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Abstract

In this paper we consider robust controller design for uncertain SISO time-delay
systems using H, and g methods. We model the parametric uncertainty with a
nominal model plus multiplicative uncertainty and compare a number of different
choices for the weight, including real and complex perturbations. Mean values are
usually used in the nominal model to get smaller uncertainty. We propose to model
also the nominal time-delay as uncertainty. This leads to a larger uncertainty but a
delay-free design method for time-delay systems. Surprisingly, though it has larger
uncertainty, this new method is not more conservatijve, The point here is that x is
a worst case measure. Of most importance is not the uncertainty size but the worst
uncertainty. This insight is also helpful to the modelling of other uncertain systems.

1 Introduction

Hoo control, as one of the approaches to robust control, has become a great success in the past
decade. With the introduction of the structured singular va.itle[3], /1, structured uncertainty
can be handled in the H framework, and hence the criticized conservalism is substantially
reduced. u can deal with not only robust stability but also robust performance, i.e. the required
performance specifications are met for a prespecified plant set. The standard ‘M-A’ structure is
shown in Figure 1, where M is a stable transfer matrix, comprising plant, controller as well as
uncertainty and performance weights, and A = diag{A;} represents the uncertainty structure.
In the case of robust performance, A also includes a performance block. y is defined as

BN (M) = min{o(A)|det(I + MA) = 0} (1)
Robust stability or robust performance is equivalent to
sup pa (M) < 1 (2)

Hy, and p methods are now in the practical stage. For a properly formulated problem, we are
able to do systematic analysis, design and even synthesis though the u synthesis is still not
fully solved.! Several toolboxes exist which make the application much easier. A number of
applications has been studied.

!The present u synthesis algorithm, called D-K iteration, is a combination of H,, syuthesis and the optimal
D-scaling. It does not guarantee global convergence.



Although the H, control theory is well-developed, more work on practlical applications is
needed. Especially, this applies to the selection of performance weights and uncertainty weights.
In the H,, framework, the performance specifications are required to be given in the form of
frequency dependent weights on some input and output signals. If the original specifications are
not in this setting, we need to do transformation. The uncertain plant set is modelled by two
elements: a nominal model and a norm-bounded uncertainty, i.e., (in SISO case) assuming all

can have several diagonal blocks, but each block still needs to be norm-bounded. Similarly, we
generally need to transform the uncertainty from its original description to this required setting.

Weight selection is, in fact, a reformulation of the original problem. It is important since
it may be crucial to the final success. However the problem specific nature makes it difficult
to develop general theory for this problem. Hence even some insights and guidelines which are
valid only within certain ranges may be very helpful. Some of the work in this area are [8][9][11).

In this paper we study the uncertainty weight selection problem for time-delay systems. An
important advantage of the H, -framework js that model uncertainty on non-parametric form,
including unknown model order, may be handled. However, in this paper we will shown how
it can be used also when the original description for mode] uncertainty is on parametric form.
Parametric uncertainty can generally be rearranged into the standard ‘M-A’ structure, but
this is not the case for time-delay uncertainty unless time-delay uncertainty is approximated by
rational term. Moreover, as parametric uncertainty yields real perturbations, the use of complex
perturbations often introduces too much conservatism,2 Usually one lumps the parametric
uncertainties into one norm-bounded complex perturbation. A few authors have worked on
robust control of time-delay systems, e.g. Laughlin et al.[00, They study systematically the
robust performance for Smith predictor, and give a smallest multiplicative uncertainty bound
and an approximate weight for the uncertainties in gain, time constant and time delay of the
first-order with time-delay model. This is the starting point of this paper. In section 2, we
study the approximation of time-delay uncertainty. In section 3, we consider how to model

pair. In section 4, we consider systems with time-delay uncertainty as well as other parametric

uncertainties. In section 5, we make some final remarks. Tle study here is primarily a numerical
one, but it does give some insights, some of which are even not limited to time-delay systems.

2 Approximation of time-delay uncertainty

Many practical systems have time-delays, and the time-delays are often varying. In this paper
we consider a set of time-invariant plants with different time-delays. Robust stabilization nieans

and Ho, and g methods are unable to deal with time-delay uncertainty directly. Ilere we should
therefore consider rational approximations, and compare these with the actual uncertainty.

