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Abstract

Dynamic Matrix Control (DMC) is based on two as-
sumptions which are limiting the feedback perfor-
mance of the algorithm. The first assumption is that
a stable step response model can be used to represent
the plant. The second assumption is that the differ-
ence between a measured and a predicted output can
be modeled as a step disturbance acting on the output.

We highlight the DMC limitations and show that a
Model Predictive Control (MPC) algorithm based on
an observer does not suffer from these limitations.

1 Introduction

Dynamic Matrix Control (DMC) has been successfully
used in industry for more than a decade. Several au-
thors have reported improved control performance by
use of DMC as compared to “traditional” control al-
gorithms ({1], [2]). DMC allows setpoint changes to
be “announced” in advance and it facilitates feedfor-
ward and constraint handling [2]. These properties
do naturally lead to improved performance. However,
the feedback properties of a DMC controller are lim-
ited by two very restrictive assumptions made in the
algorithm. It is assumed that: :

A1l A stable step response model can be used to rep-
resent the plant.

A2 The difference between a measured and a pre-
dicted output can be modeled as a step distur-
bance acting on the output.

Lee et al. [4] have recently shown that uncon-
strained DMC is equivalent to linear quadratic opti-
mal output feedback, under the assumption of inte-
grated white noise disturbances at the output and no
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measurement noise. They also demonstrate how to
represent an unstable plant by use of a step response
model.

In this paper we study unconstrained DMC, but
our results do carry over to the general case with con-
straints. We use the results from Lee et al. [4] to
point out the assumptions made in DMC and to show
that they lead to the following limitations in terms of
feedback performance:

L1 The sampling interval is determined by the (dom-
inant) time constant of the plant and by com-
puter hardware, although it should be deter-
mined by the high frequency behavior of the
plant or by constraints in the measurement de-
vices.

L2 Poor performance for “ramp-like” disturbances
(on the outputs). In particular, this occurs for
input disturbances for plants with large time
constants.

L3 Poor performance for plants with strong interac-
tions.

In addition, there is the obvious limitation that
the plant has to be stable. In this paper, we illus-
trate these limitations, and also discuss how we may
reformulate the algorithm to avoid them.

92 Model Predictive Control

A detailed description of MPC is not in the scope of
this paper, but we do present some of the basic con-
cepts and ideas. Readers not familiar with MPC are
recommended to consult for instance Garcia et al. [3].
The content of this section is presented in more detail
by Lee et al. [4].

2.1 The DMC Algorithm

We restrict this presentation to a single input single
output system in order to make it somewhat simpler.



j(k)

-’*’T}‘K o e — lant ~y’—1
| |
Yik+1)— Y(k) k)

S

Figure 1: Block diagram of a DMC controller.

We also exclude feedforward of the same reason, al-
though feedforward is a standard feature in DMC.

[n DMC [1] the plant is assumed to be stable and
the controller is using a step response model to predict
future behavior (assumption Al). Sending a unit step
input into the plant at time 0 gives a sequence of step
response coefficients:
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where the kP element is the output at time k. For a
stable plant this sequence will reach a constant value,
Sp = Sp4y1 = -, after a sufficiently large number
of coefficients. The step response model of the sys-
tem can be represented in the following standard state
space form. '
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The DMC algorithm is illustrated in Fig.1. The
model in Eq.(2) is used to compute #(k), and this pre-
dicted output is compared with the measured output,
(k). The assumed step disturbance (k) = §(k)) is
projected p steps into the future by

=0 ... 1" (7)

Y (k) is shifted one step forward by matrix Mp, the
first p rows of M. By adding these two projections we
get:

V(b +10k) = MY (k) + T [5(k) —9(k)]  (8)
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Figure 2: Block diagram of an observer based MPC
controller.

V(k + 1|k) is the predicted outputs if no future input
moves were made. M,Y (k) is the effect of past input
moves on future outputs and I [§(k) — §(k)] is the as-
sumed effect of unmeasured disturbances. Y(k+1{k)is
then compared with R(k+1]k), the desired output tra-
jectory. In unconstrained DMC the difference between
desired and predicted trajectories is finally multiplied
by Kmpc (defined below, Eq.10) and the new input
move Au(k) is found. In the constrained case, Ky pc
is exchanged with an optimization routine.

In this paper we use the following (QDMC) objec-
tive function {2]:

7= min (k11RO R HASUEDI)
©)

where T and A are weighting matrices and are usually
chosen to be diagonal. This objective function leads

to
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2.2 Observer Based MPC

In Fig.2 the well known state-observer state-feedback
controller is shown. The states of this controller are
updated by direct use of the measurement, through a
filter K, and not only by the input moves as in Fig.1.

