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1 Introduction

Intuitively, it is obvious that if we have some information or insight about a physical system,
then this information should be used when deriving a model for the system. For example, we
may easily distinguish between extensive and intensive variables. Under certain conditions
this information may be used to derive what is is here called the “scaling” consistency rela-
tionship. One might expect that the idea of using consistency relations is straighforward and
in common use. However, this appears not to be the case. For example, although consistency
relations based on material balance constraints have been reported for distillation column
models, they do not seem to be in common use, and the scaling consistency relationship
mentioned above does not even seem to have been published before.

This paper adresses linear steady-state models. The first step in deriving such models
is to identify the set of independent variables. Next, the effect of small changes in these
independent variables on the dependent variables is sought. An example of a steady-state
model used for process control is

dy = gyuldul -+ gyquuQ (1)

where u; and u, are the independent variables, and y is some dependent variable. The
differentials dy, du; and dus denote small changes in these variables. The objective of this
paper is to derive consistency relationships between the steady-state gains g,,.

Models such as Eq.1 are also used in steady-state sensitivity analysis of processes. In this
case the gain g, might express the sensitivity of y (eg., equipment size or investment) with
respect to some design variable u (such as flow rate or product specification). Although it
is often referred to process control in this paper, it is implicitly understood that the results
apply to any steady-state model of the form in Eq.1.

Previous work on consistency relationships. Higgblom and Waller (1988) and Skogestad
and Morari (1987) have independently published consistency relationships based on 1) Ma-
terial balances, and 2) Variable transformations (change of independent variables). These
relationships were derived for distillation column models, but the ideas may of course be
applied more generally.

Scaling consistency relationship. This paper adresses a third and possibly even more
fundamental consistency relationsship which so far seems to have been overlooked. This
relationship is derived using physical insight about the difference between extensive and
intensive variables. Intensive variables, such as pressure and temperature, are point values
independent of the size of the system. Extensive variables, such as volume and mass, depend
on the size of the system in an additive way. This means that if two equal subsystems are
combined to form a new system, that is, if the original system is “scaled” by a factor two,
then the intensive variables are unchanged while the extensive variables are doubled. Using
this insight combined with Euler’s Theorem of homogeneous functions one is “out of nothing”
able to derive some quite interesting relationships. The derivation of these relationships is
very similar to that of the Gibbs-Duhem equation of thermodynamics.

Example 1. Consider the flash tank with heater in Fig.1 with independent variables F
(feed rate), z (feed composition) and @ (heat input). Pressure is assumed constant. Let y
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denote any dependent intensive variable, e.g., liquid composition, temperature or density.
The linear steady-state model becomes

dy = gyrdF + gy@dQ + gy.dz (2)

Imagine increasing the throughput (load) of the tank from 0 to its present steady-state value.
Furthermore, assume that the intensive variables of the system are kept unchanged during
this scaling of the extensive variables. Formally, we may integrate Eq.2 by increasing F' and
Q@ from 0 to F* and @Q*, while keeping y and z constant. We obtain the following scaling
consistency relationship between the gains, g, and g,q, for extensive variables

0=gyrF" + gyQQ" (3)

The superscript * to denote the steady-state value is omitted in the rest of the paper. There
are numerous applications of this relationship. For example, if we know the effect, g,r, of a
change in feed rate on y, then we may derive “for free” the effect, g,g, of a change in heat
input.

The scaling assumption is very common within chemical engineering. For example, when
establishing mass and energy balances for a flowsheet, one generally assumes that all streams
may be scaled without affecting the stream properties (intensive variables).

In the paper we use Euler’s theorem of homogeneous functions to show rigorously how
relationships such as (3) may be derived. We shall also review what consistency relationships
may be derived form material balances and variable transformations. Applications include
a mixer, a reactor and a distillation column.