Plant set : 9p(s) = g(s)e™%% _1 <A <1 (3)
. k —bs
Nominal model : g(s) = vl (4)

*There are some progress on computing g with real perturbation blockslSJ, but it is still not satisfactory at
present.



The nominal plant is the popular first order with time-delay model. For simplicity, we assume
temporarily only time-delay uncertainty. We want to find out how large &5 can be before the
closed loop system becomes unstable. The correct answer is

PM
bg = — 5
o= (5)
where w, is the crossover frequency (|g(jwc)e(jw.)| = 1) and PM is the phase margin (PM =
T+ L[g(jwc)e(jwe)]). This provides a standard for the comparison of different approximations.

2.1 Mathematical approximations of time-delay uncertainty

Firstly we consider some mathematical approximations without any additional constraints. Four
different approximations of time delay uncertainty are studied:

A1l. This is the simplest approximation from power series expansion. A is assumed to be real
as original.

eT08 nl _fpsA, 1< A< (6)
A2. Same as Al but A is relaxed to be complex.

S B Y N INE S (7)

A3. First-order Padé approximation is used. An LFT implementation of the approximation is
shown in Figure 2. A is real.

&
1 - fagA §
efl 2% L1 (14 Ss8)8sA, —1<A <] (8)

A4. A multiplicative uncertainty approximation with a first-order weight derived from the Padé
approximation. A is complex.

bg8
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1+—2ﬂ3

A, A< (9)

A3 is the real Padé approximation. Although we are able to deal with it when implemented
as a LFT, it is a little complicated. In A4, the delay uncertainty is taken as a multiplicative
uncertainty, the uncertainty weight is obtained by setting the A in the denominator of Padé
approximation equal to 1. This is the approximation generally used in robust design[6][14]. Note
that Al and A2 are also multiplicative uncertainties, we can think that the weight is obtained

by setting the A in the denominator of Padé approximation equal to 0, so it is always larger
than the weight in A4,

In each case, we can rearrange the overall system into the ‘M — A’ structure. To ensure
robust stability, we must have

1. in Al and A3 where A is real

Mjwy)l <1, Vw,|LM(jw,) = i, i tnteger (10)
P P P



2. in A2 and A4 where A is complex
#Rrs = sup u(M) = sup |M(jw)| < 1 (11)

Conditions (10) and (11) can be used to estimate the smallest b9 required to destabilize the
closed loop system. Note that in A4 the approximation is no longer a function of the product
694, and we have to calculate 8, iteratively. The A in A3 must be real, otherwise we will get
meaningless results, since the denominate 1 + %ﬂij can be zero for w > % and hence infinity
uncertainty at high frequencies.

The following PI controller is used in study
kets+ 1
)= 3
where k, 7 are the same as in the nominal plant model (4). For different k. value, the exact by

and its various estimated values from four different approximations are calculated and shown in
Table I. We see from Table I:

(12)

1. A3 is the best approximation. This is consistent with theoretical analysis since all the
others can be thought as further approximation of A3. However, 6p3 is always a bit

optimistic. Another possible problem with A3 is that the perturbation should be real,
which may make it difficult for applications.

2. b4y is always conservative because Al is an upper bound of A3 (Al is obtained by setting
the A in the denominator of Padé approximation equal to 0). A2 is even more conservative
since A is relaxed to be complex. Note that A1 does not cover the time delay uncertainty
though it is always conservative. Neither do A3 and A4.

3. A4 is a lower bound of A3 (A4 is obtained by setting the A in the denominator of Padé
approximation equal to 1). This introduces optimism. Relaxing the A to be complex
causes conservativeness. As a result of these two effects, dg4 ic very optimistic when k,
is small (detuned), and is conservative when k, is large (overtuned). However, it is good
in the range where robust stability is reasonable. So A4 might practically be a good
approximation. Also note that &,y is always larger than égo as expected.

Theoretically, we can get arbitrary high accuracy by using multiple perturbations. We divide
1 .
time-delay uncertainty e=%4% into n parts (e"r?'As)" first, then use any approximation for each

6
of the smaller uncertainty e~ 2. In this case we get n repeated blocks and higher order model.
This problem is much more complicated numerically.