Lee et al., [4] showed that if we use the step re-
sponse model from Eq.(2) in the structure of Fig.2
and make the same disturbance assumptions as in
DMC (a step disturbance acting on the output and
no measurement noise), then the optimal K = Z, and
the controllers in Fig.1 and Fig.2 are equivalent. This
means that a DMC controller is an optimal state ob-
server state feedback controller for these very special
assumptions. (Lee et al., [4]).

Lee et al. also showed how an unstable processes
can be represented by a step response model. A step



response model of an integrating system inay be writ-
ten on the form of Eq.(2) with M replaced by:
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The last row of M shows that the step response
has a constant slope at a sufficiently large n:

Sn - Sn—l = Sn+1 —_ Sn (13)
which gives

Sn+‘ = 25,. - Sn—l (14)

Assuming a ramp disturbance on the output and

white measurement noise, leads to an observer with
the optimal K:

o - O

K=f+f (15)

n-1

where f; and fy are found from a Riccati equation.
However, [4] suggest that fo may be used as a tun-
ing parameter, reflecting the relative size of noise and
ramp disturbance, and fy computed from

fi=2—fa—2 1-fa (16)

This choice of f, and fy gives an observer with real
eigenvalues and a filter K close to the optimal one.
The advantage with this method is that K is found
without solving a Riccati equation.

Both the controller in Fig.1 and Fig.2 may use
a state space representation which is not based on
the step response model but on the “A,B,C and D”-
matrices. We will use «“DMC” to denote a step re-
sponse based controller of the form in Fig.1. “DM-
Css” denotes that the “A,B,C,D” representation 1s
used. With “MPCi” we will mean an observer based
controller with an integrating step response model.
«MPCss” denotes an observer based controller with
the “A,B,C,D” representation.

3 Example Processes

SISO example
We use a simple plant described by the following con-
tinuous first order plus dead time model.

P(s) fe .—100—- i

17
005+ 1. (17)

Note that the dominant time constant is much larger
than the time delay. We do not claim this to be a

typical plant controlled by DMC. Our reason for using
it is simply that it is highlighting the limitations with
the algorithm.
MIMO example

The multivariable example process is a distillation col-
umn. The model is from Skogestad and Morari [7] and
is denoted “column A” in their paper. The column is
described by the following equation:
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where g1 (s) expresses the liquid flow dynamics.
() - (19)
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Reflux, L, and boilup, V, are manipulated inputs, top
composition, ¥, and bottom composition, g, are
controlled outputs. We use the following parameter
values; g13 = 0.878,912 = —0.864,g21 = 1.082,922 =
1.096, 7y = 194 min, T2 = 15 min, § = 1 min. 0, =
2.46 min and nr=>5. Skogestad and Morari [7] do not
include any specified delays in their model, instead
they use a norm bounded uncertainty description to
cover the effect of delays and other unmodeled high
frequency dynamics. In Eq.(18) we assume the delays
to be known and equal to 1 minute for each transfer
function. We do this only because known delays fit
better into the MPC framework.
Simulations

In the simulations we use as “plant”, a discrete version
of Eq.17/18 with sampling time equal to 0.1 minutes.
The sampling time of the controller and its internal
model (or observer) is denoted AT. Unless otherwise
stated we shall use a Kypc tuned for dead beat con-
trol, i.e. there is no penalty on input moves (F = 1,
A=0,m=p=2) and AT = 1. We have chosen this
tuning for two reasons; it generates clear and illustra-
tive time responses; it gives maximum feedback gain
for a given AT.

4 Limitations of DMC

4.1 Limitation 1: Poor bandwidth if
large dominant time constant

DMC is using a stable step response model to rep-
resent the plant (assumption Al). In practice this
representation may cause problems because sometimes
an excessive number of coefficients is needed for good
performance, but of computational reasons, there is a
practical limit on the maximum number of coefficients
that can be used.

Consider the SISO model in Eq.17. The effect of
truncation error is demonstrated in Fig.3. The trun-
cated step response causes an erroneous prediction n
sampling intervals after the disturbance occurred. The
error in this simulation is so large that it eventually
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Figure 3: Response to a unit step disturbance at t =
10, acting on y. Solid curve: DMCss which gives no
truncation; Dashed curve: DMC with a step response

model truncated at n = 30.
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Figure 4: Response to a unit step at k = 10 acting on
the output (solid curve) and the input (dashed curve),
DMCss used in both simulations.

will lead to instability. This shows that it is necessary
that S, ~ Sn+1 when a stable step response model is
used to represent the plant.

An other requirement for good performance is that
the sampling time, AT, is 5 to 10 times shorter than
the desired closed loop time constant. The distillation
column in Eq.18 has a large dominant time constant
(r; = 194 min). In order to achieve a closed loop time
constant of 20 min a sampling interval of not more
than 4 min is required. This would demand about 150
step response coefficients, as compared to 30 which is
commonly used in DMC.