2 Notation

Assume that the values of the independent variables, u;, uniquely determine the value of the
dependent variable y. Then

yzy(ul,ug,...,ui,...) (4)
We consider steady-state only, that is, time is not an independent variable. A small change
in the independent variables yield a new steady-state, and the change in the dependent
variable, dy, may be obtained as the total differential of y with respect to the independent

variables. 5 5
dy = @Y duy + 9 dug + ... (5)
ou ), Oug )~
Uj,j#1 Uj,j#2

In process control, the term “gains” is usually used to denote the partial derivatives in this
equation and we write
dy = gyu, dur + gyu,dus + . .. (6)

_ (9
= () )
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In process control the independent variables are usually denoted inputs and the dependent
variables are denoted outputs. Furthermore, the inputs u are usually divided into two classes,
namely manipulated inputs m and disturbances d. Note that the set of disturbances is often
fixed, while the set of manipulated inputs may vary depending on the control configuration.
When there are several inputs and outputs (u and y are vectors) the equations are more
compactly written on matrix form

dy = [G Ggldu = Gdm + G4dd (8)

The matrix, GG, belonging to the manipulated inputs, is denoted the gain matrix, and G is
denoted the disturbance gain matrix. With the notation in eqations 6 to 8 it may not be
clear what independent variables (u’s) were used when evaluating the gain. In some cases
we shall use a superscript on the gain to show explicitly the independent variables

U1uU2

gyu1 = gyu1 (9)

3 Previous work on consistency relationships

3.1 Consistency from variable transformations

The set of independent variables is not necessarily fixed, that is, the role of dependent and
independent variables may change. For example, recall the flash tank in Fig.1. In Case
1 we have feed flow F' and heat input () as independent variables, and vapor composition
y and liquid outflow F), as dependent variables. Another possible choice of independent
variables is F' and F}, (Case 2), with y and @) as dependent variables. Physically, this change
in independent variables may be realized by changing level control from Fj, (Case 1) to @
(Case 2). The effect of a change in, for example, F' on composition y will be entirely different
in these two cases, but these gains are related through consistency relationships.

Let u; and us be the independent variables, and assume that the effect of small changes
in these on the dependent variables y; and y, is known. We have

Iy oy

dy, = |z— | d — ] d 10
n= o) o o), o &
dyg = % du1 + % d’LLQ (11)

8u1 us 8’&2 u

or in process control notation

dyi = gndui + giadus (12)
dys = gaduy + gadusy (13)

(In terms of the tank example above we have for Case 1 u; = F,us = Q,y; =y and y, = F.)
Next, choose the independent variables to be u; and y, (Case 2). We then seek to find

oy oy,
— (=L 2 d 14
dy, <8u1 ) ., duy + <8y2 ) . Yo (14)
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or
dyr = guiduy + gr2dys (15)

How are these partial derivatives (gains) related to the ones in Eq. 12-13 ? Simple algebra
shows that the answer is

g1 = 911—912921/922 (16)
G12 = Gg12/920 (17)

Such variable transformation consistency relationships may also be obtained from more
systematic methods, for example, the Jacobian transformations used in thermodynamics
(eg., Callen, 1960, p.128).

The issue of variable transformations arises frequently in cases with stream splitting or
with control of levels (liquid holdup) and pressure (vapor holdup). The reason is that holdup
must be constant at steady state (no accumulation of mass), that is, we have to implicitly
assume that some variable is assigned to control the holdup. However, there may be several
options on how to do this, and the set of independent variables left for other purposes may
vary. This was illustrated in the tank example above where we in Case 1 assumed liquid level
to be controlled by liquid outflow F}, (possibly self-regulation) leaving @ as an independent
variable, and in Case 2 assumed level to be controlled by heat input @ leaving Fy, as an
independent variable. A similar situation occurs in distillation columns where there are
five variables that may be manipulated (L, V,Vr, D, B, see Fig.2), but only two of these
are independent, because pressure, condenser level and reboiler level have to be constant at
steady-state.

Several authors have recently applied variable transformations to derive consistent models
for distillation columns. For example, Higgblom and Waller (1988), Skogestad and Morari
(1987) and Takamatsu et al. (1987) show how gains for one distillation configuration (select-
ing two independent variables from the set L, V, D and B, see Fig. 2) may be derived when
data for another configuration are known. Mijares et al. (1985) applied the method of Ja-
cobian transformations to compute the Relative Gain Array for various configurations. The
use of variable transformations is also implicit in the RGA-calculations of Shinskey (1967,
1984).