Table I. Stability margin (allowed uncertainty) estimated using
different approximations for time-delay uncertainty

Exact Al A2 A3 A4
ke  we PM by o b9, 093 694
0.1 0.1 1.4708 14.708 9.5045 9.1434 18.186 00
0.2 0.2 1.3708 6.8540 4.4868 4.1870 8.1095 8.2375
0.5 0.5 1.0708 2.1416 1.4752 1.2575 2.3640 1.6460
1.0 1.0 0.5708 0.5708 0.4348 0.3196 0.5882 0.3276
1.5 1.5 0.0708 0.0472 0.0428 0.0255 0.0499 0.0255




2.2 Upper bounds for time-delay uncertainty

A mathematical approximation of time-delay uncertainty does not necessarily cover all the
possible plants even if it is a very good approximation, such as A3 and A4. In robust design,
it is preferable to use a norm-bounded uncertainty which covers all the possible plants. It may
be argued that whether it is an upper bound or not is not important as far as it is a good
approximation. However, we find that p-optimal controllers seem to be sensitive to uncertainty
unconsidered (we will show this latter in this paper), and this justifies the use of an upper
bound. The tightest upper multiplicative uncertainty bound (smallest bound) for time-delay
uncertainty is given byfﬁ]

Sb: Iw)= { lz‘i—jsw -1 : 5;:%2 (13)

We consider the following multiplicative uncertainty weights for the time-delay uncertainty:
wo(s) = bys (14)

wy(s) = Eﬂ_‘-%“-}-_l (15)

wip(8) = mﬁ(‘;—m (16)

wy(s) = 3—%270“—;5 (17)

wie(s) = 5;3'/2% (18)

wy(s) = 66523;?522232?05; - (19)

ws(s) = bgs  (8/wo)? + 1.676(s/wp) + 1 wo = 2.363/6, (20)

" 8ps/2+ 1 (s/wo)? + 1.370(s /) + 17

All these weights except wi(s) (and wy(s)) are upper bounds for time-delay uncertainty in the
sense they contain all possible plants. They are plotted in Figure 3. wo(s) is the weight of A2.
[t approximates the smallest bound Sb very well at low frequencies but is much larger at high
frequencies. w(s) is the weight of A4. It approximates the smallest bound very well at both
low and high frequencies with a small error in middle range, where it is a little smaller than
the smallest bound. If we want to modify w)(s) to make it an upper bound, but still limit it to
be first-order, we have three choices. 1). Increase wi(s) at high frequencies without changing
the value at low frequencies. This yields wy4(s) which just covers Sb. 2). Conversely, increase
wy(s) at low frequencies without, changing the value at high frequencies. This yields wy;(s) which
almost covers Sb. Exact cover is impossible in this case since l{w) = 2 at finite frequencies.
3). Increase wy(s) at all frequencies to cover Sb which yields wiq(s). The high-order weights
wa(s) and ws(s) are obtained by fitting the Sb with second and third order transfer functions,
respectively. We use the constraints that their magunitudes must be the same as Sb at both
low and high frequencies and must not be less than Sb at any frequency. ws(s) is provided by

Lundstroml?). Of course, we can use even higher order weights to get a better fit.

We use the same PI controller and values of k. as in the last section. In each case, the
time-delay uncertainty 6, is equal to be the exact uncertainty the system can tolerate before



instability, so the ‘exact’ robust stability (with real time-delay uncertainty) prsreqs should always
be equal to 1. The ugrs computed from Sb and different multiplicative uncertainty weights are
shown in Table II. We see from Table 1I:

1.

1RSsh is computed with Sb, i.e. using (13). It represents the best results we can get
if we limit ourselves using complex multiplicative uncertainty to cover the time-delay
uhcertainty. The difference between ppg,;, and HRSreal is the conservatism introduced by
the complex multiplicative uncertainty assumption. Somewhat surprisingly, it gets larger
as the time delay uncertainty gets smaller.

. All values, except pps;, are larger than 1 as expected since the uncertainty weights are

upper bounds (wy; almost).

. Although the difference between Sb and the magnitude of wy(s) is very small, the difference

between ppgss, and pps; is significant. pprsy is always less than trssy and hence less
conservative. However it is dangerous to reduce the conservatism by releasing the upper
bound requirement. In fact, ugrg; is optimistic (< 1, i.e. less than the “exact” LRS
computed with real time-delay uncertainty) for two cases.

