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Abstract

~ The paper addresses the use of temperature measurements to estimate product com-
positions in distillation columns. A simple linear multivariate calibration procedure based
on steady state data is used, which requires minimal modelling effort. It is found that
these PCR~ and PLS-estimators perform well, even for multicomponent mixtures, pressure
variations, and nonlinearity caused by changes in operating conditions. The use of weight-
ing functions, additional factors and logarithmic transformations improve the estimates and
counteract nonlinearities, provided there is not too much noise on the temperatures. In the

paper we also compare more generally regression methods based on SVD (generalized least
square), PCR and PLS.

1 Introduction.

Reliable and accurate measurement of product compositions is one of the main difficulties in
distillation column control. Most product analyzers, like gas chromatographs, suffer from large
measurement delays and high investments and maintenance costs. The overall measurement
delay is typically 10 to 20 minutes. This imposes severe limitations on achievable control per-
formance. However, the reliability of the analyzers is perhaps their weakest point, and this also
results in high maintenance costs in terms of manpower and expensive back up systems. One
employee per every three GC analyzers is common in industry. The most popular alternative to
analyzers is single temperature control, i.e., control of a given tray temperature. Temperature
measurements are reliable and inexpensive, and have negligible measurement delays. However,
they are not accurate indicators of product composition. Nevertheless, in most cases temper-
ature control is preferred. For example, Kister (1990) recommends using temperature control
unless the difference in boiling point between the key components is very small, or there are
substantial economical benefits in keeping tight control of the product compositions.

This paper addresses two-product columns where we make a split between two defined key
components, denoted the light key (LK) and heavy key (HK) component. We can make two
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Figure 2: Effect of changes in top composition on the temperature profile. The feed and bottom
compositions are constant.
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Figure 3: Effect of changes in feed composition on temperature profile. Top and bottom com-
positions are constant.

largest pressure change near the bottom. Varying liquid holdups and tray performances
may give local pressure variations as well.

Some measures may be taken to counteract these problems. The high [requency noise may
casily be filtered. Pressure variations may be compensated using pressure measurements, or us-
ing differential temperatures. The effect of non-key components may be reduced by locating the
temperature measurement in regions of the column where their composition is nearly constant
(Rademaker et.al., 1975).

However, some of these problems may not be corrected. In particular, keeping a temperature
constant on a tray some distance away will not keep the product composition constant. For
example, consider Figure 2 where it is shown that the temperatures in the lower part of the
column are affected by changes in top composition, and Figure 3 where it is shown how the
temperatures are affected by different feed compositions.

Multiple temperatures. One solution to these problems is to use multiple temperature mea-
surements to infer the product composition. There has recently been reports from industry on
sucessful implementations of somewhat ad hoc approaches. Whitehead and Parnis (1987) used a



A. Binary mixture:
Antoine parameters

t comp 2F YD e i1 TP (K) A B C
1 LK 0.500 0.99 0.01 1.5 341.9 15.83660 2697.55 -48.78
2 HK 0.500 0.01 0.99 355.4 15.43113 2697.55 -48.78

B. Multicomponent mixture:

i comp zF YD B Qi1 T (K) A B C

1 LNK 0.050 0.125 0.000 2.0 3214 16.52975 2697.55 -48.78
2 LK 0.350 0.866 0.006 1.5 341.9 15.83660 2697.55 -48.78
3 HK 0.350 0.009 0.577 2.0 355.4 15.43113 2697.55 -48.78
4 HNK 0.250 0.000 0.417 381.6 14.73799 2697.55 -48.78
e InP(mmHg)=A-B/(8(K)+C)

o Feed is saturated liquid.

o Constant molar flows.

¢ Ideal VLE using Raoults law

e Constant pressure, 1 atm.

e N =40, Np = 21 (theoretical trays)

o Holdup on all trays; M;/F = 0.5 min

o Flow dynamics are neglected.

Table 1: Data for distillation column example.

2. Multicomponent mixture consisting of one heavy and one light non-key in addition to the
binary components in case 1.

The column in case 1 is “column A” (Skogestad and Morari, 1988b), which is the same example
as used by Mejdell and Skogestad (1990). Data for the column and for the mixtures are given in
Table 1. The difference in boiling point between the two pure key components is only 13 °C. This
is approximately the lower limit for what is usually recommended when using single temperature
control (Riggs, 1990). Typical temperatures profiles for the binary case are shown in Fig. 1 - 4.

