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Abstract

The paper addresses dynamics and control of distillation columns operated at
open-loop unstable operating points. The fact that ideal two-product distillation
columns may have multiple steady-states and right half plane poles has only re-
cently been recognized. This paper discusses in detail the dynamics and control
implications. It is shown that with reflux and boilup as independent variables the
operating points become unstable if the internal flows are sufficiently large. An
open-loop unstable operating point may be stabilized by use of one-point control,
i.e., feedback control of a column composition or temperature. If the control is not
sufficiently tight, the column may go into a stable limit cycle. It is shown that
the open-loop right half plane pole may worsen the control performance when both
product compositions are under feedback control. Finally, it is shown that with dis-
tillate flow and boilup as independent variables the operating points may become
unstable if the level control is not sufficiently tight. The column may also in this
case go into a stable limit cycle.
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3.1 Introduction

Distillation is undoubtly the most studied unit operation in the process control literature.
However, in all previous studies the column dynamics have been assumed to be asymptot-
ically stable (with level and pressure loops closed). The main reason is that most authors
have considered dynamic models with constant molar flows (neglected energy balance)
and in addition assumed the inputs (e.g., reflux and boilup) to be given on a molar basis.

For the case of molar inputs there exists several papers on uniqueness and asymp-
totic stability of the operating points in homogeneous distillation. Most papers treats
the constant molar flow case (neglected energy balance), e.g., Lapidus and Amundson,
1950; Acrivos and Amundson, 1955; Rosenbrock 1960, 1962. Doherty and Perkins (1982)
provide a review of results published in this area, and conclude that, for constant mo-
lar flows, multiplicity and instability is impossible for single-staged ”columns” and any
multistage column separating a binary mixture. Sridhar and Lucia (1989) include the
energy balance in the model and conclude under certain assumptions that also in this
general case binary distillation columns will exhibit unique and stable solutions. They
do, however, only study a limited set of specifications, namely @pQp and LB.

However, in a recent paper Jacobsen and Skogestad (1991) report two kinds of mul-
tiplicity which may occur in distillation. 1) Jacobsen and Skogestad (1991) argue that
columns under operation only in rare cases have all the manipulated inputs on a molar
basis. For instance, fixing the valve position will normally correspond closely to fixing the
geometric average of mass and volumetric flow-rate. As they show, the transformation
from mass- or volume flows to molar flows is nonlinear due to the composition depen-
dence and may in some cases become singular, even for the binary case with constant
molar flows. A singularity in the input transformation will imply that there exist multi-
ple solutions in terms of outputs (compositions) for a given set of inputs (flows). One of
the solutions will be unstable. 2) In addition, Jacobsen and Skogestad show that when
the energy balance is included in the model, even molar inputs may yield multiple solu-
tions. Both types of multiplicity and instability may be experienced in industrial columns
operated with inputs on a mass- or volume basis.

Jacobsen and Skogestad (1991) treat the multiplicity only from a steady-state point
of view. In this paper we study the dynamics of columns with multiple solutions, and
consider the implications of open-loop instability for feedback control. The last point is
important as previous studies on distillation control have assumed open-loop stability,
and we investigate whether the achieveable closed-loop performance is influenced by the
open-loop instability.

We start the paper with a brief summary of the previous results on steady-state
multiplicity caused by singularity in the input transformation. We prove the instability
for this case and consider the overall dynamics of columns with right half plane (RHP)
poles. Finally, we consider whether any fundamental new control problems are introduced
by the multiplicity and instability.

We limit ourselves to discuss mainly one control configuration (set of specifications),
namely the case where mass reflux L,, and molar boilup V' (V is closely related to the heat
input Qg) are used as independent variables. This is the most widespread configuration
in industry, and is the configuration for which multiplicity and instability is most likely
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to occur (Jacobsen and Skogestad, 1991). With this configuration the product flows (D,,
and B,) are used to control the condenser and reboiler levels (Mp and Mp). We here
assume perfect level control, but this assumption is not important since the composition
response is only weakly dependent on the level control when reflux and boilup are used
as independent variables. At the end of the paper we consider the case with distillate
flow D,, and boilup V as independent inputs, and show that with this configuration the
responses are strongly dependent on the level control; the operating points may even
become unstable if the level control is not sufficiently tight.

In most of the paper we consider the simplest case with constant molar flows, i.e., we
neglect the energy balance. Towards the end of the paper we consider the instability that
may be caused by including the energy balance.

3.2 Results on Steady-State Multiplicity in Ideal
Distillation

We give here a brief review of the results on multiplicity caused by singularity in the input
transformation presented in Jacobsen and Skogestad (1991).

Consider the two-product distillation column in Figure 3.1. If the feed to the column
is given there are at least four flows that may be specified: reflux L, boilup V, distillate D
and bottoms flow B. However, for a given column there are only two degrees of freedom
at steady-state, that is, only two of these flows may be specified independently. A specific
choice of two independent variables is denoted a ”configuration”.

Jacobsen and Skogestad (1991) provide an example of steady-state multiplicity in a
column separating a mixture of methanol and n-propanol. The column has mass reflux
and molar boilup as independent variables, i.e., L, V-configuration. Data for the column
are given in Table 3.1. Note that the energy balance is excluded, i.e., constant molar flows
are assumed. Some steady-state solutions are given in Table 3.2, and we see that for a
specification of mass reflux L, = 50.0 kg/min and molar boilup V = 2.0 kmol/min we
have three possible solutions I, III and IV in terms of compositions. The multiplicity
is graphically illustrated in Figure 3.2.

The observed multiplicity is caused by the transformation between the actual flow-
rates (mass) and the molar flow-rates which determine separation. For a binary mixture
the transformation between mass reflux, L., and molar reflux, L, is given by

Here M; denotes the molecular weight of the individual components. One might expect
the molar reflux to increase monotonically with the mass reflux, that is, (OL/8Ly)v > 0.
However, because M is a function of composition, yp, and thereby of L, this might not
be the case. Assuming molar boilup V fixed and differentiating L, = LM on both sides
with respect to L yields

(%LLﬂ) = M + L(M, — My) (%”f) ) (3.2)
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Figure 3.1: Two product distillation column.
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Feed is saturated liquid.

Total condenser with saturated reflux.

Liquid holdups are Mp;/F = 0.5min

L, V-configuration: Mp/F = Mg/F = 0.5min
D, V-configuration: Mp/F = Mg/F = 5.0min
Flow dynamics included in dynamic simulations.
Constant pressure.