. Increasing the uncertainty at low frequencies (wy;) is more conservative than increasing it

at high frequencies (wyy). win(s) is the best first-order weight.

. The differences among ppgy, HRS2, and ppss are minor, so increasing the weight order

does not improve much. This is because pRrs1h is already quite close to ppss. The
remaining conservativeness comes from the complex multiplicative uncertainty assumption,
and we can do nothing with this unless we are able to compute with real time-delay
uncertainty. ppss is even worse than HRs2 and pupsis for one case. This is because we
have not restricted ws(s) not larger than wy(s) at any frequency in the fitting.

The conclusion is that wy,(s) is a simple, good and reliable approximation of time-delay
uncertainty.

Here the comparison is only based on robust stability. In the next section we will provide
further result on robust performance.

Table II. Different complex multiplicative uncertainty approximations
for time-delay uncertainty, robust stability upg

Weight Exact wg) Wy Wi wyy Wi, w1 Wo Ws
kc 60 HRSreal HRSsb RSO HRS1A HRS1 HRS1a HRS1 HRS2 HRS3
0.1 14.708 1 1.0694 1.6086 1.1148 1.4230 1.1008 0.9023 1.0983 1.0882
0.2 6.8540 1 1.1146 1.6370 1.1660 1.4522 1.1429 0.9368 1.1474 1.1332
0.5 2.1416 1 1.3808 1.7031 1.4254 1.7073 1.4222 1.1657 1.4101 1.4062
1.0 0.5708 1 1.7403 1.7862 1.7417 3.4883 2.0275 1.6619 1.7409 1.7460
1.5 0.0472 1 1.8517 1.8521 1.8517 5.5232 2.2580 1.8509 1.8517 1.8517




3 Modelling of uncertain time-delay systems

The approximation of time-delay uncertainty has been considered in the last section. Another
problem is how to model an uncertain time-delay system. For SISO plant

Plant set:  g,(s) = T le"a”", 0<6,<6 (21)
we can model it in two different ways:
Approach 1: Nominal model with time delay.
Nominal model : g(s) = d e~ 3 (22)
s+ 1
Time ~ delay uncertainty : e"%A’, -1<AK1 (23)
Approach 2: Nominal model without time delay.
Nominal model : g(s) = i (24)
TS+ 1
Time — delay uncertainty - e~ 1 <A1 (25)

Intuitively, one should expect that Approach 1 gives better result than Approach 2. But on
the other hand, Approach 2 is much simpler, since the analysis and design is completely delay-
free when complex norm-bounded uncertainty is used. As it is well-known, time-delay often
greatly complicates the analytical and computational aspects of system analysis and design,
and this is the case for H,, and p methods. Moreover, H,, synthesis and u synthesis in both
existing toolboxes, u-Analysis and Synthesis Toolbox!) and Robust Control Toolbox[2], are even
incapable to deal with time-delay. So in Approach 1 we have to approximate the time-delay
in nominal model by a rational transfer function before the design. But we found in [15] that
rational approximation of time-delay may cause significant deterioration in robust performance
because it introduces additional uncertainty. Due to these problems with time delay, we may

prefer a delay-free design problem for time-delay systems. This motivates us to evaluate these
two approaches.

Note that Approach 2 contains non-causal plants. This may possibly lead to noncausal closed

loop systems. However, this does not matter, as we are sure that these non-causal plants do not
belong to the possible plant set.

With the specific model parameter & = 1,7 =1and # =1, the two approaches are compared
based on robust performance

Jrp = supsup |wpS,| (26)
w oA
with performance weight
s+ 1
wp(s) = —- (27)

JRrp is very similar to, but not quite as the structured singular value, prp for robust perfor-
mance. purp is computationally more efficient, particularly for multivariable systems. Though
they are equivalent in the sense that Jrp < Ll urp < 1, they are generally different. The
reason we use Jrp here is that we are able to calculate the “exact” Jrp (Jrpo) for this simple



case. This Jppo provides a standard for the comparison. In the next section, urp will be used
instead.

The peak values Jgp for different controllers are shown in Table III. Define Jrpg as the
exact Jpp for the real time-delay uncertainty. Jpp; and Jrp, are, respectively, computed
using Approach 1 and Approach 2 with time-delay uncertainty approximated by a multiplicative
uncertainty weight w,(s), i.e.