3.2 Consistency from material balances

One fundamental relationsship which often applies is the steady-state material balance. For
example, the steady-state overall material balance for the flash tank in Fig.1 is

Fo+F,=F (18)

and we have dFy + dFy = dF. This exact equation may be used to derive consistency
relations between the gain elements for the independent variables F, and Fy. For example,



partial differention with respect to F' yields 0Fy,/OF + 0Fy /OF =1, or

9r,F + 9ryr = 1 (19)

and differentiating (18) with respect to @ yields

9rQ + 9ryg =0 (20)

(here we have assumed that two independent variables, F' and @, do not affect each other;
mathematically 0F/0Q = grg = 0). We may also use the component material balance

FLZC+FVy:FZ. (21)

and we have Frdx + Fydy = —xdF;, — ydFy + d(Fz). This exact equation may be used to
derive consistency relations involving the gain elements for x and y. For example, partial
differentiation with respect to ) gives (assuming F', z and @) are independent variables)

Fr9:0 + Fvgyo = —T9r,.Q — Y9r,Q (22)

Skogestad and Morari (1987) and Higgblom and Waller (1988) have used component material
balances to derive similar consistency relationships for distillation column models.

Note that these material balance relationships involve only one input variable, and yield
consistency relationships between column elements of the gain matrices in Eq.(8). This
is fundamentally different from the scaling relationship derived in Eq.(3) which involves
only one output variable, resulting in consistency relationship between row elements in the
gain matrices. The consistency relationships based on variable transformations in Eq.(16)
yield relationships between gain matrices corresponding to different choices of independent
variables.

4 The Scaling Consistency Relationship

4.1 Euler’s Theorem of homogeneous functions

To understand the limitations of the scaling consistency relationships it is instructive to
study the derivation of Euler’s theorem. The derivation given here is taken from the book
on thermodynamics by Modell and Reid (1983). Consider a variable y which is a function of
the independent variables a, b, c, d.

y =1y(a,b,c, d) (23)

Differentiating yields the linear relationship

Oy oy oy Oy
dy= =] da+|= — ~ 24
Y <aa'> b,c,d “r <ab ) a,c,d “ N <ac> d,a,b e N <ad> c,a,b o ( )
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a, b are intensive variables and ¢, d are extensive variables. Assume that scaling the extensive
variables, ¢ and d, by a factor k, with a and b constant, results in an increase in y by a factor
k" (we see that h = 0 if y is an intensive variable and h = 1 if y is an extensive variable).
Mathematically, y is assumed to be homogeneous to the degree h in ¢ and d, that is

y(a,b, ke, kd) = K'y(a,b, c,d) (25)

Differentiating this expression and collecting terms making use of the fact that c¢,d and &
are independent variables yields Euler’s theorem (Modell and Reid, 1983):

9y dy
hoy = (_) c+ (_) d (26)
dc d,a,b ad c,a,b

fAd]

Note that Eq.26 may be obtained directly from Eq.24 by formally integrating Eq.24 from
zero to actual conditions with the intensive variables a, b constant (and also y constant if
h =0). In terms of process control notation Eq.26 becomes

h - y= Z Jyu.Ue (27)

where u, denotes the independent extensive variables. This equation will be referred to as
the scaling consistency relationship in the following. The implications of Eq.27 may be easier
to understand if relative changes in the variables are used. We have

oy/y

y intensive : %&: Bt J1ig =0 (28)
y extensive : uze ;i;Ze =1 (29)

4.2 Derivation of the Scaling Relationship

For a given case the scaling consistency relationship is derived using the following procedure:

Step 1. Identify the independent extensive variables.

Step 2. Physical assumption: Scaling all the independent extensive variables by a factor
k (with the independent intensive variables constant), scales all the dependent extensive
variables by the same factor £ and keeps all the dependent intensive variables constant.

Step 3. Formulate the physical insight from Step 1 and 2 mathematically and use Euler’s
Theorem to derive the consistency relationship (Eq.27).

The key idea in Step 2 is that the properties of the system may be maintained when the
throughput is increased. The use of this method is best illustrated by examples as shown
below.

Note from the derivation of Eq.27 that the independent extensive variables must be truly
independent. Also note that all intensive variables (both independent and dependent) must
be constant when the independent extensive variables are scaled by a factor k. If there is an
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intensive variable which will vary, then we must introduce an additional extensive variable
to keep it constant in order to apply Euler’s Theorem.

