structure such that DA = AD. This upper bound
is exact when A has three or fewer “blocks” (in our example above, A has two blocks).
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As an example consider the following input uncertainty in each of the two input channels

0.9s 55 + 1 .

wl(s) =02+ m = Ozm (35)
This corresponds to 20% gain error and a neglected time delay of about 0.9 min. The weight
levels off at 2 (200% uncertainty) at high frequency. Fig.8 shows (M) = p(w,;T;) for RS
with this uncertainty using the decoupling controller. The u-plot for RS shows the inverse of
the margin we have with respect to our stability requirement. For example, the peak value
of pa,(M) as a function of frequency is about 0.53. This means that we at may increase the
uncertainty by a factor 1/g = 1.89 before the worst-case model yields instability. This means
that we tolerate about 38% gain uncertainty and a time delay of about 1.7 min before we get
instability.

31 I. For
5’(w1T1):

Comment: For the decoupling controller we have GC = &II, and T} =

T =
this particular case the structure of A does not matter, ard we get pa(M)

5s+1
|0"" (0.53+1;(1.433+1) '
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5.3 Definition of performance

To define performance we shall use the frequency domain, and define an upper bound on the
sensitivity function, S. The sensitivity [unction gives the change in the response caused by
feedback, and is probably the best and simplest function to consider when defining performance
in the frequency domain. At each [requency we require

1S(w)l = [(1 + GCw)) '] < |wp' (jw)] (36)
or equivalently that the weighted sensitivity is less than I:
NP: |upS(w) <1l atallw (37)

The peak value (with respect to frequency) of wpS is also called the f-norm. wpe(s) is the
performance weight. Typically, we use the weight
1 rys 4 A,

wp(s) = AT (38)

This requires, 1) integral action, 2) that the peak value of |S] should be less than M, (typically
M, = 2), and 3) that the closed-loop response time sliould he less than 7 (i.e., the bandwidth
should at least be wg = 1/7,).

For multivariable systems, the largest singular value of S, &(S), is used instead of the absolute
value |S|. In the introduction we mentioned that the maximum peak on S may be used as a
robustness criterion. However, here we are restricting the peak of S primarily to get a good
response (without too much oscillations and overshoot). The robustness issues are taken care
of much more directly be specifying the allowed uncertainty; see the RS and RP-conditions.

NP-specification for our example. At each frequency the value of (wp.S) should be less than 1.
We have selected

8]

20s +

39
20s (39)

wp(s) =

| —
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This requires integral action, a maximum closed-loop time constant of approximately 74 = 20
min (which of course is relatively slow when the allowed time delay is only about 0.9 min) and
a maximum peak for 5(S) of M, = 2. Note that pua(M) = &(M) if the matrix A is a “full”
matrix. We may therefore define i for NP as pa,(wp S) = 6(wpS5) where Ap is a “fake”
uncertainty matrix. Ap is a “full” matrix, that is, the off-diagonal elements may be non-zero.

As expected, we see from the plot that the NP-condition is easily satisfied with the decoupling
controller. &(wpS) approaches 1/M, = 0.5 at high frequency because of the maximum peak
requirement on &(S5).

5.4 Conditions for Robust Performance

Robust Performance (RP) means that the performance specification is satisfied for the worst-
case uncertainty. The most efficient way to test for RP is to compute u for RP. If this y-value
is less than 1 at all frequencies then the performance objective is satisfied for the worst case.
Although our system has good robustness margins and excellent nominal performance we know
from the simulations in Fig.2 that the performance with uncertainty (RP) may be extremely
poor. This is indeed confirmed by the g-curve for RP in Fig.8 which has a peak value of about
6. This means that even with 6 times less uncertainty, the performance will be about 6 times
poorer than what we require. g for robust performance was computed as pa(N) where the
matrix A in this has a block-diagonal structure with Ay (the true uncertainty) and Ap (the
fake uncertainty stemming from the performance specification) along the main diagonal.

—w —w;CS
N = ( wiTy —wC8 ) (40)
wpSG wpS

The derivation of N is given in, for example, Skogestad et al. (1988).

The p-optimal controller is the controller which minimizes g for RP. For our example we are
able to press the peak of x down to about 0.978 (Lundstrém et al., 1991). The simulation in
Fig.4 shows that the response even with this controller is relatively poor. The reason is that the
combined effect of large interactions (as seen from the large RG A-values) and input uncertainty
makes this plant fundamentally difficult to control.

Comment: In the time domain our RP-problem specification may be formulated approzimately
as follows: Let the plant be

, e 0is
GIZ;V(S) = GEY(s) (/neo /;230-92’) (41)
where GEY(s) is given in (4). Let 0.8 < & <12,08 < k <12,0<6, <09 [min], and
0 < 8, < 0.9[min]. The response to a step change in setpoint should have a closed-loop time
constant less than about 20 minutes. Specifically, the error of each output to a unit setpoint
change should be less than 0.37 after 20 minutes. less than 0.13 after 40 minutes, and less than
0.02 after 80 minutes, and with no large overshoot or oscillations in the response.
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6 Notation

B - bottom product flow [kmol/min]

D - distillate product flow [kmol/min)

G - nominal plant model

L - reflux flow [kmol/min]

M - matrix used to test for robust stability

M, - maximum peak of T

M, - maximum peak of S

RGA - matrix of relative gains

s - Laplace variable (s = jw yields the frequency response)
S = (I + GC)™" - sensitivity function

T = GC(I + GC)™! - closed-loop transfer function

Ty = CG(I + CG)™! - closed-loop transfer function at the input
U - unitary matrix of output singular vectors

V - unitary matrix of input singular vectors

V - boilup [kmol/min]

xg - bottom composition [mole fraction]

yp - distillate composition [mole fraction]

w - frequency-dependent weight function

Greek letters

A - overall perturbation block used to represent uncertainty

Ay - overall perturbation block for input uncertainty

A;, Ay, Aq, Az - individual scalar perturbations

AL, Ayp, etc. - deviation variables for reflux. top composition, etc.
v(A) = 6(A)/a(A) - condition number of matrix .

((A) - structured singular value of matrix A

w - frequency [rad/min]

7(A) - maximum singular value of matrix A

a(A) - minimum singular value of matrix -

Subscripts

p - perturbed (with mode] uncertainty)
P - performance
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8 Figures

1. Control of distillation column with LV- and DV-configurations.

2. Response for decupling controller using LV-configuration. Setpoint change in yp: 10-3/(5s+
1). Solid line: No uncertainty. Dotted line: 20% input gain uncertainty as defined in Eq.9.

3. Response for PID controller using LV-configuration.

4. Response for p-optimal controller using LV configuration.
5. Response for decoupling controller using DV-configuration.
6. Multiplicative input uncertainty.

7. General block diagram for studying robust stability.

8. Mu-plots for decoupling controller using LV conliguration.
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