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PROCESS ENGINEERING AND DESIGN 

Consistency of Steady-State Models Using Insight about Extensive 
Variables? 

Sigurd Skogestad 
Chemical Engineering, University of Trondheim, NTH, N-7034 Trondheim, Norway 

Fundamental consistency relationships exist between the effect of changes in extensive variables 
under steady-state conditions. These relationships are derived by use of physical insight about scaling 
of extensive variables. The relationships may be used to obtain data for or to check consistency 
of linear steady-state models used in process control and design. The derivation and use of these 
relationships is very similar to that of the Gibbs-Duhem equation of thermodynamics. Surprisingly, 
these scaling consistency relationships seem be unknown in the chemical engineering community 
and examples demonstrate inconsistency in some widely used published models. 

1. Introduction 
Intuitively, it is obvious that if we have some information 

or insight about a physical system, then this information 
should be used when deriving a model for the system. For 
example, we may easily distinguish between extensive and 
intensive variables. Under certain conditions this infor- 
mation may be used to derive what is here called the 
“scaling” consistency relationship. One might expect that 
the idea of using consistency relations is straightforward 
and in common use. However, this appears not to be the 
case. For example, although consistency relations based 
on material balance constraints have been reported for 
distillation column models, they do not seem to be in 
common use, and the scaling consistency relationship 
mentioned above does not even seem to have been pub- 
lished before. 

This paper addresses linear steady-state models. The 
first step in deriving such models is to identify the set of 
independent variables. Next, the effect of small changes 
in these independent variables on the dependent variables 
is sought. An example of a steady-state model used for 
process control is 

(1) 
where u1 and u2 are the independent variables and y is 
some dependent variable. The differentials dy, dul, and 
du2 denote small changes in these variables. The objective 
of this paper is to derive consistency relationships between 
the steady-state gains gyu. 

Models such as eq 1 are also used in steady-state sen- 
sitivity analysis of processes. In this case the gain gw might 
express the sensitivity of y (e.g., equipment size or in- 
vestment) with respect to some design variable u (such as 
flow rate or product specification). Although it is often 
referred to process control in this paper, it is implicitly 
understood that the results apply to any steady-state 
model of the form in eq 1. 

Previous Work on Consistency Relationships. 
Haggblom and Waller (1988) and Skogestad and Morari 

dY = gyu, du1 + gy”* du2 

+This paper was originally presented at the 1989 AIChE AnnuaI 
Meeting under the title “The Gibbs-Duhem equation of process 
design and control”. 
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(1987) have independently published consistency rela- 
tionships based on (1) material balances and (2) variable 
transformations (change of independent variables). These 
relationships we& derived for distillation column models, 
but the ideas may of course be applied more generally. 

Scaling Consistency Relationship. This paper ad- 
dresses a third and possibly even more fundamental con- 
sistency relationship which so far seems to have been ov- 
erlooked. This relationship is derived by use of physical 
insight about the difference between extensive and in- 
tensive variables. Intensive variables, such as pressure and 
temperature, are point values independent of the size of 
the system. Extensive variables, such as volume and mass, 
depend on the size of the system in an additive way. This 
means that if two equal subsy tems are combined to form 
a new system, that is, if the o!iginal system is “scaled” by 
a factor of 2, then the intensive variables are unchanged 
while the extensive variables are doubled. Using this in- 
sight combined with Euler’s theorem of homogeneous 
functions, one is “out of nothing“ able to derive some quite 
interesting relationships. The derivation of these rela- 
tionships is very similar to that of the Gibbs-Duhem 
equation of thermodynamics. 

Example 1. Consider the flash tank with heater in 
Figure 1 with independent variables F (feed rate), z (feed 
composition), and Q (heat input). Pressure is assumed 
constant. Let y denote any dependent intensive variable, 
e.g., liquid composition, temperature, or density. The 
linear steady-state model becomes 

dY = gyp dF gyQ dQ + gyp dz (2) 

Imagine increasing the throughput (load) of the tank from 
0 to its present steady-state value. Furthermore, assume 
that the intensive variables of the system are kept un- 
changed during this scaling of the extensive variables. 
Formally, we may integrate eq 2 by increasing F and Q 
from 0 to Fc and Q*, while keeping y and z constant. We 
obtain the following scaling consistency relationship be- 
tween the gains, gyF and gyQ 

(3) 

The superscript * to denote the steady-state value is 
omitted in the rest of the paper. There are numerous 

0 = gyFF* + R,QQ* 
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3. Previous Work on Consistency Relationships 
3.1. Consistency from Variable Transformations. 