2.2 The estimation problem.

Consider the case with binary mixture, constant pressure and feed and reflux as saturated liquid.
Then specifying different values of feed composition zr, distillate composition yp, and bottom
product z g, yields unique steady state profiles of the 41 temperatures #. This may be expressed
as

041)(1 = f(ZF,yD,l'B) (1)

We want to find the inverse relation

§2XI - ( 22 ) :g(041x1) (2)



e Use unknown disturbances as latent variables. This procedure has been proposed by
Brosilow and co-workers and employed in their inferential control, e.g. Weber and Brosilow
(1972) and Joseph and Brosilow (1978).

¢ Use some geometric shape factors of the temperature profile as latent variables. This idea
is used by Gilles and Retzbach (1980) and later by Marquardt (1989). Here the first factor
is the location of the steepest temperature gradient.

o Use the principal components (PCR method) or the partial least square factors (PLS
method) as latent variables. These methods have been introduced for distillation columns
by Mejdell and Skogestad (1989), and are further outlined in the next section.

The simplest of the above methods is of course to reduce the number of measurements.
However, this is not optimal, because additional measurements will

e improve the estimate because they contain more independent information (at least for few
measurements)

o reduce the effect of measurement noise

o make the estimator less sensitive to measurement selection and changes in operating con-
ditions

o better capture the effect of nonlinearities.

We have briefly investigated Marquardt’s method and found it to perform very well with
perfect measurements, but it was sensitive to measurement noise for our column. It might
perform better for distillation columns with sharp profiles, for which it was originally developed.

The Brosilow estimator was studied in detail by Mejdell and Skogestad (1990). We found
that it performed poorly for the binary distillation example. The reason is that for ill-conditioned
plants, like distillation columns, the estimate is very sensitive to small errors. This sensitivity
has indeed been pointed out also by Brosilow and co-workers.

Mejdell and Skogestad (1990) studied the static PCR estimator for the example column and
found that it performed almost as well as an optimally tuned Kalman filter. In this paper we
shall use the static regression estimators, PLS and PCR.

2.3 Multicomponent mixture.

The multicomponent mixture is obtained by extending the original binary with one light nonkey
(LNK) and one heavy nonkey (HNK) component (See Table 1). The control objective for the
separation is still the split with respect to the key components. Let on a given tray z’ denotes
the pseudo-binary molefraction (based on key components) of light key component, i.e.

o = e (6)
rL+2TH
The product specification for both the binary and multicomponent case is ¥, = 0.99 and 2’5 =
0.01.

The composition profile for the multicomponent mixture at the nominal operating point is
displayed in Figure 5. The off-key components are almost constant in the column except at
the column ends and around the feed tray. The composition profile on a pseudobinary basis,
x’', is compared with that of the binary example column, z, in Figure 6, and the corresponding
temperature profiles are shown in Figure 7. The concentration profiles are almost identical,
whereas the temperature profiles are quite different.
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Figure 7: Temperature profiles for the binary and multicomponent cases.

2.4 Use of transformed variables.

The composition and temperature profiles are nonlinear functions of the operating variables.
One way to deal with nonlinearity is to find other variables (factors) which can capture the
nonlinearity. The Marquardt (1989) method is one such method. A simpler method is to
use nonlinear transformations on each variable. Logarithmic transformation of the product
compositions has been proposed by several authors (eg., Joseph et al., 1976, Skogestad and
Morari, 1988a) as an effective way to linearize the dynamic and static response (with L,V, F, zp
etc. as independent variables). For binary mixtures

Yp=In(l-yp); Xp=Ilnzp (7)

These transformations apply also for multicomponent mixtures if pseudobinary compositions
are used. The composition profile (with tray number as an independent variable) may also
be linearized using similar transformations. Ryskamp (1981) plotted the compositions on a

probability scale. It is also common to use the logarithm of the separation parameter on each
tray (eg., PROCESS, 1981)

X =inZk, (8)
TH

Here zy, and zj are mole fractions of light and heavy components on a given tray (the sub-
script ¢ is omitted to simplify notation). In Appendix 1 and 2 we show that this transformation
in addition to linearizing the profile also linearizes the dynamic response. Note that since most
columns have yp = zpr, & 1 and (1 — zg) = zpy = 1, (7) may be viewed as a special case of
(8).