Table 3.1: Data for Methanol-Propanol Column.
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Figure 3.2: Methanol-propanol column with constant molar flows: Multiple steady-states
for L, V-configuration. Mass reflux L, is varied while molar boilup V is fixed at 2.0
kmol/min. On the upper plot the corresponding maximum eigenvalue is shown at some
of the steady-state solutions.



42 CHAPTER 3. DYNAMICS AND CONTROL OF UNSTABLE COLUMNS

L D L, YD TB
[kmol/min] [kmol/min] [kg/min]

I 1.064 0.936 48.00 0.534 3.10e-3
II 1.143 0.857 50.00 0.584 3.50e-3
IT1 1.463 0.537 50.00 0.9237 7.80e-3
IV 1.555 0.445 50.00 0.9969 0.104
\% 1.650 0.350 53.00 0.9984 0.233

e Constant molar flows.

Table 3.2: Steady-state solutions for methanol-propanol column with V=2.0 kmol/min
and L,, in the range 48 to 53 kg/min.

For M; < M,, which is usually the case (the most volatile component has the smallest
molecular weight), the second term on the right hand side of (3.2) will be negative and the
total differential may take either sign. The transformation from Ly to L will be singular
when (0L,,/0L)v = 0. A singular point will correspond to a bifurcation point, and the
number of solutions changes from one to three. Jacobsen and Skogestad (1991) state
that solutions with (8L./8L), < 0 (middle branch in Figure 3.2) correspond to unstable
operating points, but they do not prove this rigorously.

3.3 Open-Loop Dynamics and Instability for L, V-
configuration

The maximum eigenvalue in selected operating points of the methanol-propanol column
with constant molar flows and the L, V-configuration are shown in Figure 3.2. From
the figure we observe that the eigenvalues at the upper and lower branches are negative,
implying stability, while those at the intermediate branch (negative slope) are positive,
implying instability of the operating points. Note that the unstable operating points only
have a single eigenvalue in the right half plane. The eigenvalues at the singular points are
zero as expected since they correspond to bifurcation points. The open-loop instability
at the intermediate branch is illustrated by the nonlinear simulations in Figure 3.3 which
shows the responses in top composition yp to small changes in mass-reflux L,, (keeping
boilup V fixed) at the unstable operating point I71. The simulations indicate that the
two stable solutions IT and IV have equally large regions of attraction as seen from the
unstable solution ITI. The purpose of the rest of this section is to prove the observed
instability at the intermediate branch and to compare the dynamics of columns with mass
or volume inputs with those found for models with molar inputs.
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Figure 3.3: Nonlinear open-loop simulation of methanol-propanol column at unstable
operating point II] in Figure 3.1. 1) Small increase in mass reflux L,,. 2) Small decrease
in mass reflux L,,. Boilup V = 2.0 kmol/min. Constant molar flows.

3.3.1 Conditions for instability

One-stage column Consider the simple column in Figure 3.4 with one theoretical stage
(the reboiler) and a total condenser. Of course, such a column will never be operated
in practice because the reflux is simply wasting energy and has no effect on separation.
However, we start by analyzing this column due to the simplicity of the dynamic model.
As Jacobsen and Skogestad (1991) show, even such a simple column with ideal thermo-
dynamics may have multiple steady-state solutions. Assume binary separation, liquid
feed, constant holdup in the reboiler (ML) and negligible holdup in the condenser. The
dynamic model of the column becomes:

d
ML% = Fzp — Dyp — Bzp (3.3)
We have D=V — L and D+ B = F and with L and V as independent variables we get
d
M~ = F(zr — z5) + L(yp — 28) + V(25 — yp) (3.4)

Linearization, Laplace transformation and introduction of deviation variables assuming
F, zp and V constant yields

sMpAzp(s) = —DAyp(s) — BAzp(s) + (yp — zB)AL(s) (3.5)
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Figure 3.4: One-stage column with total condenser.

Assuming constant relative volatility o yields the following relation between Ayp(s) and
Azpg(s)

Ayp(3s) o
- = 3.
Azg(s) (14 (a—1)zp)? K(zs) (3.6)
Equation (3.5) then becomes
_Yp—7TgB

Azp(s) = Mista aAL(s) (3.7

where
a=KD+ B (3.8)

As all terms in (3.8) are positive, the pole —a/M[ is always negative, implying that all
operating points are stable when molar reflux L and molar boilup V are independent
variables.

Now consider mass reflux L, as an input instead of molar reflux L = L, /M. By
linearization we obtain for binary separations

M, - M,

AL=—~ALy,+L KAzg (3.9)

M M

Substituting (3.9) into (3.7) we obtain the following transfer-function between liquid com-
position, Azpg(s), and mass reflux AL,(s):

yp —zp ALy(s
Am5(3)=Mis+: M()

(3.10)

where E i
aw= KD+ B - (yp — zg)—%—‘m, (3.11)
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The operating point is unstable for a,, < 0. At steady-state (3.6), (3.7) and (3.8) yield

dyp\ _ Yyp—=2B
( oL )V =D+B/K (312)

and from (3.2) we find that instability (a, < 0) is equivalent to a negative slope for
(dLy/dL)y.

Multistage column Although the dynamic model of a multistage distillation column is of
high order, it is well known that the overall composition dynamics in distillation columns
may be well approximated by a first order response (e.g., Davidson, 1956, Skogestad and
Morari, 1987). This implies that we may approximate the transfer-function from molar
reflux L to top composition yp with

dyp koL
( oL )V (s)~ 14+ 78 (3.13)
where kY, (= (Oyp/dL), in (3.2)) is the steady-state gain and 7 is the dominant time-

constant (we assume stability, 71 > 0, which always holds for the case of constant molar
flows). We now want to derive the transfer function (9yp/0Ly)v(s). With V constant
the total differential of yp may be written

_ (9w
dy?(s) = ( 3L )V (s)dL(s) (3.14)
Here L = L,,/M is a function of both L,, and yp and we get
JL oL
dL(s) = (m) - (s)dLy(s) + (31/_1)) . (s)dyp(s) (3.15)

Combining (3.14) and (3.15) yields:

=) (%), ()
<6yo)v(s) - ( )yv (%) (3.16)

9w - (&), (@),

The Laplace variable s has been deleted for (0L/dL,,),, and (0L/8yp)L, since the rela-
tionship L = L,,/M is purely static. For a binary mixture

(565%) o ypM; + (1 - yo) M, (3.17)
AL\ _ Lu(M;— M)
(3yD)Lw " (ypMy + (1 — yp)M;)? (3.18)

From (3.16) we now find that the dominant pole is given by
1 . kLY, L(M; — M)

Il ypL

T - yoM, + (1 —yp) M,

(3.19)

/\ma:: =
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The pole will be in the right half plane when

kiYL L(My — M)

D

ypMi1+ (1 —yp)M,

> 1 (3.20)

This is exactly the same criterion as Jacobsen and Skogestad (1991) found for a negative
slope between mass and molar reflux. Thus, a sufficient condition for instability for the

L, V-configuration is
oL
—] <0 3.21
(az2), o2

This means that solution branches with a negative slope between L and L, represent
unstable solutions, provided the column is stable on a molar basis. This result is in
accordance with numerical results.