S
Jrp = supsup |wpS(1 + AwipgeS)~Y = sup lwpS]
w oA

— Pl 28)
w 1= |wipges| (28)

For this simple example, we are fortunately able to compute Jgpg exactly at each frequency.

1 .
- — ; —Jwlpy~1 ‘
Jrpo(w) S(l)ipp |wpSp| = |wp| S;LP I(1 + C(Jw)jw+ e T (29)

We can reach the supreme by choosing 8, within the interval (0, 1) to make cijH e™%% coincide
with or closest to the negative real axis of the complex plane. Also introduce the performance

Jrp3 of the plant with the largest time delay. Jrps is, however, not a robust performance.

SN S
JRP;}:SX:}phUP(l-{-C(]w)S_*_16 )Y (30)

The controllers used include a set of PI controllers and 3 p-optimal controllers. The PI

controllers are of the form
s+ 1

K
with different k. as shown in Table I11. Since H., synthesis and g synthesis in existing toolboxes( (2]
are not able to handle time-delay, we have to approximate time-delay by a rational transfer func-
tion in Approach 1 when we want to get a p-optimal controller. Cyy and C)4 are the p-optimal
controllers using Approach 1 with the time-delay in the nominal model approximated by first-

order and fourth-order Padé approximations, respectively. C, is the y-optimal controller using
Approach 2,

c(s) = k.

(31)

The results in Table III are somewhat unanticipated. We see that two approaches give
comparable results. Sometimes Jgrp; is larger and sometimes Jpp, is larger. Jppq is not much
larger than Jgrp; in each case, but on the other hand Jrp1 is much larger for some cases. So
we can get a delay-free approach at almost no costs. The reason is that H-norm and u is
a worst case performance measure. Although Approach 2 introduces a lot more uncertainty
than necessary, the worst case may not be affected very much. Also note, although Approach 2
has larger uncertainty, the plant set in Approach 2 (g,,42) does not contain the whole plant set
in Approach 1 (gp41) when time-delay uncertainty is approximated by complex multiplicative
uncertainty. This is graphically shown in Fig. 4 for frequency w = 2, and explains why Jpps <
JrpP1 can happen.

Let us look more carefully at the results with p-optimal controllers.

1. Jrps with C,3 is smaller than Jpp; with Cur and Cuiq. Jrpo with C2 is smaller than Jrpg
with Cy1 and Cy4, too. This shows that from the point of controller design Approach 2
is better.

2. The differences between Jpp; and Jrp2 for two of the p-optimal controllers are very large,
while the differences for the PI controllers are generally small, except for the extreme cases
where the controller is poorly tuned. This means that p-optimal controller can be very
sensitive to uncertainty unconsidered.



Table III. Comparison based on robust performance Jpp for two different
modelling approaches of uncertain time-delay systems

Exact Approach 1 Approach 2 NP + max delay
controller k.  Jppo JRP1 JRrP2 Jrp3
Ci 1.2859 1.3343 1.3246 1.2859
Cuia 1.0343 1.0359 1.1125 1.0343
Cpa 0.9759 2.3374 0.9856 0.9759

0.2 2.4982 2.5166 2.5535 2.4982
0.3 1.6664 1.6982 1.7555 1.6664
0.4 1.2500 1.3108 1.3880 1.2500
0.5 1.1390 1.1469 1.2193 1.1390
PI 0.6 1.1948 1.2258 1.2027 1.1948
0.8 1.4490 1.7841 1.5056 1.4490
1.0 1.8515 3.5163 2.2196 1.8515
1.2 2.4344 394.50 4.4034 2.4313
1.4 5.0678 00 66.756 5.0354

We see that Jrps is equal to Jppy for most of the cases. This suggests largest time-delay
may be the worst case. In fact, we can show that largest time-delay is the worst case up till
frequency

Wt = (r = LL(jw"))/0 (32)
where L is the open loop transfer function with the largest time-delay. So as long as the peak
value frequency for J or p is below this frequency, the largest time-delay is the worst case. This
gives another robust design method for uncertain time-delay system: Design with the largest
time-delay and do not consider time-delay uncertainty at all. This method will completely
eliminate the conservativeness introduced by multiplicative uncertainty approximation of time-
delay uncertainty. But we need to check whether the peak value frequency for J and y is smaller
than w* or not after design. This check will not be easy for practical cases in which we also have
other uncertainties. Also the time delay may have to be approximated by a rational function.