The conclusion is that a stable step response model
imposes a tradeoff between truncation error and sam-
pling time. Since the truncation error can not be
too large we have to accept infrequent sampling, and
thereby the closed loop bandwidth is determined by
the open loop dominant time constant.

4.2 Limitation 2: Poor response for
ramp-like disturbances

The DMC algorithm is based on the assumption that
unmeasured disturbances act as steps on the outputs
(assumption A2). Figure 4 shows the responses for
the SISO process (Eq.17). The output disturbance
(solid curve) is rejected in one sampling interval, as
expected since the disturbance is in accordance with
the assumption (A2) and we are using a dead beat
controller. However, the response to the input dis-
turbance (dashed curve) is very sluggish. Remember
that a dead beat controller gives the highest feedback
gain of any choice of T', A, p and m, and the response
can thereby not be improved by a different tuning.
Rather, this sluggish response is an effect of the dis-
turbance assumption built into the predictor part of
the algorithm.
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Figure 5: Response to a step disturbance acting on yp

at k = 10. DMCss with T = 100+, A =1, m =5,
— 10 and AT = 1 is used. Solid curves: No input

uncertainty. Dashed curves: 20% input uncertainty.

4.3 Limitation 3: Poor response for in-
teractive MIMO plants

In this section we show that there are situations in
which a DMC controller does not perform well even if
the disturbance actually is a step acting on the out-
puts.

There is always a certain mismatch between a real
process and a model. The mismatch is caused not
only by uncertain model parameters or model struc-
ture, but also by uncertainty in actuators and mea-
surement devices. So although we assume that the
actual model is perfect, there will still be some uncer-
tainty. MIMO systems, as opposed to SISO systems,
introduce a special problem here because the gain of
a multivariable process does not only vary with fre-
quency, but also with “direction”. If a plant is ill-
conditioned irrespectively of scaling, then the control
performance is strongly affected of input uncertainty,
especially if the controller is trying to invert the plant
[8]. The DMC controller is such a controller, especially
if the penalty weight on input moves is low. Since
there always is some input uncertainty, it should be
clear that a DMC controller is potentially bad when
used with an ill-conditioned plant.

4.3.1 Effect of Input Uncertainty

We use the distillation model in Eq.18. In the
simulations with uncertainty we use AlLactual =
1.2A Leomputed and AVactual = 0-8Avcomputed~

Responses to a step disturbance acting on yp at
E = 10 are shown in Fig.5. Uncertain inputs leads to
extremly sluggish disturbance rejection although the
disturbance is in accordance with the DMC distur-
bance assumption. The reason to this is that the ac-
tual input moves do not have the predicted effect on
the outputs since the prediction is based on computed
and not actual input moves.

This can also be demonstrated in a plot of the sin-
gular values of the sensitivity function as a function
of frequency. Such a plot is shown in Fig.6. The solid
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Figure 6: Sensitivity function vs. frequency for the

DMC controller. Solid curves: No input uncertainty.
Dashed curves: 20% input uncertainty.

curves (no uncertainty) lie close to each other, which
shows that the sensitivity function is well-conditioned.
Since the plant in it self is ill-conditioned we can con-
clude that the controller is compensating for the direc-
tionality of the plant. Such a controller is basically in-
verting the plant and the system should be sensitive to
input uncertainty. Indeed this is the case as seen from
the great difference between solid and dotted curves.
The damping is severely affected by the uncertainty.
The actual minimum damping, (Sactual), is less than
10% for frequencies over w = 0.002rad/min. This
means that it takes very long time to reject distur-
bances acting in the direction of the minimum damp-

ing.

4.4 Avoiding limitations 1 and 2

We have already stated that limitation 1 may be
avoided by using a state space model in the DMC algo-
rithm. With an observer based algorithm we may use
an tniegrating siep response model to represent a sta-
ble plant and thereby allow a short sampling interval.
The integrating model will give a large mismatch at
low frequencies, but at high frequencies the agreement
is good. With an observer based algorithm we may use
a high feedback gain to correct for the low frequency
mismatch. Such a correction can not be achieved with
the DMC algorithm due to the disturbance assump-
tion.

An observer based algorithm does also make it pos-
sible to avoid the step disturbance assumption which
is causing limitation 2. We will demonstrate this by
comparing the DMCss responses with responses from
MPCi and MPCss. We have also included a PI con-
troller to demonstrate the performance of a very sim-
ple controller. Figure 7 shows the responses to a unit
step input disturbance at k = 10. The MPCi con-
troller is using fa = 0.8 (Eq.15) and f3 is computed
using Eq.(16). MPCss is tuned for unit step input dis-
turbance, and is therefore giving dead-beat response.
The PI controller is tuned according to the Ziegler-
Nichols criteria (K. = 0.45 and 71 = 5.0). The in-
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Figure 7: Responses to a unit step input disturbance
at £ = 10. Solid curve: DMCss, Dotted curve:
MPCi, Dashed-dotted curve:MPCss, Dashed curve:
Pl-controller.
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Figure 8: Sensitivity function vs. frequency for the
observer based controller using an integrating step re-
sponse model and a filter for ramp disturbances acting
on plant outputs. Solid curves: No input uncertainty.