Temperature is often a nearly linear function of composition. Based on Eq. 8 we therefore
propose to use the following transformation to linearize the temperature response and profile
(Appendix 1)
0T

b

Lr =In( ) (9)

9



RF YD IB F YD TB
0.5000 0.99000 0.01000 || 0.4000 0.97000 0.03000
0.5375 0.99130 0.02620 || 0.4000 0.97000 0.00333
0.4250 0.97380 0.01510 || 0.4000 0.99667 0.03000
0.5250 0.97000 0.01320 || 0.4000 0.99667 0.00333
0.4125 0.98010 0.00580 || 0.6000 0.97000 0.03000
0.6000 0.98490 0.00440 || 0.6000 0.97000 0.00333
0.5125 0.99420 0.00660 [[ 0.6000 0.99667 0.03000
0.5500 0.98270 0.00760 |[ 0.6000 0.99667 0.00333
0.4875 0.99620 0.01890 || 0.4500 0.98268 0.01732
0.4750 0.99560 0.00870 || 0.4500 0.98268 0.00577
0.5625 0.99340 0.01150 |[ 0.4500 0.99423 0.01732
0.4625 0.97720 0.03000 || 0.4500 0.99423 0.00577
0.4375 0.99500 0.00380 || 0.5500 0.98268 0.01732
0.4500 0.99240 0.01730 || 0.5500 0.98268 0.00577
0.5750 0.98680 0.02280 || 0.5500 0.99423 0.01732
0.5875 0.98850 0.00500 || 0.5500 0.99423 0.00577

Table 2: Specifications used in simulations to obtain static temperature profiles.

listed in Table 2. The data were spread with equal distances around zr, £p and yp. The first
run in the left column is the nominal operating point, the other 15 runs were randomly chosen.
The 16 runs in the right column were selected by a two composite design in four levels. The
32 runs correspond to maximum variations in column end temperatures of about 0.4 °C and of
interior temperatures of about 5 °C.

Different versions of the 32 calibration set was made, which included

e Total pressure variations of £ 0.1 atm spread randomly on the various runs.
e Normal distributed random noise of magnitudes 0.1 or 0.2 °C on all temperatures.

e Non-key components. The pseudobinary compositions were as in the binary case (Table 2),
but in addition the feed molefraction of light non-key component were varied between 0.025
and 0.075, and of heavy non-key between 0.15 and 0.35. In this case all temperatures were
rounded to one decimal, which may be viewed as a (coloured) noise source.

2.6 Evaluation criteria.

The main criterion used to evaluate the performance of the estimators is the Mean Square Error
of Prediction (MSEP) (Martens and Naes, 1989 p. 250), which is a measure of the expected error
of future predictions. An estimate of MSEP was performed by a cross validation procedure as
follows: The 32 calibration runs were divided into seven groups. Then the calibration procedure
(i.e., finding the estimator K) was performed seven times, each time with six groups used for
calibration and one for testing. The mean square error of all test predictions was then obtained
from

MSEP(K) = 55 3 (3i(k) = ) (11)

Here k is the number of factors (or principal components) used in the calibration, and y; is yp
or zg for the i’th test run. MSEP will generally not go to zero when the number of factors

11



3.2 Principal Component Regression. (PCR).
Write the SVD in Eq. (17) on the alternative form

O = t1p! + topt + -+ tmpl, (20)

Here t; = u;0; is the score vector (or latent variable) and p; = v; is the loading vector for principal
component i. Keep only the k first terms which may be distinguished from measurement noise,
and let the matrices P7*F and T"** include only these k& most important directions. Then
© ~ 0, = TPT. The latent variables for a given temperature vector, §, are then given by
thx1 — pTgaxl  The least square solution to Y = TKT becomes K, = YITT[TTT]™!. The
condition number of T, v(T) = a1(T)/ox(T), may be adjusted by selecting the number k. Since
P~' = PT (P is orthonormal), the overall estimator gain matrix then becomes

Kpcr =YT(ODT = YTT[ITT]' PT (21)

3.3 Partial Least Square (PLS) Regression.

This is a variation of the PCR method which recently has become popular among analytical
chemists. The latent variables are here determined in order to have the greatest covariance
with the y-variables. It is an iterative process, which roughly (see Hoskuldsson, 1988) may be
described as follows:

For the centered ©® and Y find:

1. the largest eigenvalue a; and corresponding eigenvector w; of O0TYYTO. (Scale w; to
length one).

2. the scores t; = OQwy

3. the O-loadings p; = %;t—tll
1

4. the residual matrix £ = 0 — tlplT

Ty

5. the Y-loadings q; = ‘;—Tt—ll-
1

6. the Y-residual matrix Fi =Y — th’{

Then start from the top with the residual matrices E; and Fy in stead of © and Y, and con-
tinue until the matrix EEF L F ,31 E} has only small eigenvalues left. For a more exact description
of the algorithm and its different versions, see Martens and Naes, 1989.