One underlying assumption for Step 2 is that the “efficiency” of the system, which may be
viewed as an intensive variable, is unchanged. For example, in the mixing tank example we
must assume that the separator efficiency is unchanged when the load is increased. Similarly,
for a distillation column we must assume that the tray efficiency remains constant. This
assumption is generally satisfied if the data are obtained by simulations using a theoretical
model. However, if data are obtained from a real system this may not apply exactly.

5 Applications of the Scaling Relationship

5.1 Flash Tank with chemical reaction.

Example 1. Consider again the flash tank in Fig.1. We now include the possibility that the
approach to equlibrium (“efficiency”) may vary. This will be the case, for example, if there is
a chemical reaction in the liquid phase. We must then include an additional extensive variable
which we may adjust to keep the efficiency constant. We make the physical assumption that
the efficiency depends on the liquid residence time, 7, = V1, /F. We must then add the
liquid volume, V},, as an additional variable. We shall use the three-step procedure to obtain
consistency relations.

1. Independent extensive variables are F, () and V;, and the linear model becomes
dy = gyrdF + gydQ + gyv, dVi + - - (30)
1

where y is any dependent variable.

2. Physical assumption: Increasing the extensive variables F,(Q,V, by the same factor
keeps all intensive variables constant.

3. Using Eq.27 (or equivalently, integrate Eq.30 from zero to actual conditions) yields

h-y=gyrF + gyoQ + 9yv; Vi (31)
where h = 0 if y is an intensive variable and h = 1 if y is an extensive variable.

Consider two special cases:

Case 1. gyy, = 0. In this case the liquid residence time has no effect on the steady-state
operation and the product streams are in equilibrium. This is the case considered in the
introduction, where y was chosen to represent an intensive variable. Here, let y represent
the vapor flow, Fy,, which is an extensive variable. We derive the consistency relationship

9r, FF + gr,oQ = Fy (32)

!The additional terms which are indicated as dots in Eq.(30) are related to changes in the independent
intensive variables. For example, we will have a term g,.dz for the effect of changes in feed composition.
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or

(%)Q,z N (%)Ez =1 (33)

As a numerical example assume that the first term in Eq.33 is 0.8, that is, a 10% increase
in F' increases Fy, by 8% (neglecting nonlinear effects). Eq.33 then tells us that the second
term must be 0.2, that is a 10% increase in Q must increase Fy by 2%.

Case 2. (Q = 0. This is the case with no heat input. Let y denote an intensive variable,
for example, the fractional conversion. Eq.31 yields

0 0
( y/y> +< y/y ) 0 (34)
OF/F Viz ovy /vy, F
In words, this equation tells us that the effect of an increase in the feed rate F' by, say, 1%

is equivalent to a decrease in the volume V7, by 1%. This is of course no surprise since both
these changes correspond to a decrease in the residence time 7 = V,/F by 1%.

5.2 Blending system.

Ezample 2. Stephanopolous (1984, p. 502-503) considers the blending system shown in Fig.3.
Two streams with flow rates F; = 133.4 mol/h and F, = 66.6 mol/h are mixed to form a
product stream with flow rate F'. Let x1, z9, and z represent some property of these streams,
eg. density, mole fraction, temperature or pH. The linear steady-state model becomes

dr = gep dFy + gzrdFs + - - - (36)

Assume that the total material balance F' = F} + F5 applies. We then have dF' = dF; + dF>,
and the gains in (35) become

grr, = 1; grr, = 1 (37)

Now, assume we want to use F; and F» (inputs) to control F' and z (outputs) using

single loops. To decide on an appropriate pairing we shall compute the Relative Gain Array
(RGA) (Bristol, 1966). The relative gain between F and F; is defined as

\. = OF/0R)r _ grr
' @F/oFR).  gen

(38)

which is equivalent to (recall Eq.16):

-1 -1
Ay = (1 _ gFFzng1> _ (1 _ ng1> (39)

9FF, 9zF, gzF,

Stephanopolous approach. To compute the remaining two gains, one might expect that a
model of the blending process is needed. For example, Stephanopolous (1984) assumed
Z1, 9, T to represent mole fractions and used the steady-state component balance

Fz = F1l'1 + FQLEQ (40)
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to evaluate the relative gain numerically and obtained A;; = 0.60.