The set of independent variables is not necessarily fixed; 
that is, the role of dependent and independent variables 
may change. For example, recall the flash tank in Figure 
1. In case 1 we have feed flow F and heat input Q as 
independent variables, and vapor composition y and liquid 
outflow F L  as dependent variables. Another possible choice 
of independent variables is F and FL (case 2), with y and 
Q as dependent variables. Physically, this change in in- 
dependent variables may be realized by changing level 
control from F L  (case 1) to Q (case 2). The effect of a 
change in, for example, F on composition y will be entirely 
different in these two cases, but these gains are related 
through consistency relationships. 

Let u1 and u2 be the independent variables, and assume 
that the effect of small changes in these on the dependent 
variables y1 and yz is known. We have 

=-_? F ...... 

FL 

Figure 1. Flash tank with heater. 

applications of this relationship. For example, if we know 
the effect, g F, of a change in feed rate on y, then we may 
derive “for bee' the effect, gs, of a change in heat input. 

The scaling assumption is very common within chemical 
engineering. For example, when establishing mass and 
energy balances for a flowsheet, one generally assumes that 
all streams may be scaled without affecting the stream 
properties (intensive variables). 

In the paper we use Euler’s theorem of homogeneous 
functions to show rigorously how relationships such as eq 
3 may be derived. We shall also review what consistency 
relationships may be derived form material balances and 
variable transformations. Applications include a mixer, 
a reactor, and a distillation column. 

2. Notation 
Assume that the values of the independent variables, 

ui, uniquely determine the value of the dependent variable 
y. Then 

Y = Y(u1, ~ 2 1  *.., ui, *..I (4) 

We consider steady state only; that is, time is not an in- 
dependent variable. A small change in the independent 
variables yield a new steady state, and the change in the 
dependent variable, dy, may be obtained as the total 
differential of y with respect to the independent variables. 

dy = ($) dul + (2) du2 + ... (5 )  
1 uj,j+l au2 ujj*2 

In process control, the term ”gains” is usually used to 
denote the partial derivatives in this equation and we write 

dY = gyul  du1 + gyu,  dU2 + . e *  (6) 

where, for example 

(7) 

In process control the independent variables are usually 
denoted inputs and the dependent variables are denoted 
outputs. Furthermore, the inputs u are usually divided 
into two classes, namely, manipulated inputs m and dis- 
turbances d. Note that the set of disturbances is often 
fixed, while the set of manipulated inputs may vary de- 
pending on the control configuration. When there are 
several inputs and outputs (u and y are vectors), the 
equations are more compactly written in matrix form 

(8) 

The matrix, G, belonging to the manipulated inputs, is 
denoted the gain matrix, and Gd is denoted the disturbance 
gain matrix. With the notation in eqs 6-8 it may not be 
clear what independent variables (u’s) were used when 
evaluating the gain. In some cases we shall use a super- 
script on the gain to show explicitly the independent 
variables, for example 

dy = [G Gd] du = G dm + Gd dd 

PAY = gyu, (9) 

or in process control notation 
dY1 = g11 du1 + g12 du2 (12) 

dY2 = g21 du1 + g22 du2 (13) 
(In terms of the tank example above we have for case 1 
u1 = F, u2 = Q, y1 = y, and y2 = FL.) Next, choose the 
independent variables to be u1 and y2 (case 2). We then 
seek to find 

or 
dY1 = 811 du1 + 812 dYz (15) 

How are these partial derivatives (gains) related to the 
ones in eqs 12 and 13? Simple algebra shows that the 
answer is 

(16) 

812 = g12/g22 (17) 

Such variable transformation consistency relationships 
may also be obtained from more systematic methods, for 
example, the Jacobian transformation used in thermody- 
namics (e.g., Callen, 1960, p 128). 

The issue of variable transformations arises frequently 
in cases with stream splitting or with control of levels 
(liquid holdup) and pressure (vapor holdup). The reason 
is that holdup must be constant at steady state (no accu- 
mulation of mass); that is, we have to implicitly assume 
that some variable is assigned to control the holdup. 
However, there may be several options on how to do this, 
and the set of independent variables left for other purposes 
may vary. This was illustrated in the tank example above 
where we in case 1 assumed liquid level to be controlled 
by liquid outflow F L  (possibly self-regulation), leaving Q 
as an independent variable, and in case 2 assumed liquid 
level to be controlled by heat input Q leaving FL as an 
independent variable. A similar situation occurs in dis- 
tillation columns where there are five variables that may 
be manipulated (L, V, VT, D, B; see Figure 2), but only two 
of these are independent, because pressure, condenser 