In the general case with more complex dynamics, (3.13) may be replaced by

3.22
oL 14+ a8+ a8+ ... + ans™ (3-22)

(ay_D) (s) = KLV (14 bys + bps? + ...+ buqs™™Y)
v
This follows since the composition dynamics generally have a pole excess of one' (e.g.,
Skogestad and Morari, 1988). We assume "molar” stability, i.e., all ajs in (3.22) are
positive. We may now use the Routh-Hurwitz stability criterion (the coefficients in the
pole polynomial of (3.16) should have different signs) to conclude that in the general case
(3.20) and (3.21) are sufficient conditions for instability.

Equation (3.19) gives an approximate way of calculating the dominating pole for the
L., V-configuration from data computed for molar inputs. Figure 3.5 shows a comparison
of this approximation with the maximum eigenvalue computed from the full linear model
with mass reflux. We see that the (3.19) yields a correct value of zero Apq; at the singular
points, and a fairly good approximation in the whole.

3.3.2 Effect of operating conditions on stability

Jacobsen and Skogestad (1991) provide analytical results on when a negative slope be-
tween mass and molar reflux, i.e., instability according to (3.21), is most likely. They show
that a negative slope is most likely with large internal flows (i.e., large L and V') and with
intermediate purities in the top (i.e., intermediate L for given V). This corresponds to
having L and kfXL large, and according to (3.20) this is the case for which instability is
most likely. Note that the analytical treatment in Jacobsen and Skogestad (1991) was
based on ideal separation with constant relative volatility and constant molar flows. The
same assumptions apply to the discussion below.

To study the effect of operating conditions on stability for the L, V-configuration,
consider different values of V, and for each value let L vary between Ly, = V — F
(B = 0) and Ly, = V (D = 0) (Note that these variations in L and V are purely
static). On the basis of the analytical results in Jacobsen and Skogestad (1991) we get
three different cases of operation depending on the size of the internal flows:

!For the case with a total condenser there will be a pole excess of two in (3.22).
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Figure 3.5: Maximum eigenvalue Apmq, as a function of molar reflux L for methanol-
propanol column with L, V-configuration and V = 2.0 kmol/min. Solid line: exact.
Dashed line: Computed from (3.19). Constant molar flows.

A. Internal flows low (V small): The largest pole (Amaz) starts out in the LHP for
L = L, and moves toward the right as L is increased. However, it does not
reach the imaginary axis before it begins to move back. This implies that we have
uniqueness with all solutions stable.

B. Internal flows intermediate: The pole A4 starts out in the LHP at Lnin and moves
towards the imaginary axis as L is increased. At some value of L the pole crosses
the imaginary axis and moves into the RHP. For some intermediate value of L the
pole begins to move back and crosses the imaginary axis again (this time from right
to left). In this case we have three solutions, one of which is unstable.

C. Internal flows high (V large): The large value of Lyin implies that A, starts out
in the RHP and moves further towards the right with increasing L. For some inter-
mediate value of L the pole starts to move back but it never crosses the imaginary
axis before [ = L,,,. In this case we have uniqueness and all solutions unstable.

The three different regimes of operation are illustrated in Figure 3.6 for the one-stage
column studied by Jacobsen and Skogestad (1991). Note that there also may be cases
where there are two solutions, of which one is unstable. In this case the third solution
would actually correspond to one of the product flows, D or B, being negative.
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3.3.3 Overall dynamics

The analysis above showed that the dominant (largest) pole, and thereby the stability
and low-frequency dynamics, is strongly influenced by the transformation between mass
and molar reflux. However, the effect on the high-frequency dynamics is much smaller.
Figure 3.7 shows the magnitude and phase of the transfer-functions from L and L,
respectively, to top composition yp (keeping boilup V fixed) at operating point I11 of the
methanol-propanol column. From the figure we see that the phase of the two transfer-
functions differs with 180 degrees at low frequencies as expected since the transfer function
from mass-reflux has a RHP pole and negative low-frequency gain. However, the phases
approach each other at intermediate frequencies and become identical at high frequencies.
The magnitudes of the two systems are almost identical at all frequencies. Note that the
magnitude for the L, V-configuration has been scaled by M. The fact that the magnitudes
are similar also at low frequencies is a coincidence for this operating point. The reason
is that the dominant poles are similar in magnitude (—0.098 and 0.086). However, the
dynamics of the two systems differ in the region where the phases differ. The most
important conclusion to draw from Figure 3.7 is that it is mainly the dominant pole
that is influenced by the transformation from mass to molar flows. The initial response
(high-frequency behavior) is unaffected. Similar results are obtained for the other three
transfer-functions of the 2 x 2 system.

3.4 Feedback Control

3.4.1 Limitations imposed by RHP poles and zeros

As we have seen, columns operating with mass or volume inputs may be open-loop un-
stable, and will require feedback control (in addition to level and pressure control) for
stabilization. From control theory it is well known that unstable poles by themselves
do not represent any bandwidth limitations; on the contrary they put a lower limit on
allowable bandwidth of the closed-loop system. Problems will therefore only arise if there
are bandwidth limitations like right half plane zeros at frequencies comparable to the
right half plane pole ("The system goes unstable before we are able to observe what is
happening”) or if there are constraints ("we can not counteract the instability”).

Freudenberg and Looze (1985, 1988) have extended the Bode Sensitivity Integral The-
orem for minimum phase systems to systems containing RHP zeros and RHP poles. Here
we consider scalar systems, but similar relations are obtained for multivariable systems if
one considers the maximum singular value of the sensitivity function &(S) instead of |S5|.