General approach. We shall now use the scaling consistency relationship to show that
the correct value is 0.67. The reason for the error in Stephanopolous is numerical round-
off errors. However, more importantly, we shall show that the value of the relative gain is
independent of what property x represents (that is, Eq.40 is not needed). We have

1. Independent extensive variables: F} and F5.

2. Physical assumption: Increasing F; and F; by the same factor keeps all intensive
variables constant.

3. The scaling relationship (Eq.27) yields for the intensive variable =

0 = nglFl + gIFQFQ (41)

Note that this relationship is derived without using any model of the blending process. Our
only assumption is that the blending property, z, is unaffected if both blending streams, F}
and Fy, are scaled equally. Inserting Eq.41 into Eq.39 yields

Mi=1+F/F)™ =F/F =067 (42)

Thus, the value of the relative gain between F and F is equal to Fy/F irrespective of what
property = represents. Consequently, if we use the rule that one should pair variables with
relative gains close to 1 (Bristol, 1966), one should use the larger stream to control the flow
rate of the blend and the smaller stream to control the property of the blend. This is indeed
consistent with most engineers intuition.

5.3 Distillation Column Control.

Consider the distillation column in Fig.2.

1. Assumption: Independent extensive variables are L,V and F. Here L is the reflux
rate, V' may represent boilup rate, heat input or steam rate (note that V here is a flow
or heat rate and not a volume), and F is the feed rate. This choice of independent,
variables is usually called the LV-configuration or LV -structure. The column model
is then given by

where the dots denote the independent intensive variables, e.g., zp,p, qr and N. The
linearized model becomes

dy = gi dL + g/ dV + gl dF + - - (44)

where y may represent, for example, the product flow rates D, B or the product com-
positions yp, xp.
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2. Physical assumption: Increasing L, V and F' by the same factor k£ keeps all intensive
variables constant.

3. The scaling consistency relationship Eq.27 yields

h-y=g L+g5V+g F (45)
If y is an intensive variable, for example, top compositions yp then Eq.45 yields

L 1%
gngF = _gyL[‘,/Lf - ggi‘,/vf (46)

or on matrix form for both top and bottom composition

L/F
gty = -Gg"v (VéF) (47)
where 1A% gLVF LV QLVL gLVV
_ () = (T ) s
o = () o ol )

This result tells us that we may compute the effect of a change in feed rate, if we know the
effects of changes in reflux and boilup. The result may seem trivial, but in fact seems to be
unknown in the literature. The following example shows that published data for the much
quoted Wood and Berry column does not satisfy these consistency relationships.

5.3.1 Numerical examples

Wood and Berry column example (Example 3). From pulse testing of an experimental col-
umn separating methanol and water the following gain data were obtained (Wood and Berry,

1973)
v (128 —18.9)
G _(6.6 ~19.4 (49)

Here yp and xp represent wt.% methanol in the products, L is the reflux rate, and V is the
steam rate to the reboiler. Data for compositions and flows at the nominal operation point
are given in Table I. Note that all the flows are in mass units. This means that although
the assumption of constant molar flows applies quite well to the methanol-water system, the
mass flows will vary through the column due to variations in mole weight. The reflux is not
saturated, but is heated to a constant temperature, which may be viewed as an additional
independent variable. However, since this is an intensive variable, Eq.47 still applies, and
we obtain the estimate of the feed gains

W (12.8 —18.9) (1.95/2.45) B (3.0) (50)
Ir =766 -194) \1.71/2.45) = \ 8.3
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These values should be compared with the experimental gains (Berry, 1973)

3.8

v

IF eop — <4.9) (51)
We see that the feed gain for yp is reasonably consistent, but the one for zp is not. Note
that the material balance consistency relationships, eg., Dgy,,r + B9z, = —(Yyp — T8)gpL

(similar to Eq.22) cannot be used to check consistency in this case since experimental data
for gpr, = (0D/OL)y is not given.

Simulation of Wood and Berry column (Example 4). Tray-by-tray simulations using the data
in Table I gave an almost exact match to the published steady-state data of Wood and
Berry. Tray temperatures were consistently about 1.5°C higher than reported, but otherwise
matched the experimental profile. The results were obtained using 8 theoretical stages, the
UNIQUAC equation to describe the non-ideal vapor-liquid equlibrium, and assuming the
enthalpy contents of the steam to be 2150 kJ/kg.