4 Extension to systems with general parametric uncertainty

For simplicity, we considered only time-delay uncertainty in the above studies. In this simple
case, we can also get “exact” results which serve as standards for the comparisons of different
approximations and of different modelling approaches. The principles, however, apply to general
cases as well. As an illustrative example, we consider in this section the first-order with time-
delay model, with simultaneous uncertainties in gain, time constant and time-delay.

_ kP —0ps
gp(s) = " le (33)

kp € [kmina kmar]y Tp € [Tmina Tmaa:], ap € [emin, ‘9mar]
This model is widely-used in modelling industrial processes. The mean values of the parameters
are

fl =
3 ) )

i < o

b = ;“min + kmul‘ e Tmin T Tinar (}lrun + onm.r



The magnitudes of the parametric uncertainties are

6o = kmar - kmin 5. = Tmazr = Tmin . Hrnal' - 9min
p=—mi_mmin s Tmar T g ez = Bnin

2 ' - 2 ' 2

When the mean values are used in the nominal model, Laughlin et al.1 derived the following
smallest complex multiplicative uncertainty bound for the parametric uncertainties.

(TFér)jwtl

kl+6, Tiw+1 s (o
| k (T:F5r)jw+ll +1, V w2w

|BES il odifow gy,
Sh: l(w)= e

where w* is defined implicitly by:

+é,w*
1+7r(rF 6,)&)*2] = 4,

+épw™ + arctan| % <dpw™ <
This bound applies to both stable and unstable models. The top signs are selected if 7 is positive,

and the bottom signs are selected if 7 is negative indicating an unstable model. They also give
an approximate rational weight:

wy(s) = k[ +68  7ms+1 14 6s/2
YT T s+ 117 bgs/2

This weight is unstable for stable plants, so we need to multiply it with an all-pass to make it
stable. We use w;(s) to denote this weight because it is the same as the wy(s) in section 2 for the
case with time delay uncertainty only. As before, this weight does not cover all the parametric
uncertainties and may be optimistic (as well as conservative).

(35)

By letting w;(s) level off at a higher {requency, we can get a weight which just covers the
parameter uncertainty. As before we do this as follows

1-{-598/2

o) =TT O

(36)
where k,, is larger than 2. The k, values which make wik(s) just cover the parametric uncer-
tainties are different for different systems.

As before we consider the two different modelling approaches: 1) Approach 1 where we use
mean values of the gain, time constant and time-delay in the nominal model. 2) Approach 2
where we use only mean values of the gain and time constant in the nominal model, and model

all of the time-delay as uncertainty. Hence the magnitude of time-delay uncertainty is increased
from 65 to 6 + by = 6,,,,.

Assume that all mean values are equal to 1. We study two cases: 50% and 20% parameter
uncertainty. In Approach 1 (nominal plant has mean time delay), after multiplying by an all-
pass, the multiplicative uncertainty weiglhts are

252 + 6.55 + 2
507 \ _
() = 0375 T4

(37)

20 4) 252 +6.25 + 2
wy(s) = —m——
! 0.852 + 9s + 10

The k., values are 2.5 and 3 for 50% and 20% parameter uncertainties, respectively. So we get,
p p J g

(38)

o 22 + 6.58 4+ 2

50 39)

; _ 39
winls) = T D)4 + 2s/2.5) Y




25% 4+ 6.25 + 2
(0.8s + 1)(10 + 2s/3)

In Approach 2 (nominal plant has no time delay), the magnitudes of time-delay uncertainty are
increased to 1.5 and 1.2, respectively. We have

wii(s) =

(40)

_ 6?4+ 115542

wi'(s) = 1o 15507 (41)
uft(s) = AL (2)
wiin(s) = (0.5365-: 1+)(141 fsaj/;ss) (43)
wfg(s) 652 +8.65+ 1 (44)

" (0851 1)(5 + 65/2.95)
p-optimal controllers are designed using the two different approaches, C,,; with Approach 1 and

Cu2 with Approach 2. Uncertainty weights used are the above wix(8). The performance weight
for case with 50% parameter uncertainty is

13.397s+ 1
50
i - 45
() = 35 307s (45)
and for 20% parameter uncertainty case
11.5s+ 1
wP(s) = 575 (46)

In Approach 1, the time-delay in the nominal model is approximated by fourth-order Padé
approximation. The robust performance in #rp s shown in Table IV. The values in parathesis
are computed with fourth-order Padé approximation of the time-delay in nominal model as
required when designing C,,;, the others are computed with real time-delay.