Consider the sensitivity function S = (1 4+ g¢)™! of the closed-loop system. Ideally we
want S = 0. However, for all real systems |S(jw)| = 1 at high frequencies. In addition,
for an open-loop system with a pole excess of at least two (satisfied for any real system)
and a single real RHP pole p the following limitation applies (Freudenberg and Looze,
1985)

/000 log|S(jw)|dw = 7p (3.23)

(With no RHP pole (p = 0) (3.23) reduces to the theorem of Bode.) From (3.23) we
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Figure 3.7: Frequency response for transfer-function from reflux to top composition yp
keeping V constant for operating point II1I of methanol-propanol column. Solid line:
mass reflux. Dashed line: molar reflux. The magnitude for mass-reflux L,, is scaled by
M. Constant molar flows.
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see that we need a frequency range with |S| > 1 and that the presence of a RHP-pole
increases the area where || > 1. However, (3.23) does not impose any practical design
limitation as the area for || > 1 may be smoothed out over an arbitrarily large frequency
range, and the peak of S may accordingly be made arbitrarily small. Thus, as stated
above, the RHP pole will not represent a control limitation if there are no bandwidth
constraints present in the system.

However, for an open-loop system with a real RHP pole p and a real RHP zero z, the
following restriction applies (Freudenberg and Looze, 1985, 1988)

/oo log|S(jw)|W(2,w)dw = Wloglz + z| (3.24)
0 —
(With no RHP pole (p = 0) the integral equals zero). The weight W is given by
2z
W'(z,w) = m (325)

The form of W (it equals 2/z up to w = z where is cuts off with a —2 slope.) implies
that essentially all the area for |S| > 1 has to be at frequencies lower than z, and the
sensitivity function must have a peak |S| > 1 at w < z. The peak will have to become
increasingly large as the bandwidth frequency (where |S| first reaches 1) approaches z.
From (3.24) we also see that as the RHP zero approaches the RHP pole, the peak goes
to infinity. This implies that we in general must require '

p<z (3.26)

For the distillation column p = Apaz, and RHP zeros are most likely caused by deadtimes,
6,4, in measurements and actuators. Using a first-order Padé approximation for 84 results in
a RHP zero at z = 2/6;. We must then require Anaz < 2/84, or equivalently 64 < 2/ Amaz-
With a limited structure of the controller, e.g. a Pl-controller, we must require a larger
distance between the RHP pole and the RHP zero than given by (3.26) in order to stabilize
the column.

For a further discussion on the effect of RHP-poles and -zeros on closed-loop perfor-
mance see Freudenberg and Looze (1985, 1988) and Looze and Freudenberg (1991).

3.4.2 One-point control

Good control of distillation columns usually requires two-point control, i.e., feedback
control of both product compositions. However, in order to stabilize an open-loop unsta-
ble column one-point control will suffice. This is also the way most industrial columns
with composition control are operated. An unstable column operating with the L,V-
configuration may be stabilized by controlling either top or bottom composition, or any
other variable related to composition, e.g. a temperature inside the column. The analysis
presented above for SISO systems then applies.

For operating point III of the methanol-propanol column the RHP-pole is at p =
0.086min~! and we are unable to stabilize the column with a Pl-controller when the
deadtime exceeds 11 min. (z ~ 2/6; = 0.182min™"). However, composition measurements
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in industrial columns (GC-analysis) may typically have deadtimes up to 30 min., and one
should then use faster temperature measurements in order to stabilize the column.

Nonlinear Simulations. Figure 3.8 shows nonlinear simulations of the methanol-
propanol column using a single-loop PI-controller? between top composition yp and mass-
reflux L, with a 1 minute measurement deadtime included. Molar boilup V is kept
constant at 2.0 kmol/min. The figure shows the responses to setpoint changes in yp from
operating point II (open-loop stable) to operating point III (open-loop unstable) and
then further on to operating point IV (open-loop stable) (see Figure 3.2 and Table 3.2).
A logarithmic measurement Yp = In(1 — yp) was used in the controller as this reduces
the nonlinearity of the initial response between different operating points (Skogestad and
Morari, 1988). From the figure we see that the controller is able to stabilize the open-loop
unstable operating point III with a RHP pole at 0.086 min~!. The simulations also show
that the same controller may be used in these three widely differing operating points.
The reason is that the initial response (high-frequency dynamics) in terms of logarithmic
composition Yp is similar in all operating points. We would get instability if we used mole
fractions, yp, as is done conventionally. From the plot of mass-reflux L,, against time we
see that the steady-state change in the input is zero, showing that the three operating
points are multiple solutions.

One should be careful about detuning a controller in an open-loop unstable process as
the bandwidth may become lower than the minimum allowable and the operating point
becomes closed-loop unstable. This is illustrated in Figure 3.9. where the controller gain
has been reduced by a factor of two compared to the simulations in Figure 3.8. Operating
point II1 is now closed-loop unstable, and a small setpoint change makes the system start
drifting away. However, this does not imply that the column goes globally unstable in
the sense that physical constraints are violated. Since there exists steady-state solutions
above and below the unstable solution the column goes into a stable limit cycle. If the
controller gain is reduced further the limit cycle will continue, but now with a longer
period of each cycle and with higher peaks in composition. There will also exist cases
where there are no solutions either above or below the unstable solution. In this case the
column is likely to go globally unstable as either the condenser (missing upper branch) or
reboiler (missing lower branch) would run dry.

3.4.3 Two-point control

As pointed out above, one-point control is sufficient to stabilize an unstable operating
point, but high performance control usually requires control of both product compositions.
There exist a large amount of literature on two-point control of distillation columns, but
everything is based on open-loop stable models. Here we want to investigate whether
the potential instability caused by using mass-flows will affect the achieveable closed-loop
performance of the column significantly.

In order to compare achieveable performance for the stable model with molar reflux
and the unstable process with mass reflux we design controllers with optimized perfor-
mance for both cases. As a design objective we use the structured singular value, u (see

2Tuned to yield reasonably fast response. Note that Ziegler-Nichols tuning rules resulted in a closed-
loop unstable system.



3.4. FEEDBACK CONTROL 53

A IV

0.85 ’

YD

0.75 ]
0.7 |
0.65 c

0.6-11 | .