Steady-state gains were obtained numerically using a commercially available process sim-
ulator. In Tables II and IIT we summarize the results obtained by making increases in the
independent variables L,V and F of magnitudes 0.1% and 1.0%, respectively. The individ-
ual gain elements are quite similar for the two cases. However, the effect of nonlinearity
is more evident when checking consistency of the gains. We note that whereas the feed
gains obtained from small changes in the flows (Table II) are reasonably consistent, the ones
based on large changes are not. For example, for a 1% increase in feed rate the numerical
value of g, ,r was found to be 4.13, whereas the value obtained from the scaling consistency
relationship is only 0.64. Note that the gains are obtained from a simulation model where
the physical assumptions for the scaling consistency relationship hold exactly.

Another striking difference is that the relative gain for the two cases is 9.1 and -2.0,
respectively. The last value is obviously in error since it may be shown that the relative
gain for the LV-configuration should always be larger than 1 (Skogestad et al., 1990). For
comparison, the relative gain of the experimental gain matrix (Eq.49) is 2.0.

The results above clearly illustrate the difficulties in obtaining consistent steady-state
gains for distillation columns even when using an accurate simulation program. The results
may be improved, for example, by using two-sided difference approximations or by evaluating
the gains with D constant (to get a good estimate of the effect of changes in internal flows,
Skogestad, 1988). Of course, the difficulties in obtaining consistent gains from experiments
are even larger. Actually, the inconsistencies in the experimental gains found between Eqs.50
and 51, and the differences between experimental and simulated gains, are surprisingly small.

Waller et al. example (Example 5). This example is chosen because the authors specifically
state that the model has been reconciled to satisfy the material balance consistency rela-
tionships. From experiments on a 15 stage pilot plant column separating ethanol and water
Waller et al. (1988) obtained the following gains

dT,\ _ (—0.045 0.048\ [ dL —0.001
(dTM) N ( —-0.23  0.55 ) (dV) + ( —0.16 )dF (52)
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where T, and T74 are temperatures at selected trays in the column and V is the steam flow
to the reboiler. The nominal flow rates in kg/h are F' = 200, L=60 and V' = 72. Reflux
temperature is assumed constant. The gains were reconciled to satisfy the material balance
consistency relationships (similar to Eq.22) but they do not satisfy the scaling consistency
relationships: Using Eq.47 we derive

B (0.045-60/200 —0.048 - 72/200) B (—0.004) (53)
Ir =\ 0.23-60/200 — 0.55-72/200 ) — \ —0.13

which in relative terms is significantly different from the reported values of (_—0601061 )

5.3.2 Some distillation extensions

Unsaturated reflux. If the reflux temperature may vary due to subcooling then the overall
cooling duty @)p is no longer a dependent variable. It must then be added as a independent,
variable and the independent extensive variables become F, L,V and (Qp. In this case an
additional term g,q,Qp must be added to Eq.45 and the other gains must be evaluated
with @p constant. However, if the reflux temperature is kept constant (even though it may
be subcooled) then Qp is not an independent variable, and Eq.45 holds as dicussed in the
Wood and Berry example above.

More complex columns. If the column has a side stream (flow rate S) or an intermediate
cooler (duty Qs) then S and Qs must be added as an independent extensive variable, and
Eq.45 must be changed accordingly by adding the terms g,sS + gy0s@s-

Other control configurations. Depending on the control configuration a lot of other options
for independent variables exist. For example, if L is used for reboiler level control then
independent variables are D, V and F (DV-configuration), and a relationship similar to
Eq.45 is derived:

h-y=g5D+gV+agpF (54)
Another configuration that is proposed as a good choice for many columns is the RS-

configuration with /', R = L/D and S = V/B as independent variables. Since R and S
are intensive variables the consistency relationship becomes

h-y=guF (55)

For example, if y represents top composition, then Eq.55 says that (%%)R = 0. This results

simply says that product compositions are not affected by changes in feed rate provided all
flow ratios are kept constant.

Compositions as independent variables. This may be the case, for example, if a feedback
controller is used to manipulate L such that yp is kept at a desired value. We may then
view yp as an independent variable instead of L. The scaling relationship yields

_ (9% oy
(), v+ ().,
YD YD,
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A more extensive treatment of consistency relationships for distillation columns may be
found in Skogestad (1988).