811 = g11 - g1zg21/gz2 
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Figure 2. Two product distillation column. 

level, and reboiler level have to be constant at steady-state. 
Several authors have recently applied variable trans- 

formations to derive consistent models for distillation 
columns. For example, Hiiggblom and Waller (19881, 
Skogestad and Morari (1987), and Takamatsu et al. (1987) 
show how gains for one distillation configuration (selecting 
two independent variables from the set L, VI D, and B; see 
Figure 2) may be derived when data for another configu- 
ration are known. Mijares et al. (1985) applied the method 
of Jacobian transformations to compute the relative gain 
array for various configurations. The use of variable 
transformations is also implicit in the RGA calculations 
of Shinskey (1967, 1984). 
3.2. Consistency from Material Balances. One 

fundamental relationship that often applies is the 
steady-state material balance. For example, the steady- 
state overall material balance for the flash tank in Figure 
1 is 

FL + Fv = F (18) 
and we have dFL + dFv = dF. This exact equation may 
be used to derive consistency relations between the gain 
elements for the independent variables FL and Fv. For 
example, partial differentiation with respect to F yields 
aFL/aF + aFv/dF = 1, or 

(19) 

and differentiating eq 18 with respect to Q yields 
(20) 

(here we have assumed that two independent variables, 
F and Q, do not affect each other; mathematically aF/aQ 
= gFQ = 0). We may also use the component material 
b a 1 an c e 

FLx + Fvy = FZ (21) 
and we have FL CG: + FV dy = -xdFL - ydFv + d(Fz). This 
exact equation may be used to derive consistency relations 
involving the gain elements for x and y. For example, 
partial differentiation with respect to Q gives (assuming 
F,  z ,  and Q are independent variables) 

(22) 

Skogestad and Morari (1987) and HMgblom and Waller 
(1988) have used component material balances to derive 
similar consistency relationships for distillation column 
models. 

Note that these material balance relationships involve 
only one input variable and yield consistency relationships 

gF$ + gFvF = 1 

gFLQ + gFvQ = 0 

FdzQ + FVgyQ = -XgFLQ - YgFVQ 

between column elements of the gain matrices in eq 8. 
This is fundamentally different from the scaling relation- 
ship derived in eq 3 which involves only one output  var- 
iable, resulting in a consistency relationship between row 
elements in the gain matrices. The consistency relation- 
ships based on variable transformations in eq 16 yield 
relationships between gain matrices corresponding to 
different choices of independent variables. 

4. The Scaling Consistency Relationship 
4.1. Euler’s Theorem of Homogeneous Functions. 

To understand the limitations of the scaling consistency 
relationships, it is instructive to study the derivation of 
Euler’s theorem. The derivation given here is taken from 
the book Qn thermodynamics by Modell and Reid (1983). 
Consider a variable y which is a function of the inde- 
pendent variables a, b, c, and d. 

Y = y(a,b,c,d) (23) 
Differenting yields the linear relationship 

a, b are intensive variables and c, d are extensive variables. 
Assume that scaling the extensive variables, c and d ,  by 
a factor k, with a and b constant, results in an increase in 
y by a factor kh (we see tha h = 0 if y is an intensive 

matically, y is assumed to be homogeneous to the degree 
h in c and d;  that is 

y(a,b,kc,kd) = khy(a,b,c,d) (25) 
Differentiating this expression and collecting terms making 
use of the fact that c,  d ,  and k are independent variables 
yields Euler’s theorem (Modell and Reid, 1983): 

variable and h = 1 if y is an fl xtensive variable). Mathe- 

Note that eq 26 may be obtained directly from eq 24 by 
formally integrating eq 24 from zero to actual conditions 
with the intensive variables a and b constant (and also y 
constant if h = 0). In terms of process control notation 
eq 26 becomes 

h~ = Cgyu,ue (27) 

where ue denotes the independent extensive variables. 
This equation will be referred to as the scaling consistency 
relationship in the following. The implications of eq 27 
may be easier to understand if relative changes in the 
variables are used. We have 

u* 

aY /Y 
ue due / ue 

y intensive: E-=O 
Y 

y extensive: (29) 

4.2. Derivation of the Scaling Relationship. For a 
specific case the scaling consistency relationship is derived 
by use of the following procedure: 

Step 1. Identify the independent extensiue variables. 
Step 2. Physical assumption: Scaling all the inde- 

pendent extensive variables by a factor k (with the inde- 
pendent intensive variables constant) scales all the de- 
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pendent extensive variables by the same factor k and keeps 
all the dependent intensive variables constant. 