0.555 50 100 150 200 250 300 350

62

60 -

58

]
i

561 4

54 -

T

52 -
sol1I 1L IV

L, [kg/min]

48 -

465 50 700 150 200 250 300 350

time [min]

Figure 3.8: Nonlinear simulation of methanol- propanol column with one-point control of
top-composition yp using mass reflux L,. Setpoint changes from operating point II to
III and from II] to IV. Boilup V = 2.0 kmol/min. Controller parameters: k = 3.0 and
77 = 11.0 min. Gain is for logarithmic composition, i.e., log(1 — yp). Constant molar
flows.
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e.g., Skogestad et.al., 1988). This implies that we may include model uncertainty in the
design. We use a relative uncertainty weight in each channel given by -

503 + 1
0.5038+1

This means that we allow for a deadtime 8, in addition to 20 % uncertainty in each input.
The performance weight used is given by

_ l_TCLs + P
- P TCLS

This implies that the worst case peak of 7(.5) should be less than P, and that the closed-
loop time-constant should be less than 7. We design single-loop controllers® for different
values of 84, and for each design we adjust the performance weight until a y-value of 1
is achieved. This is done by first increasing 7o and then increasing P if necessary. A
p-value of 1 implies that we can guarantee the specified performance for all plants within
the model uncertainty.

We will again consider operating point II] of the methanol-propanol column with a
RHP pole at 0.086 min~!. We use single-loop PID-controllers as this is the preferred
control structure in the industry, and also close to optimal (Skogestad and Lundstrom,
1990). Table 3.3 gives the results for designs with 84 between 1 and 5 minutes. For a
deadtime of 1 min. we see from Table 3.3 that there is only a small difference between
the achieved robust performance of the unstable process and the stable model. When the
deadtime is increased we must allow for a lower bandwidth as well as a higher peak in the
sensitivity function for the open-loop unstable process than for the open-loop stable model.
This is as expected from (3.24). For a deadtime of 2 minutes we can only guarantee half
the bandwidth for the unstable system compared to the stable model. With a deadtime
of 5 minutes (RHP zero 2z ~ 0.4min~1) the response for the LV-configuration is poor
(te, = 175 min. with a maximum peak P = 3.0), while the response for the L, V-
configuration is unacceptable (¢, = 455 min. and P = 6.0). This implies that when
the operating point is open-loop unstable (with the L, V-configuration) and the system
in addition has significant deadtime one should consider using a different configuration.

wII(s) = 0.20 (3.27)

wp(s) (3.28)

3Note that decouplers will perform poorly on ill-conditioned plants due to uncertainty sensitivity.

LV L,v

04 [min] | P 7cr [min] | P 7¢r [min]
1.0 2.5 25 2.5 32
2.0 2.5 59 2.5 140
3.0 2.5 100 3.0 227
4.0 2.5 161 5.0 345
5.0 3.0 175 6.0 455

Table 3.3: Robust performance parameters (see (3.28)) obtained for stable LV-
configuration and unstable L, V-configuration in operating point III of the methanol-
propanol column. All parameters for minimized upp=1.00 using two single-loop PID
controllers.
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ky TIy TDy k:l: TIz TDz
LV-configuration  0.0687 6.55 2.33 0.0680 5.29 0.180
L, V-configuration 4.064 32.27 2.91 0.0280 4.79 0.209

Table 3.4: Controller parameters for closed-loop simulations in Figure 3.10. (Correspond
to last entry in Table 3.3)

Nonlinear Simulations. Figure 3.10 shows responses to setpoint changes in top
composition yp using two single loop PID-controllers for the LV-configuration and the
L, V-configuration. The simulations include 5 minutes deadtime (using a l.order Padé
approximation) and 20 % input uncertainty. The controller parameters were obtained
from the p-optimal design above, and are given in Table 3.4. The simulations demonstrate
the fact that the performance for the case with mass-reflux is clearly worse than for the
case with molar reflux. The L, V-configuration has a much larger overshoot as well as a
longer settling period.

3.5 Effect of Including the Energy Balance

To this point we have only considered models with constant molar flows, that is, with the
energy balance excluded. However, Jacobsen and Skogestad (1991) show that when the
energy balance is included in the model, even molar inputs may yield multiplicity and
instability in distillation. The multiplicity is in this case caused by interactions between
the flows and compositions inside the column. The flows will affect the compositions
through the material balance while the compositions will affect the flows through the
energy balance.

Figure 3.11 shows steady-state solutions for the methanol-propanol column with the
LV -configuration and the energy balance included in the model. The enthalpy data used
are given in Table 3.5. The maximum eigenvalues in selected operating points are also
shown in Figure 3.11 and we see that the solution branch with a negative slope between
molar reflux L and top composition yp corresponds to unstable solutions. Note that the
eigenvalues were computed with a static energy balance, that is, the energy dynamics
were neglected.

To consider the stability properties for the LV-configuration with the energy balance

HE = 16.67¢1:987=
HY = 13.49¢3987i 4 43,97¢=0.088%

e Reference state: Pure components as liquid at 0°C.
e z; denotes mole fraction methanol in liquid phase.

Table 3.5: Saturated molar enthalpies (kJ/mol) for methanol-propanol system at a pres-
sure of 1 atm.
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Figure 3.11: Steady-state solutions as a function of molar reflux L for methanol-propanol
column with energy balance included. The maximum eigenvalue is shown in selected
operating points. Boilup V' = 4.5 kmol/min.
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L D YD B
[kmol/min] [kmol/min]

I 4.60 0.535 0.9324 2.474e-3
II 4.70 0.505 0.9845 6.344e-3
I11 4.70 0.406 0.9993  0.1587
v 4.70 0.0866 0.9997  0.4526

e Energy balance included in model.

Table 3.6: Steady-state solutions for methanol-propanol column with boilup V=4.5
kmol/min.

included we utilize the fact that the DV-configuration in all known cases yields unique
solutions (Sridhar and Lucia, 1989, Jacobsen and Skogestad, 1991) which are stable under
the assumption of perfect level control (see section 3.7 below). The transfer function from
molar reflux L to top composition yp may be written

(%ny) ()= (%)V (5) (g-l%) V (5) (3.29)

As before we assume that the composition dynamics for the stable case may be approxi-
mated by a first-order response, i.e.,

(51_)) ) (s) ~ s (3.30)

A material balance around the condenser yields (assuming perfect level control)
L=Vr-D (3.31)

where Vr denotes vapor flow to the condenser. For simplicity we neglect changes in
the liquid enthalpy with composition, and obtain from an overall static energy balance
(saturated liquid feed)
AHUGP
Vi = —5V 3.32

T AH;GP ( )
Here the "heat of vaporization”, AH;”, is the enthalpy of the vapor with each component
as pure saturated liquid as reference. (See Appendix for details.) Inserting (3.32) in the
material balance (3.31) and differentiating, with AH**? a function of composition z only
(saturated vapor at constant pressure), yields for a binary mixture

o () _, (58), s - (B2)_ (35), ()am
(3), - T

(3.33)
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Inserting (3.30) and (3.33) into (3.29) we find that the largest pole of (ya/dL)y (s) will
be

: (dAH"“") e KDV, AHZ — (M‘ﬁ) - kDY, AHY

dz dz
/\maz='_"— - va
o L INZE

(3.34)

Comparing (3.34) and (3.33) we see that the pole will be in the right half plane when
(OL/8D), is positive. This is in accordance with the results presented in Jacobsen and
Skogestad (1991).