6 Steady-state models and thermodynamics

It should be clear by now that there are a number of similarities between the results pre-
sented in this paper and those of classical thermodynamics. Surprisingly, no one seem to
have explicitly pointed out these similarities before. In both steady-state modelling and
thermodynamics we assume steady state conditions or equlibrium and postulate a set of in-
dependent variables. For example, a basic postulate of equilibrium thermodynamics is that
specifying temperature (7'), pressure (p) and the number of moles (n;) of each species (inde-
pendent variables) uniquely determines the state of the system (dependent variables). For
example, consider the Gibbs energy (G). We have

G = y({ni}7 T, P) (57)

where {n;} represents the set of mole numbers ny,ns,... ,n, and ¢ is the number of com-
ponents. This is the equivalence to Eq.4 and the equivalence to Eq.5 is the total differential

of G
oG oG

oG
i) T gn; spid po{ni} P ) 1niy

Variable transformations are very common in thermodynamics. Volume (V') is a dependent
variable when p, T" and n; are specified. However, we may want to use 7" and V' as independent

variables instead of T" and p. The partial derivatives in this case, for example (B—G) are

)y {n;}’
of course related to those in Eq.58 through relations identical to the ones derived prévii)usly
in Eq.16. A systematic method for this are the Jacobian transformations (eg., Callen, 1960,
p.128).

However, we should note that there are also important differences between thermody-
namics and steady state process control models. One is the laws of thermodynamics. These
imply that the partial derivatives in thermodynamics are usually important variables in
themselves. For example, Eq. 58 becomes

where S'is entropy and p; is chemical potential. On the other hand, in process control usually
only the numerical value of the partial derivatives (gains) are of interest. The powerful
method of Legendre transformations used in thermodynamics (eg., Modell and Reid, 1983,
p. 104) which forms the basis of the famous Bridgman tables, will therefore not generally
have its equivalence for process control models.

The counterpart to the scaling consistency relationship is the integrated form of the
Gibbs-Duhem equation. To show this consider Eq.(59). We know that G and n; are extensive
variables, while 7" and p are intensive variables. We also know from physical considerations
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that an increase in all n;’s by a factor k£ with T and p constant increases G by a factor k.
The scaling consistency relationship (27) yields

G = X;pin; (60)
Differentiation this equation and subtracting Eq.59 yields

which in fact is the Gibbs-Duhem equation of thermodynamics.

7 Discussion

If we use a model based on fundamental principles, such as material and energy balances,
to evaluate the exact steady-state gains, then these gains will automatically be consistent
and satisfy the scaling consistency relationship. Thus, the scaling consistency relationship
does not contain any new information in addition to the fundamental principles. Rather, the
advantage is that it gives an overall relationship, which the model equations, when combined,
have to satisfy. This overall relationship may be derived based on physical insight about the
extensive variables, and without detailed knowledge of the system. This is very similar to
the use of the Gibbs-Duhem consistency relationships of thermodynamics.

The results in this paper are limited to steady-state. The consistency relationships based
on steady-state material balances and the new scaling relationships cannot be extended to
the dynamic case. On the other hand, the consistency results for variable transformations,
e.g. Eq.16, can be extended if transfer functions are used instead of gains. However, this
requires the assumption of perfect control (or at least some information about the controller).
The reason is that a change in independent variables in a dynamic sense, physically must be
caused some change in the control structure.

One might expect that the simple consistency relations derived in this paper were in
common use. However, this is not the case as illustrated by examples based on i) the
most widely used textbook in process control (Stephanopolous, Example 2), ii) the most
commonly used model in process control (the Wood & Berry column, Example 3), and iii) a
paper (Waller et al., Example 5) where it is specifically stated that the data are consistent.
Using the scaling consistency relationship it was shown that all these models are inconsistent.

In general the scaling consistency relationship, (Eq.27), may be used for two purposes:

1. Check if the model is consistent.

2. If the model is known to be consistent, obtain “for free” gains for other independent
variables (eg., a change in feed flow).

In Case 1 above, if a given set of data does not satisfy the scaling consistency relationships
there are three possibilities:
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1. There is something wrong in the physical assumption (Step 2) such that the relation
does not apply.

2. The data are inconsistent due to nonlinearity in the process (the change made was too
large or the operating point has changed).