Step 3. Formulate the physical insight from steps 1 and 
2 mathematically and use Euler's theorem to derive the 
consistency relationship (eq 27). 

Note from the derivation of eq 27 that the independent 
extensive variables must be truly independent. ALSO note 
that all intensive variables (both independent and de- 
pendent) must be constant when the independent exten- 
sive variables are scaled by a factor k. If there is an in- 
tensive variable that will vary, then we must introduce an 
additional extensive variable to keep it constant in order 
to apply Euler's theorem. 

One underlying assumption for step 2 is that the 
"efficiency" of the system, which may be viewed as an 
intensive variable, is unchanged. For example, in the 
mixing tank example we must assume that the separator 
efficiency is unchanged when the load is increased. Sim- 
ilarly, for a distillation column we must assume that the 
tray efficiency remains constant. This assumption is 
generally satisfied if the data are obtained by simulations 
using a theoretical model. However, if data are obtained 
from a real system this may not apply exactly. 

5. Applications of the Scaling Relationship 
5.1. Flash Tank with Chemical Reaction. Example 

1. Consider again the flash tank in Figure 1. We now 
include the possibility that the approach to equilibrium 
("efficiency") may vary. This will be the case, for example, 
if there is a chemical reaction in the liquid phase. We must 
then include an additional extensive variable which we may 
adjust to keep the efficiency constant. We make the 
physical assumption that the efficiency depends on the 
liquid residence time, T~ = VL/F.  We must then add the 
liquid volume, VL, as an additional variable. We shall use 
the three-step procedure to obtain consistency relations. 

1. Independent extensive variables are F, Q, and VL, and 
the linear model becomes 

where y is any dependent variable. [The additional terms 
which are indicated as dots in eq 30 are related to changes 
in the independent intensive variables. For example, we 
will have a term g,, d t  for the effect of changes in feed 
composition.] 

2. Physical assumption: Increasing the extensive var- 
iables F, Q, and VL by the same factor keeps all intensive 
variables constant. 

3. Using eq 27 (or equivalently, integrate eq 30 from zero 
to actual conditions) yields 

hY = gyFF -k g,QQ + gyvLvL (31) 

where h = 0 if y is an intensive variable and h = 1 if y is 
an extensive variable. 

Consider two special cases: 
Case 1. gyVL = 0. In this case the liquid residence time 

has no effect on the steady-state operation and the product 
streams are in equilibrium. This is the case considered in 
the Introduction, where y was chosen to represent an in- 
tensive variable. Here, let y represent the vapor flow, Fv, 
which is an extensive variable. We derive the consistency 
relationship 

gFvFF gFvQQ = FV (32) 

or 

Figure 3. Blending system. 

As a numerical example, assume that the first term in eq 
33 is 0.8; that is, a 10% increase in F increases Fv by 8% 
(neglecting nonlinear effects). Equation 33 then tells us 
that the second term must be 0.2; that, is a 10% increase 
in Q must increase F, by 2%. 

Case 2. Q = 0. This is the case with no heat input. Let 
y denote an intensive variable, for example, the fractional 
conversion. Equation 31 yields 

In words, this equation tells us that the effect on y of an 
increase in the feed rate F by, say, 1% is equivalent to a 
decrease in the volume VL by 1%. This is of course no 
surprise since both these changes correspond to a decrease 
in the residence time T = VL/F by 1%. 

5.2. Blending System. Example 2. Stephanopolus 
(1984, pp 502-503) considers phe blending system shown 
in Figure 3. Two streams with flow rates Fl = 133.4 mol/h 
and F2 = 66.6 mol/h are mixed to form a product stream 
with flow rate F. Let xl ,  x2, and x represent some property 
of these streams, e.g., density, mole fraction, temperature, 
or pH. The linear steady-state model becomes 

dF = gFFl + gFFz d F 2  + (35) 

dx = gxFL ml + gxF, d F 2  + (36) 

Assume that the total material balance F = Fl + F2 applies. 
We then have dF = dF1 + dF2, and the gains in eq 35 
become 

(37) 

Now, assume we want to use Fl and F2 (inputs) to con- 
trol F and x (outputs) using single loops. To decide on an 
appropriate pairing we shall compute the relative gain 
array (RGA) (Bristol, 1966). The relative gain between 
F and F1 is defined as 

which is equivalent to (recall eq 16) 

Stephanopolous Approach. To compute the remain- 
ing two gains, one might expect that a model of the 
blending process is needed. For example, Stephanopolous 
(1984) assumed xl, x 2 ,  and x to represent mole fractions 
and used the steady-state component balance 

Fx = Flxl  + Fzx2 (40) 
to evaluate the relative gain numerically and obtained All 
= 0.60. 