Dashed curves: 20% input uncertainty.

tention with this simulation is not to find “the best
simulation”, but to demonstrate that DMCss suffer
from limitation 2, while MPCi and MPCss do not.

4.5 Avoiding limitation 3

There are two different ways to deal with the problem
demonstrated in Fig.6:

1 Use a controller that does not correct for the direc-
tionality of the plant.

2 Increase the gain at those frequencies where the
damping is low.

Fig. 8 shows the sensitivity function for MPCi with
n=230, fo =[11] and f, from Eq.16. A quantitative
comparison of this plot and the plot in Fig. 6 is not
fair since they have different bandwidths and differ-
ent peak values for frequencies above the bandwidth.
However, a qualitative comparison is very illustrative.
MPCi is not insensitive to uncertainty. Instead it is
using a high gain at low frequencies to compensate for
the effect of uncertainty. If the plant had a high RGA
over all frequencies, i.e. was sensitive to input uncer-
tainty also at high frequencies, this approach could
not be used. Note that the nominal sensitivity func-
tion is well-conditioned for high frequencies but not
for low. The controller is trying to invert the plant,



but it does not succeed at low frequencies because of
model-plant-mismatch.

Simulations using DMC, MPCi and MPCss are in
agreement with the results obtained from sensitivity
plots.

5 Discussion

In this paper we have studied limitations of the
feedback properties of unconstrained DMC. We have
not explicitly considered constraints. However, con-
straints will only affect the optimization part of the
algorithm, Kppc will be replaced by a quadratic
(QDMC) or linear (LDMC) programming routine. All
the limitations are caused by the DMC predictor,
which means that they are present also in constrained
DMC (QDMC, LDMC), since these algorithms are us-
ing the same type of predictor.

In DMC the mismatch between measured and pre-
dicted outputs is modeled as a step disturbance acting
on the outputs. We have called this “the step distur-
bance assumption” although it is not really an assump-
tion. Instead it is imposed by the actual structure of
the algorithm and can not be avoided in DMC. This
means that DMC can not use knowledge about the
nature of unmeasured disturbances. Garcia and Mor-
shedi (1984/86) are not clear on this point. They say
that this “assumption” is made “in the absence of any
additional knowledge” of unmeasured disturbances, as
if there were a real option to choose another assump-
tion.

We use an observer based predictor in order to
avoid the limitations imposed by the step disturbance
assumption. This modification does only affect the
predictor part of the algorithm, and can therefore eas-
ily be incorporated in a controller which handles con-
straints. The other good properties with DMC, set-
point scheduling and feedforward, are also preserved
in the modification.

The observer may use a stable step response model,
an integrating step response model or a state space
model of the plant. If a stable step response model is
used, it will impose the same limitations on AT as in
the DMC structure.

There are some advantages with using a step re-
sponse model in the observer. The model is physi-
cally intuitive and gives a Kalman filter which also
can be intuitively understood. Even more important,
a “close-to-optimal” filter can be computed without
solving a Riccati equation. A step response model is
also easy to obtain from simple experiments.

The DMC algorithms in Cutler and Ramaker
(1979/80) (“original” DMC), Prett and Gillette
(1979/80) (DMC with least squares satisfaction of in-
put constraints), Morshedi et al. (1985) (linear pro-
gramming optimization, LDMC) and Garcia and Mor-
shedi (1984/86) (quadratic programming, QDMC) do
all compute Y(k + 1|k) as described above. That is,

they have the same prediction part as standard DMC.
The results in section 3 show the severe limitations
imposed by using this predictor.

6 Conclusions

The predictor part of the DMC algorithms is based on
the assumption that the difference between measured
and predicted outputs are caused by step disturbances
on the outputs. Essentially, what the predictor does
is to adjust the bias of the predicted outputs at each
sampling interval. This makes the predictor simple to
understand, but at the same time it seriously restricts
the prediction capabilities and thereby the overall con-
trol behavior. In contrast, with a Kalman filter the dif-
ference between measured and predicted outputs are
used to update all the states. This gives a much more
flexible algorithm, and the prediction capabilities, at
least when applied for control, may be markedly im-
proved.

Standard DMC uses a step response model of the
plant to predict the effect of past input moves on fu-
ture outputs. The control performance is degenerated
if this model is truncated.
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