The estimator based on k factors is

Kprs = Q(PTw)'wT (22)

where the matrices QPX¥, P9%k and W9%* are formed by the vectors ¢, p and w introduced
above.

The main advantage of the PLS-algorithm compared to PCR, is that it selects the directions
in © which have the largest covariance with y, and thus ensures that these directions are treated
first.

13
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Figure 9: Weight functions Wy, W5 and W3 for Case n;. (Untransformed data with 0.2°C
random noise.)

M Multicomponent mixture.

P Pressure variations of + 0.1 atm.

Ly Log. transf. comp. only

Lt Log. transf. comp. and temp. (ref.: boiling temp.)
Ly Log. transf. comp. and temp. (ref.: tray temp.)
no  No noise

ny  0.1°C noise

ny  0.2°C noise

W, Weight function n

Table 3: Estimator cases
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No noise:

o
noLy
noLT
’n()Lg
n0P
noL,gP
M'n,o
Mn0W2
MnoLy
MTL()Lg
M’noLoW2

0.1°C noise

n1
n1LtWs3
n1LgWs
n1L9W3P

0.2°C noise

n2

neWy
neWo
noWs

na Ly W3
na LT

ne LW,
no LW,
naLTW3
nyLoW3
nng W3P

19.61
21.78
19.72
32.90
-2.31
19.16
10.66
11.14
18.52
22.73
20.69

19.59
23.10
23.18
26.89

1
18.87
17.06
20.40
19.78
18.14
12.50
22.65
22.78
23.04
26.41
20.58

81.97
80.14
96.38
95.39
46.77
94.90
48.02
48.44
48.88
77.52
73.75

81.78
91.42
84.60
91.05

2
81.10
86.04
84.65
83.34
80.14
78.41
86.65
87.66
89.07
84.53
86.30

No. of factors

3
94.17
92.86
99.97
99.95
75.71
99.94
56.78
57.40
52.59
94.10
93.81

93.81
98.89
91.09
98.25

3
93.78
95.75
95.66
95.08
91.53
81.90
95.44
96.43
97.49
86.59
98.01

4
97.18
93.45
99.98
99.96
92.19
99.97
88.35
87.76
83.66
95.81
95.87

97.00
98.92
94.01
98.78

4
94.92
94.66
95.36
95.59
92.57
84.04
96.25
96.99
97.68
87.43
98.09

98.18
96.92
99.99
99.97
95.50
99.97
89.58
90.61
84.10
96.27
96.75

97.59
98.92
96.16
99.04

)
94.49
94.39
94.74
95.40
91.73
87.59
96.70
97.30
97.86
90.07
97.89

6
99.43
97.20
100.00
100.00
95.95
100.00
91.50
91.84
87.84
97.61
97.68

97.86
98.82
96.69
99.08

6
94.42
94.18
94.70
95.25
91.29
90.63
97.22
97.64
98.14
89.10
97.84

7
99.96
98.80

100.00
100.00
97.59
100.00
91.94
92.25
87.43
97.55
97.66

98.05
98.80
97.06
99.04

94.47
93.64
94.12
95.04
90.53
91.16
97.33
97.59
98.05
88.52
97.80

17

Table 4: EPV for different PLS estimators.
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Figure 12: Loading plot (vector p;) of first three factors for estimator ng. Curve identifier: ¢,
factor number.

4.5 Effect of pressure.

Figure 13 displays the loading plot for the case with total column pressure variations of 10%
(case ngP in Table 4). We see that the first factor, which has no predictive ability, mainly
represents the pressure variation. To get good predictive properties we need at least 5 factors.
The pressure variation may alternatively be taken care of by using differential temperatures.

4.6 Use of logarithmic transformations.

The results in Table 4 seem to indicate that use of logarithmic transformed compositions, i.e.
’p =In(1-yp) and Xg = Inzp, combined with untransformed temperatures (Ly-estimators),
generally has a negative effect on the estimate. However, the results are not quite comparable”
because the EPV is based on Yp and Xp in stead of yp and zg. Other tests show that they
are comparable in performance, but they have slightly different propertics: The accuracy of
the logarithmic estimator will be best in the pure region, and will never give estimates outside
the region 0 — 1. Futhermore, for feedback control it may be an advantage to use Yp and Xp
because this makes the controller tunings less dependent on operating conditions (eg., Skogestad

and Morari, 1988b).