General Approach. We shall now use the scaling 
consistency relationship to show that the correct value is 
0.67. The reason for the error in Stephanopolous is nu- 
merical round-off errors. However, more importantly, we 
shall show that the value of the relative gain is independent 
of what property x represents (that is, eq 40 is not needed). 
We have the following: 
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1. Independent extensive variables: Fl and F2. 
2. Physical assumption: Increasing F1 and Fz by the 

same factor keeps all intensive variables constant. 
3. The scaling relationship (eq 27) yields for the in- 

tensive variable x 

0 = gx#1 + gxF*Fz (41) 

Note that this relationship is derived without using any 
model of the blending process. Our only assumption is that 
the blending property, x ,  is unaffected if both blending 
streams, Fl and F,, are scaled equally. Inserting eq 41 into 
eq 39 yields 

All  = (1 + FZ/Fl) - l  = F 1 / F  = 0.67 (42) 
Thus, the value of the relative gain between Fl and F is 
equal to F1/F  irrespective of what property x represents. 
Consequently, if we use the rule that one should pair 
variables with relative gains close to 1 (Bristol, 1966), one 
should use the larger stream to control the flow rate of the 
blend and the smaller stream to control the property of 
the blend. This is indeed consistent with most engineers' 
intuition. 

5.3. Distillation Column Control. Consider the dis- 
tillation column in Figure 2. 

1. Assumption: Independent extensive variables are L, 
V, and F. Here L is the reflux rate, V may represent boilup 
rate, heat input or steam rate (note that V here is a flow 
or heat rate and not a volume), and F is the feed rate. This 
choice of independent variables is usually called the LV 
configuration or LV structure. The column model is then 
given by 

Y = Y(L,VJ,...) (43) 
where the dots denote the independent intensive variables, 
e.g., zF, p ,  q F ,  and N .  The linearized model becomes 

dy = gk l  dL + g,"f dV + g$ dF + ... (44) 

where y may represent, for example, the product flow rates 
D, B or the product compositions YD, xB. 

2. Physical assumption: Increasing L, V, and F by the 
same factor k keeps all intensive variables constant. 

3. The scaling consistency relationship eq 27 yields 
(45) 

If y is an intensive variable, for example, top composition 
YD, then eq 45 yields 

(46) 

or in matrix form for both top and bottom composition 

hy = gklL + gkfV + g$JF 

g$u& = - g L v -  L - LV V 
Y&F gY~vF 

dV = -GLv (i;) (47) 

where 

This result tells us that we may compute the effect of a 
change in feed rate, if we know the effects of changes in 
reflux and boilup. The result may seem trivial, but in fact 
it seems to be unknown in the literature. The following 
example shows that published data for the much-quoted 
Wood and Berry column do not satisfy these consistency 
relationships. 

5.3.1. Numerical Examples. Wood and Berry Col- 
umn Example (Example 3). From pulse testing of an 

Table I. Example 4. Data for Simulation of Wood and 
Berm Distillation Column 

system 
UNIQUAC parameters 
pressure,. atm 
no. of theoretical stages, N 
feed stage, NF (1 is reboiler) 
feed composition, zF, wt % 
top composition, p, wt % 
bottom composition, xB, w t  % 
feed rate, F, mass/time 
distillate, D, mass/time 
bottom product, B,  mass/time 
reflux, L,  mass/time 
steam at  2150 kJ/kg, V, mass/time 
feed liquid fraction, qF 
saturated liquid reflux, total condenser 

methanol-water 
-301.6449, 498.5938 
1.0 
8 
4 
46.5 
96.0 
0.5 
2.45 
1.18 
1.27 
1.95 
1.71 
1.0 

experimental column separating methanol and water, the 
following gain data were obtained (Wood and Berry, 1973) 

12.& -18.9 
GLv = (6.6 ' -19.4) 

(49) 

Here yD and xB represent wt  9% methanol in the products, 
L is the reflux rate, and V is the steam rate to the reboiler. 
Data for compositions and flows at the nominal operation 
point are given in Table I. Note that all the flows are in 
mass units. This means that although the assumption of 
constant molar flows applies quite well to the methanol- 
water system, the mass flows will vary through the column 
due to variations in mole weight. The reflux is not satu- 
rated, but is heated to a constant temperature, which may 
be viewed as an additional independent variable. However, 
since this is an intensive variable, eq 47 still applies, and 
we obtain the estimate of the feed gains 

12.8 -18.9 1.9512.45 
" =  - (6.6 -19.4)( 1.71l2.45) = (i::) (50) 

These values should be compared with the experimental 
gains (Berry, 1973) 

(51) 

We see that the feed gain for YD is reasonably consistent, 
but the one for xB is not. Note that the material balance 
consistency relationships, e.g., Dg,& + Bgxd = -& - 
xB)gDL (similar to eq 22) cannot be used to check con- 
sistency in this case since experimental data for &?,, = 
(dD/dL)v is not given. 