From (3.34) we see that the probability of instability for the LV -configuration will
increase with internal flows (i.e., V). This is similar to what was found for the instability
caused by the input transformation with the L,V-configuration. If we assume ideal
vapor phase, then dAH"*?/dz = AH}"™ — AH}" which is the difference in heats of
vaporization for the light and heavy component at their normal boiling point. Thus, for
the normal case where the most volatile component has the smallest heat of vaporization
(dAH"? [dz; < 0) instability is most likely when we have |kDY,| large relative to |k Dol
which corresponds to having high purity in the top relative to “the bottom. Note that this
is different from what was found for the L, V-configuration where instability was found
to be most likely with intermediate purities in the top (unpure relative to bottom.)

The singularity caused by interactions between the material and energy balance cor-
responds to a bifurcation point with a single pole crossing the imaginary axis, similar
to what was found for constant molar flows with the L,V-configuration. The control
problems will therefore be similar to what was discussed in section 3.4. *

3.5.1 Combining mass flows and energy balance

Jacobsen and Skogestad (1991) show that when both types of multiplicities are present in
the same region of operation, a column operating with the L,V -configuration may have
five different solutions, two of which will be unstable. This is illustrated in Figure 3.12
which shows solutions for the methanol-propanol column with L,, in the range 84 to 91
kg/min and V = 2.7 kmol/min. In the same figure is also shown the maximum eigenvalue
as a function of top composition yp. The bifurcation (singular) points at low purities in
the top are due to sinigularities between mass reflux and molar reflux, while those at high
purities are due to singularities between molar reflux and top composition.

3.6 Other Bifurcation Parameters

So far we have only considered the inputs, e.g. reflux L, and boilup V, as potential
bifurcation parameters. That is, in all studies we have assumed the other parameters,
e.g., feed flow F, feed composition zf, feed liquid fraction gr, tray efficiency etc., to be
fixed. However, it is clear that these parameters will vary during operation and may,
similarly to the inputs, cause the column operation to go from open-loop stable to open-
loop unstable.

To illustrate this consider Figure 3.13 which shows steady-state solutions for the
methanol-propanol column (assuming constant molar flows) with L, = 50.0 kg/min,



3.6. OTHER BIFURCATION PARAMETERS 61

L] T L) L L) T L

0.999 .

0.99} 7

0.90 i

Qs —85 8 87 88 89 90 o1 92
L, [kg/min]

085 ' 0.90

0.99 0.999

YD

Figure 3.12: Steady-state solutions as a function of mass reflux L,, for methanol-propanol
column with energy balance included in model. Lower plot shows the maximum eigenvalue
as a function of top composition yp. Boilup V = 2.7 kmol/min.
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Figure 3.14: Nonlinear open-loop simulation of changes in feed-composition zp for
methanol-propanol column. Reflux L,, = 50 kg/min and boilup V = 2.0 kmol/min. Ro-
man numbers I] — IV refer to Table 3.2 with zr = 0.50. Operating point VI corresponds
to zr = 0.46. Constant molar flows.



3.7. INSTABILITY WITH THE DwV-CONFIGURATION 63

V = 2.0 kmol/min and feed composition zr in the range 0.40 to 0.60. From the figure we
see that there are multiple solutions for zr in the range 0.46 to 0.54. This implies that
disturbances in the feed composition may cause the column to go through a singular point
and thereby ”jump” to another solution branch. This is illustrated in Figure 3.14 which
shows the response in top composition yp to a change in feed composition z¢ from 0.50
(operating point IV in Table 3.2) to 0.46. The figure illustrates how the top composition
”jumps” to the lower solution branch and settles in operating point VI. When the feed
composition returns to zr = 0.50 the solution remains on the lower branch and settles in
operating point 1.

3.7 Instability with the D,V-Configuration

We have so far only considered using reflux and boilup as independent variables, e.g.,
the L, V-configuration. This is also the most widespread configuration in industry. How-
ever, there are many different configurations that may be used. For instance, changing
condenser level control from using distillate D,, to using reflux L,, results in the D, V-
configuration. For all the examples we have have studied this configuration yields a
unique steady-state solution in terms of compositions. Furthermore, we have assumed
perfect level control, in which the operating point is found to be asymptotically stable.
However, here we show that without the assumption of perfect level control the operating
point may become unstable also with the D, V-configuration. We start by considering an
example and will then explain the results thereof using analytical results.

Ezample. We will again consider the methanol-propanol column in Table 3.1. The holdups
in the reboiler and condenser are increased to Mp/F = Mg/F= 5.0 min. We consider
the case with constant molar flows, and use distillate flow D,, and boilup V as inde-
pendent inputs, i.e., D, V-configuration. With this configuration the condenser level is
controlled by reflux L,, and the reboiler level is controlled by bottoms flow B,,. The
nominal operating point we consider has D,,=18.36 kg/min and V=2.0 kmol/min. For
these specifications we obtain yp=0.9237 and r5=0.0078, and the steady-state is unique.
Note that the operating point corresponds to solution I1I for the L, V-configuration in

Yo B D Ama:l:

I 05207 2.024e-3 0.9601 -0.5323
IT 09673 6.756e-3 0.5135 7.327e-2
III 0.9978 7.251e-2 0.4620 -1.744e-2
IV 099855 0.1236 0.4302 1.7512e-2
V 0.99908 0.2321 0.3493 -5.608e-2

e Energy balance included in model.

Table 3.7: Steady-state solutions for methanol-propanol column with L, =85 kg/min and
V = 2.7 mol/min.
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Table 3.2 and Figure 3.2, that is, the operating point is unstable with reflux and boilup
as independent variables.