3. The data are inconsistent due to, for example, measurement error or numerical errors.

It may be necessary to obtain additional data to find out which is the cause of inconsis-
tency.

Obtaining consistent data from experiments is always very difficult. However, also steady-
state simulations may yield inconsistent data as shown in Example 4. The scaling rela-
tionships may be used to decide on a reasonable magnitude of the pertubations for the
simulations, and to check if the simulation model is correct.

It should be noted that even rather small errors in the individual gains may yield steady-
state models which are almost useless for control purposes. This was shown in the numerical
simulation of the Wood and Berry column (Example 4, Table IIT) where, because of non-
linearity, the gains obtained with “large” (1%) changes in the input variables, gave a gain
matrix with wrong signs in the RGA-matrix. Note that the scaling consistency relationship
indeed shows that the gains are inconsistent. Ignoring this relationship would in this case
lead to the use of an incorrect model which was almost useless for control purposes. For
example, if the incorrect gain matrix was used to select controller pairings the conclusion
would be the opposite of the correct.

Another application of consistency relationships is in robust control. Here we may want
to study the effect of variations in the gains. However, based on consistency relationships we
may know that the gains cannot vary independently. For example, Skogestad et al. (1988)
argue for distillation columns that the variations in the four elements of the gain matrix,
GV, are strongly coupled, and may be captured using a single pertubation. This information
may strongly reduce the conservativeness of the robustness analysis.

8 Conclusion

It has been shown that in many cases there exists a linearity in the direction of the extensive
variables, and the gains related to changes in extensive variables are not independent. Their
interdependence is given by the scaling consistency relationship

h-y= Z Gy, Ue (27)

Its derivation and use is similar to that of the Gibbs-Duhem equation of thermodynamics.
In general, when obtaining gains from simulations or numerical differentation there is
a balance between numerical accuracy and avoiding nonlinear effects. Use of consistency
relationships may help in obtaining a reasonable balance between these conflicting objectives,
or may point out the need to use higher numerical accuracy in the calculations, or to use
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a different technique for performing the linearization. To obtain consistent models from
inaccurate numerical or experimental data one should reconcile the gains subject to the
consistency constraints derived in this paper.
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9 Nomenclature

See also Eq.4-9.

Gyiu; = Gy = 9ij = (%)Uk - steady state gain (effect of small change in u; on y;)

h - integer variable which is 0 if y is intensive and 1 if y is extensive
u - independent variable

u, - independent extensive variable

y - dependent variable

Ay /Ui Vu . - . . :
s (99i/0)uz; _ relative gain between variables y; and u;.

A (6?/1'/6“]')%#1'
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Table I. Example 4. Data for simulation of Wood and Berry distillation column.

System Methanol-Water
UNIQUAC parameters -301.6449, 498.5938
Pressure (atm) 1.0

No. of theoretical stages, N 8

Feed stage, Np (1 is reboiler) 4

Feed composition, zr (wt.%) 46.5

Top composition, yp (wt.%) 96.0

Bottom composition, zp (wt.%) 0.5

Feed rate, F' (mass/time) 2.45

Distillate, D (mass/time) 1.18

Bottom product, B (mass/time) 1.27

Reflux, L (mass/time) 1.95

Steam @ 2150 kJ/kg, V' (mass/time)  1.71

Feed liquid fraction, ¢p 1.0

Saturated liquid reflux, total condenser
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Table II. Example 4. Simulations with small pertubations.

Gains obtained numerically by 0.1% inrease in L, V and F":

GLV — (20.20 —37.51)_ guV = (10.10)
492 -10.26)’ F 3.25
Relative gain:

)\11(GLV) = 91
Feed gain from scaling consistency relationship, Eq.47:

<o () - ()

Table ITI. Example 4. Simulations with large pertubations.

Gains obtained numerically by 1.0% inrease in L, V and F":

GLV—(19'77 —38.32)_ v (9.72)
~\599 —775) 97 T 413

Relative gain:
A1 (GPY) = =2.0
Feed gain from scaling consistency relationship, Eq.47:

o oy L/F)_(11.02>
97 =—G (V/F ~ o064
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Figure Captions

1. Figure 1. Flash tank with heater.
2. Figure 2. Two product distillation column.

3. Figure 3. Blending system.

21