Simulation of Wood and Berry Column (Example 
4). Tray-by-tray simulations using the data in Table I gave 
an almost exact match to the published steady-state data 
of Wood and Berry. Tray temperatures were consistently 
about 1.5 "C higher than reported but otherwise matched 
the experimental profile. The results were obtained using 
eight theoretical stages, the UNIQUAC equation to de- 
scribe the nonideal vapodiquid equilibrium, and assuming 
the enthalpy contents of the steam to be 2150 kJ/kg. 

Steady-state gains were obtained numerically with a 
commercially available process simulator. In Tables 11 and 
I11 we summarize the results obtained by making increases 
in the independent variables L,  V, and F of magnitudes 
0.1 % and l.O%, respectively. The individual gain elements 
are quite similar for the two cases. However, the effect 
of nonlinearity is more evident when checking consistency 
of the gains. We note that whereas the feed gains obtained 
from small changes in the flows (Table 11) are reasonably 



Ind. Eng. Chem. Res., Vol. 30, No. 4, 1991 659 

were reconciled to satisfy the material balance consistency 
relationships (similar to eq 22), but they do not satisfy the 
scaling consistency relationships: Using eq 47 we derive 
8 F  = 

) = e:;:) (53) 
0.045 x 601200 - 0.048 x 72/200 ( 0.23 x 601200 - 0.55 x 72l200 

which in relative terms is significantly different from the 
reported values of ($:$’!. 

5.3.2. Some Distillation Extensions. Unsaturated 
reflux. If the reflux temperature may vary due to sub- 
cooling, then the overall cooling duty QD is no longer a 
dependent variable. It must then be added as a inde- 
pendent variable and the independent extensive variables 
become F ,  L, V ,  and QD. In this case an additional term 
gyhQD must be added to eq 45 and the other gains must 
be evaluated with QD constant. However, if the reflux 
temperature is kept constant (even though it may be 
subcooled), then QD is not an independent variable, and 
eq 45 holds as discussed in the Wood and Berry example 
above. 

More Complex Columns. If the column has a side 
stream (flow rate S) or an intermediate cooler (duty Qs), 
then S and Qs must be added as an independent extensive 
variable, and eq 45 must be changed accordingly by adding 
the terms SysS + gye,Qs. 

Other Control Configurations. Depending on the 
control configuration a lot of other options for independent 
variables exist. For example, if L is used for reboiler level 
control, then the independent variables are D ,  V and F 
( D V  configuration) and a relationship similar to eq 45 is 
derived: 

Table 11. Example 4. Simulations with Small 
Perturbations 
gains obtained numerically by 0.1% increase in L, V ,  and F: 

20.20 -37.51 
GLv (4.92 -10.26) ‘ OPLv = (:::) 

relative gain: 

Xl1(GLV)  = 9.1 
feed gain from scaling consistency relationship, eq 47: 

Table 111. Example 4. Simulations with Large 
Perturbations 
gains obtained numerically by 1.0% increase in L, V,  and I? 

19.77 -38.32 
GLv= (m -7.75) ; gkV = ( ::$ 

relative gain: 

Xl1(GLV)  = -2.0 
feed gain from scaling consistent relationship, eq 47: 

11.02 dV= 4Lv (z) =( 0.64 ) 
consistent, the ones based on large changes are not. For 
example, for a 1% increase in feed rate the numerical value 
of gxg was found to be 4.13, whereas the value obtained 
from the scaling consistency relationship is only 0.64. Note 
that the gains are obtained from a simulation model where 
the physical assumptions for the scaling consistency rela- 
tionship hold exactly. 

Another dtriking difference is that the relative gain for 
the two cases is 9.1 and -2.0, respectively. The last value 
is obviously in error since it may be shown that the relative 
gain for the LV configuration should always be larger than 
1 (Skogestad et al., 1990). For comparison, the relative 
gain of the experimental gain matrix (eq 49) is 2.0. 