We now consider the stability of the of the operating point for different gains Ky,
in the condenser level controller. A pure proportional controller is used, i.e., dL,(s) =
Kmp,dMp,(s). We assume perfect level control in the reboiler. Figure 3.15a shows the
response in top composition to a small increase in D,,, keeping V constant, with level
control gain Ky, =0.10. We see that the response is stable and slightly oscillatory. Figure
3.15a also shows the phase plot of top composition yp against mass bottoms flow B,,
and we see that the steady-state is a stable spiral attractor. Figure 3.15b shows the
corresponding response with Kp,=0.05. The response is now more oscillatory, but the
steady-state is still a stable spiral attractor. With Kjs, reduced to 0.03 the operating
point becomes an unstable spiral as seen from Figure 3.15c. However, the response settles
into a stable periodic solution, that is, a stable limit cycle.

The fact that the steady-state changes from a stable spiral to an unstable spiral as
the level control gain is reduced implies that a pair of complex conjugate eigenvalues
cross the imaginary axis. This may be seen from Figure 3.16a which shows the largest
eigenvalues as a function of level control gain K, i.e., the root locus. We see that as
the gain is reduced below a value of 0.043, the eigenvalues cross the imaginary axis, and
the operating point becomes unstable. The fact that a stable limit cycle appears as the
steady-state becomes unstable, implies that the system undergoes a dynamic bifurcation
known as the Hopf bifurcation.

3.7.1 Analytical treatment

To understand why the steady-state for the D,,V-configuration becomes unstable, consider
the transfer function (0yp/dDy)y (s) which may be written

(«%%)V ()= (gyTZ)V 9 (ﬁéz)v (5) (3.35)

Here the transfer function (Oyp/dL.,), (s) expresses the effect of reflux on top composition
with the L, V-configuration, and we have seen that it may be unstable with a single RHP
pole. For simplicity we consider only the largest pole in the transfer function

(gyTi) ) (s) = Ll (3.36)

8§ —a

Here a denotes the maximum eigenvalue for the L,,V-configuration. The transfer function
(0Lw/0Dy)y (8) may be computed from a material balance around the condenser

dL(3)

- K’;‘v (dVru(s) = dLy(s) — dDu(s)) (3.37)

Differentiation of (3.37) yields

(glL)Z)V (#) = K,{:D%(VT(MI - M) (ggi)v (8) = 1) (3.38)
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Here yr denotes the composition of V. We assume negligible condenser holdup so that
(8yr/dDy), (s) = (Byp/dDy)y (s). Inserting (3.36) and (3.38) into (3.35) yields

I"MD kL"’V

dyp
_ 3.39
(60.,,) v (3) 82 + (I(MD - a)s - I{MD(G + kL“‘VVT(M1 - Mg)) ( )

The poles of the transfer function (3.39) become

1 1
/\1,2 = _E(I(MD - a) + 5\/(I(MD - a)2 + 4KMD(a + kL"’VVT(Ml - Mg)) (340)

Figure 3.16b shows the root locus for the example computed using equation (3.40), and
we see that the simple expression (3.40) yields a reasonable prediction of the behavior of
the full model in Figure 3.16a.

Let us now use (3.40) to consider the stability of the D, V-configuration for the two
cases when the pole a of the L, V-configuration is in the LHP and RHP, respectively:

1) Stable L, V-configuration, a < 0: In this case the first term in (3.40) is negative for all
values of Ky, > 0. Furthermore, the second term under the root in (3.40) is negative
and the root will be real with a value less than (K, — a) or it will be imaginary. This
implies that both eigenvalues in (3.40) are in the LHP, that is, the D, V-configuration is
stable for all values of Ks, > 0. “

2) Unstable L, V-configuration, @ > 0: In this case we have that the first term in (3.40) is
positive if Kjr, < a, that is, at least one of the eigenvalues in (3.40) are in the RHP with
Ky, < a. The size of Kpy, will determine whether the root in (3.40) is imaginary. For
Ky, = a, i.e., the bifurcation point, we have that the root is imaginary if k[""VVT(Ml -
M;) < —a, which is the case in all examples we have studied.

We conclude from the above analysis that a prerequisite for instability with the D, V-
configuration is that the operating point is unstable with the L, V-configuration. This
is not too surprising as the level control for the D, V-configuration may be viewed as a
feedback effect on the L, V-configuration. If the feedback control is not tight enough, we
are not able to stabilize the column, which is similar to what we found for the case of
one-point control with the L, V-configuration. With a gain Kjs,=0, i.e., no condenser
level control, we see from (3.40) that there will be a RHP pole at a (in addition to a pole
at 0), and we effectively have the stability properties of the L, V-configuration. This may
also be seen from the root locus in Figure 3.16a for Kas,=0.

In our example we find that the L, V-configuration is unstable with a pole a = 0.047
(with Mp/F = Mpg/F = 5min.) and from (3.40) we predict instability for the D, V-
configuration with K, < 0.047. From the full model we find that instability occurs for
K, < 0.043. The deviation in predicted and computed value is explained by our assump-
tions of first-order response in (3.36) and negligible condenser holdup in the analytical
treatment.

We have shown that the operating points with the D, V-configuration may become
unstable with two complex conjugate eigenvalues crossing the imaginary axis. However,
we have seen from the example that a stable limit cycle appears as the steady-state
solution goes unstable. The proof of the existence of a stable limit cycle is rather involved
for a high-order dynamic model, and is therefore left out here.
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Figure 3.16: Root locus for methanol-propanol column with constant molar flows and
D,V configuration. D,=18.36 kg/min and V=2.0 kmol/min. Plot shows maximum
eigenvalues as function of gain K, in condenser level controller (arrows indicate in-
creasing gain). a) Eigenvalues computed from full model. b) Eigenvalues computed from
simple expression (3.40).
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3.8 Discussion

Other Configurations. We have in this paper only considered two configurations,
namely the L, V- and D, V-configuration. We have shown that with the L, V-configuration,
the operating points may be open-loop unstable with a single RHP pole. This instabil-
ity is linked to the existence of multiple steady-state solutions and is independent of the
level control tuning. To stabilize an unstable operating point with the L, V-configuration,
feedback control of a temperature or composition is required. For the D, V-configuration
we have shown that instability may result if the level control is not sufficiently tight.
Many other configurations are of course also possible, and the type of instability found
for the D, V-configuration is likely to be found with other configurations. For instance,
the L, B,-configuration may become unstable with too slow reboiler level control. How-
ever, Jacobsen and Skogestad (1991) show that output multiplicity and the corresponding
type of instability is unlikely with other flows than reflux and boilup as independent vari-
ables. Because relatively tight level control usually is easily achieved, one may in most
cases avoid instability with the L,,V-configuration by changing to another configuration.
However, note that different configurations will also have different control properties like
interactions and disturbance sensitivity (e.g., Skogestad et.al., 1990). The choice of a
proper configuration should therefore not only be based on open-loop stability properties.