From Table IV, we see:

1. The two approaches still give comparable results. Note that the ratio of time-delay uncer-
tainty magnitudes in Approach 1 and Approach 2 has decreased from 1:2 in Section 3 to
1:3 in the 50% parameter uncertainty case, and to 1:6 in the 20% parameter uncertainty
case. Smaller the ratio, more uncertainty is introduced in Approach 2. Intuitively we
might think that Approach 2 becomes more conservative. But this result demonstrates
that Approach 2 does not depend on the uncertainty ratio very much and hence apply to
a wide range. For the 20% parameter uncertainty case, the original plant set gp and the
plant sets in Al and A2 are shown in Fig. 5 for frequency w = 2. We clearly see that GpA2
yields a much larger plant set, but gpa1 does include a few plants not contained in JpA2.

Table IV. Comparison based on robust performance pgp for two different
modelling approaches of uncertain time-delay systems, general case

controller URP1 HRP2
50% parameter Ca 1.2620(1.0599) 1.1899
uncertainty Cl2 1.2952 1.0566

20% parameter Cui 1.1511(0.9756) 1.5582
uncertainty Cl2 1.4104 1.0210




2. Though fourth-order Padé approximation is used, we still find significant deterioration in
robust performance when we calculate it with real time-delay. Generally we should think
that fourth-order Padé approximation is good enough, however, u-optimal controllers seem
to be very sensitive to uncertainty unconsidered. The large differences between 1rp1 and
#rP2 of same controllers reveal the same problem of p-optimal controllers.

Forcomparison, we also design a g-optimal controller using uncertainty weight wi%(s) in (41)
instead of the corresponding w39(s) for the case of 50% parameter uncertainty and Approach 2.
We get a ppp = 1.0327. Compared with pgpp = 1.0566 which is designed using w3j(s) in (43),
we see the increase in pgp is very small. This means that using an upper bound in controller
design introduce little conservatism. On the other hand, when we calculate ugp of this y-optimal
controller using uncertainty weight w3(s) in (43), the value is 1.2035, nearly 20% increase. This

means that the robust performance might deteriorate significantly when this g-optimal controller
is applied to the original problem.

5 Conclusions

In this paper, the robust controller design for uncertain time-delay systems has been studied.
From the above results and discussions, we are ready to make the following conclusions:

1. p-optimal controllers seem to be very sensitive to uncertainty unconsidered. Hence we
should be careful with the rational approximations of time-delay uncertainties and time-

delays in the nominal model. It is preferable to use an upper bound to approximate the
original uncertainties.

2. For the multiplicative uncertainty approximation of time-delay uncertainty, the upper
bound w;(s) adjusted at high frequencies is a simple and good weight.

3. For the modelling of uncertain time-delay systems, the approach of using a nominal model

without time delay (Approach 2) is better since it gives comparable results but leads to a
delay-free design problem for the time-delay systems.

4. The transformation from original uncertainty description to the norm-bounded complex
perturbation inevitably introduces conservatism. In order to reduce conservatism, usually
one chooses a nominal model which minimizes uncertainty weight. However, u is a worst
case measure. Of most importance is not the size of uncertainty but the worst uncertainty.
So the correct way to reduce conservatism is not to minimize the uncertainty size but to
minimize the worst uncertainty introduced in transformation. Of course, minimizing the
uncertainty size is easy and direct. However, which is the worst uncertainty is generally
not obvious. Research work on identifying worst uncertainty may be worthwhile.

5. Note that all results are for SISO plants, and then MIMO systems may behave entirely
differently.
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Figure 3: Different uncertainty weights for time delay uncertainty.
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Figure 4: Plant set g, in eq. (21) and its
disc approximations in Al and A2.
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Figure 5: Plant set g, in eq. (33) and its
disc approximations in A1 and A2.