The results above clearly illustrate the difficulties in 
obtaining consistent steady-state gains for distillation 
columns even when an accurate simulation program is 
used. The results may be improved, for example, by using 
two-sided difference approximations or by evaluating the 
gains with D constant (to get a good estimate of the effect 
of changes in internal flows; Skogestad, 1988). Of course, 
the difficulties in obtaining consistent gains from exper- 
iments are even larger. Actually, the inconsistencies in the 
experimental gains found between eqs 50 and 51, and the 
differences between experimental and simulated gains, are 
surprisingly small. 

Waller et al. Example (Example 5). This example 
is chosen because the authors specifically state that the 
model has been reconciled to satisfy the material balance 
consistency relationships. From experiments on a 15-stage 
pilot-plant column separating ethanol and water Waller 
et al. (1988) obtained the following gains: 

-0.045 0.048 dL 4 . 0 0 1  dF (52) (::) = (-0.23 0.55 )( dV) ‘(-0.16 ) 
where T4 and Ti4 are temperatures at selected trays in the 
column and V is the steam flow to the reboiler. The 
nominal flow rates in kg/h are F = 200, L = 60, and V = 
72. Reflux temperature is assumed constant. The gains 

(54) 

Another configuration that is proposed as a good choice 
for many columns is the R S  configuration with F,  R = L I D ,  
and S = V / B  as independent variables. Since R and S are 
intensive variables, the consistency relationship becomes 

hY = g ; w  (55) 

For example, if y represents top composition, then eq 55 
days that (dyD/dF)R,S = 0. This result simply says that 
product compositions are not affected by changes in feed 
rate provided all flow ratios are kept constant. 

Compositions as Independent Variables. This may 
be the case, for example, if a feedback controller is used 
to maipulate L such that y D  is kept at a desired value. We 
may then view y D  as an independent variable instead of 
L .  The scaling relationship yields 

A more extensive treatment of consistency relationships 
for distillation columns may be found in the paper by 
Skogestad (1988). 

6. Steady-State Models and Thermodynamics 
I t  should be clear by now that there are a number of 

similarities between the results presented in this paper and 
those of classical thermodynamics. Surprisingly, no one 
seem to have explicitly pointed out these similarities be- 
fore. In both steady-state modeling and thermodynamics 
we assume steady-state conditions or equilibrium and 
postulate a set of independent variables. For example, a 
basic postulate of equilibrium thermodynamics is that 
specifying temperature (77, pressure (p), and the number 
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of moles (ni) of each species (independent variables) 
uniquely determines the state of the system (dependent 
variables). For example, consider the Gibbs energy (G). 
We have 

G = y(IniLT,P) (57) 
where {nil represents the set of mole numbers n,, n2, ..., n,, 
and c is the number of components. This is the equiva- 
lence to eq 4, and the equivalence to eq 5 is the total 
differential of G: 
dG = 

Variable transformations are very common in thermody- 
namics. Volume (V) is a dependent variable when p, T, 
and ni are specified. However, we may want to use T and 
V as independent variables instead of T and p. The partial 
derivatives in this case, for example (dG/dT)v,iniI, are of 
course related to those in eq 58 through relations identical 
with the ones derived previously in eq 16. A systematic 
method for this are the Jacobian transformations (e.g., 
Callen, 1960, p 128). 

However, we should note that there are also important 
differences between thermodynamics and steady-state 
process control models. One is the laws of thermodynam- 
ics. These imply that the partial derivatives in thermo- 
dynamics are usually important variables in themselves. 
For example, eq 58 becomes 

dG = C p i d n i - S d T +  Vdp  (59) 
I 

where S is entropy and pi is chemical potential. On the 
other hand, in process control usually only the numerical 
value of the partial derivatives (gains) are of interest. The 
powerful method of Legendre transformations used in 
thermodynamics (e.g., Model1 and Reid, 1983, p 104), 
which forms the basis of the famous Bridgman tables, will 
therefore not generally have its equivalence for process 
control models. 

The counterpart to the scaling consistency relationship 
is the integrated form of the Gibbs-Duhem equation. To 
show this consider eq 59. We know that G and ni are 
extensive variables, while T and p are intensive variables. 
We also know from physical considerations that an increase 
in all n/s by a factor k with T and p constant increases 
G by a factor k. The scaling consistency relationship eq 
27 yields 

(60) 
1 

Differentiating this equation and subtracting eq 59 yields 
S d T  - V dp + E n i  dpi = 0 (61) 

which in fact is the Gibbs-Duhem equation of thermody- 
namics. 