Detecting open-loop instability experimentally. There are several ways to deter-
mine whether a column under operation will be open-loop unstable with reflux and boilup
as independent variables. -

1. L,V -configuration with one loop closed:

- Increasing the purity in the top of the column corresponds to decreasing reflux, which
is opposite to what one would expect. Similar behavior will be seen in the bottom, i.e.,
increasing purity corresponds to decreasing boilup.

- Detuning the controller makes the column go into a stable limit cycle.

- Turning the controller off causes the column profile to drift away. However, it may be
difficult to distinguish this from-a "slow” column with a stable pole close to the imaginary
axis.

2. Using other configurations:.

- If an increase in distillate flow, i.e., decreasing yp, results in increased reflux, the operat-
ing point will be unstable with the L,,V-configuration. Similarly, if boilup increases when
bottoms flow is increased the operating point will be unstable with the L, V-configuration.

Effect of column design. The methanol-propanol column that we have studied in
this paper is not optimally designed for the product compositions of operating point 111
in Table 3.2. In fact it is doubtful that the column would be unstable when optimally
designed as the internal flows then would be significantly smaller. This is probably true for
many separations, i.e., an optimally designed column will be open-loop stable. However,
few industrial columns are operated close to an optimal operating point. One reason is that
the desired compositions will change after the column is built. In addition, many operators
prefer to use high internal flows (over-purification) in order to assure that specifications
are kept when disturbances enter the column. It is therefore likely that many industrial
columns may have problems with open-loop instability. The fact that this has not been
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reported previously is probably due to the fact that open-loop instability has been believed
to be impossible, and problems have therefore been explained by other means.

3.9 Conclusions

1. Two-product distillation columns operating with reflux and boilup as independent
inputs may be open-loop unstable with a single right half plane pole. Two different
effects may cause the instability:

e Possible singularities in the transformation between the actual input units and
the molar units which determine separation.

e Possible singularities between molar flows and compositions due to interactions
through the material and energy balance.

In both cases the probability of instability is increased with increased internal flows.

2. An unstable operating point may be stabilized by use of one-point control provided
the bandwidth of the controller is sufficiently high, that is, if the measurement delay
is sufficiently small. If an operating point becomes closed-loop unstable due to a too
low bandwidth, the column may go into a stable limit cycle provided there exists
stable solutions above and below the unstable solution.

3. The presence of open-loop instability will worsen the performance of the closed-loop
system. This will become more marked as the deadtime in the system is increased.

4. Distillation columns operating with distillate flow and boilup as independent vari-
ables may have unstable operating points if the condenser level control is not suffi-
ciently tight. The instability will in this case correspond to a Hopf bifurcation, that
is, a pair of complex conjugate eigenvalues cross the imaginary axis and a stable
limit cycle appears. A prerequisite for instability with this configuration is that the
operating point is unstable with reflux and boilup as independent variables.
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APPENDIX. Simplification of the energy balance.
The static energy balance on a single tray may be written (no external heating or

cooling)
ViaHY, + LipnHY, —ViHY — LHF + FH =0 (3.41)

Here subscript ¢ denotes tray-number (reboiler is tray 1), H V and HT denotes vapor and
liquid enthalpies respectively and HF feed enthalpy.

As reference state for enthalpies we select pure components as saturated liquids. Then,
under the assumptions of no heat of mixing, equal heat capacities for the components and
linear boiling point curve we get HY = 0 on all trays (this is a common assumption in
distillation which yields "constant molar flows” if we in addition assume the same heat
of vaporization for all components.) Also assume that the feed is saturated liquid so that
HF =0. With these assumptions the energy balance (3.41) becomes

VAH" = VioyAH! ;AH™ = HY (3.42)
An overall static energy balance then yields

Ve AHY? = ViAH™ (3.43)

NOMENCLATURE (see also Figure 3.1)

A - State matrix of distillation column

B - bottoms flow (kmol/min)

¢ - controller

D - distillate flow (kmol/min)

F - feed rate (kmol/min)

g - process transfer function

HF - enthalpy of feed (kJ/mol)

HY - saturated liquid enthalpy (kJ/mol)

HY - saturated vapor enthalpy (kJ/mol)

AHY? - (= HY — HT) heat of vaporization (for mixture)

Kum, - condenser level control gain

kyiu - steady-state gain from input u; to output y with u,u,-configuration.
L - reflux flow rate (kmol/min)

LHP - left half plane

M - molecular weight, usually of top product (kg/kmol)

M, - pure component molecular weight of most volatile component (kg/kmol)
M;, - pure component molecular weight of least volatile component (kg/kmol)
My, - tray liquid holdup (kmol)

Mp - condenser holdup (kmol)

Mgp - reboiler holdup (kmol)

N - no. of theoretical stages in column

Nr - feed stage location (1-reboiler)

P - maximum allowed peak on sensitivity function

p - right half plane pole (min~?)
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@B - heat input to reboiler

Qp - heat removal in condenser

gF - liquid fraction in feed

RHP - right half plane

S - sensitivity function

V - boilup from reboiler (kmol/min) (determined indirectly by heating Q)
Vi - vapor flow to condenser (kmol/min)

zp - mole fraction of most volatile component in bottom product

x; - mole fraction of most volatile component at tray ¢

yp - mole fraction of most volatile component in distillate (top product)
yr - mole fraction of most volatile component in V.

z - right half plane zero (min™!)

zp - mole fraction of most volatile component in feed

Greek symbols

a= (l'yi;/rli—r.‘) - relative volatility (binary mixture)

Ai(A) - i'th eigenvalue of A.

Amaz = max; |Ai(A)]- maximum eigenvalue = dominant pole
pt - structured singular value

& - maximum singular value

teL - required closed-loop time constant (min)

64 - deadtime (min)

w - frequency (min~!)

Subscripts

w - flow rate in kg/min

H - least volatile component
L - most volatile component
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