7. Discussion 
If we use a model based on fundamental principles, such 

as material and energy balances, to evaluate the exact 
steady-state gains, then these gains will automatically be 
consistent and satisfy the scaling consistency relationship. 
Thus, the scaling consistency relationship does not contain 
any new information in addition to the fundamental 
principles. Rather, the advantage is that it gives an ouerull 
relationship, which the model equations, when combined, 
have to satisfy. This overall relationship may be derived 
on the basis of physical insight about the extensive vari- 

1 

ables and without detailed knowledge of the system. This 
is very similar to the use of the Gibbs-Duhem consistency 
relationships of thermodynamics. 

The results in this paper are limited to steady state. The 
consistency relationships based on steady-state material 
balances and the new scaling relationships cannot be ex- 
tended to the dynamic case. On the other hand, the 
consistency results for variable transformations, e.g., eq 
16, can be extended if transfer functions are used instead 
of gains. However, this requires the assumption of perfect 
control (or at least some inforhation about the controller). 
The reason is that a change in independent variables, in 
a dynamic sense, physically must be caused by some 
change in the control structure. 

One might expect that the simple consistency relations 
derived in this paper were in common use. However, this 
is not the case as illustrated by examples based on (i) the 
most widely used textbook in process control (Stephano- 
poious, example 2), (ii) the most commonly used model in 
process control (the Wood and Berry column, example 3), 
and (iii) a paper (Waller et al., example 5 )  where it is 
specifically stated that the data are consistent. By use of 
the scaling consistency relationship it was shown that all 
these models are inconsistent. 

In general the scaling consistency relationship, eq 27, 
may be used for two purposes: 

1. It is used to check if the model is consistent. 
2. If the model is known to be consistent, it is used 

obtain “for free” gains for other independent variables (e.g., 
a change in feed flow). 

In case 1 above, if a given set of data does not satisfy 
the scaling consistency relationships, there are three 
possibilities: 

1. There is something wrong in the physical assumption 
(step 2) such that the relation does not apply. 

2. The data are inconsistent due to nonlinearity in the 
process (the change made was too large or the operating 
point has changed). 

3. The data are inconsistent due to, for example, mea- 
surement error or numerical errors. 

It may be necessary to obtain additional data to find out 
which is the cause of inconsistency. 

Obtaining consistent data from experiments is always 
very difficult. However, also steady-state simulations may 
yield inconsistent data as shown in example 4. The scaling 
relationships may be used to decide on a reasonable 
magnitude of the perturbations for the simulations and 
to check if the simulation model is correct. 

It should be noted that even rather small errors in the 
individual gains may yield steady-state models that are 
almost useless for control purposes. This was shown in 
the numerical simulatinon of the Wood and Berry column 
(example 4, Table 111) where, because of nonlinearity, the 
gains obtained with “large” (1%) changes in the input 
variables, gave a gain matrix with wrong signs in the RGA 
matrix. Note that the scaling consistency relationship 
indeed shows that the gains are inconsistent. Ignoring this 
relationship would in this case lead to the use of an in- 
correct model that was almost useless for control purposes. 
For example, if the incorrect gain matrix was used to select 
controller pairings, the conclusion would be the opposite 
of the correct. 

Another application of Consistency relationships is in 
robust control. Here we may want to study the effect of 
variations in the gains. However, on the basis of con- 
sistency relationships we may know that the gains cannot 
vary independently. For example, Skogestad et al. (1988) 
argue for distillation columns that the variations in the four 
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X, = (ayi/auj)uk,j/(ayi/auj)y~,i = relative gain between variables 
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elements of the gain matrix, QV, are strongly coupled and 
may be captured by using a single perturbation. This 
information may strongly reduce the conservativeness of 
the robustness analysis. 

8. Conclusion 
It has been shown that in many cases there exists a 

linearity in the direction of the extensive variables, and 
the gains related to changes in extensive variables are not 
independent. Their interdependence is given by the 
scaling consistency relationship 

h~ = Cgyu,ue (27) 

Its derivation and use are similar to those of the Gibbs- 
Duhem equation of thermodynamics. 

In general, when obtaining gains from simulations or 
numerical differentiation, there is a balance between nu- 
merical accuracy and avoiding nonlinear effects. Use of 
consistency relationships may help in obtaining a reason- 
able balance between these conflicting objectives, or may 
point out the need to use higher numerical accuracy in the 
calculations or to use a different technique for performing 
the linearization. To obtain consistent models from in- 
accurate numerical or experimental data, one should rec- 
oncile the gains subject to the consistency constraints 
derived in this paper. 
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