IHowever, estimator performance is significantly improved by using logarithmic transforma-
tions also on the temperatures. We see from Table 4, cases noLg and ng LT, that with no noise
EPV is close to 100% after only 3 factors. This is the case also when pressure variations are
included, that is, these are automatically taken care of when transformed temperatures Lg are
used.

4.7 Effect of weights on temperatures.

We shall consider the case with logarithmic temperatures. In cases no L and noLg with no noise
there is no improvement of weighting the measurements, because the logarithmic transform will
automatically weigh the temperatures similar to weight W;. But when noise is added to the

19
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Figure 15: Closed loop responses of compositions y (solid line), and estimates § (dotted line),
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Using a larger number of factors than the number of degrees of freedom is helpful when the
noise level is not too high. The reason why this may help is that the product compositions have
different nonlinear relations to different temperatures. These differences will appear as extra
directions (factors) in the linear temperature space. However some of these directions may be
too small to be distinguished from noise. A useful rule is to increase the number of factors until
they no longer have any significant positive effect on the EPV. For our distillation column, the
typical optimal number of factors is 3-5.

Weighting of variables is commonly used for dealing with different kind of measurements.
This is to prevent that the measurements with the largest nominal changes dominate. In our
distillation column only temperature measurements are used, so one might think that weighting
is unnecessary. Nevertheless, weighting proved useful. The reason is that the temperature
changes are very small at the column ends (in the calibration set their standard deviation is
only 6% of the temperature with the largest variation), but even in the presence of noise they
do contain useful information about the end compositions. By using weights we avoid that the
PLS method discards the use of these temperatures. However, the noise should also be taken
into account, and weight functions W5 and even more W3, which include information about the
noise, yield better results.

Compared to PCR, there is a kind of weighting inherent in the PLS-method (Hoskuldsson,
1988). This follows since it searches for directions in the ©7Y Y7, in stead of only ©70. The
weighting with the matrix YY7 gives temperatures which have the largest covariance with y
larger weight when making the factors. The comparison between PLS and PCR shows that these
“weightings” improved the estimates in some cases, although the difference was quite small.

The use of logarithmic transformations of temperatures was clearly the single method with
the greatest effect. It appears to be a very powerful method to cope with the nonlinearity in
distillation columns, and also automatically gives the temperature measurement at the ends a
greater weight. However, when the temperatures are corrupted with noise, the noise will also
be transformed, and have a relatively large effect on these end temperatures. Therefore, as
seen from Figure 14, it is absolutely necessary to weight the transformed data to take this into
account. As already mentioned, one should also take action to avoid very small or negative
temperature differences before transforming the temperatures.

Choice of reference temperature. For multicomponent mixtures the reference temperatures
should be located some distance away from the ends: 1) They should be in the section where
the concentration of the off key component is almost constant (See Fig. 5). Much of the off-key
component’s contribution to the temperature will then be cancelled. 2) They should be located
as far out to the ends as possible to capture the nonlinearity. A method which combines these
two criteria is to use the temperature with least variation in the calibration set.

Measurement selection. The results above are based on using all temperatures as measure-
ments. This is of course not necessary. However, the number of measurement should at least
be equal to the number of factors needed for prediction. For example, to capture 3 factors, we
need at least 3-5 temperatures. The highest number applies to estimators which use differential
temperatures, for example, Ls. Additional temperatures will mainly reduce the effect of mea-
surement noise. As a simple method to select the location of temperature measurements, we
recommend identifying the peak elements in the K-matrix for the weighted (scaled) variables.
The number of peaks is usually the same as the number of factors. As an illustration, consider
Figure 16 which displays the elements in K for the weighted untransformed temperatures for
yp using PLS-estimators nogWs, niWy noW, and ng with 3 factors (the weight W, is different
in each case as it depends on the noise level). We see that when the noise is increased it seems
better to locate the temperatures further from the end.

23



The results for multicomponent mixtures indicate that the estimator may perform well in a
wide range of applications. Using section reference temperatures at locations with the smallest
temperature variance, will make logarithmic transforms useful also here.

Besides being an efficient method of obtaining estimators, the standard multivariable calibra-
tion techniques yield added benefits, such as insight in the process, good statistical information
about the prediction ability, and a method for sensor location.
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NOMENCLATURE (also see Table 4)

B - Bottom product flow rate

D - Distillate flow rate

E). - Residual matrix for © using k factors.

EPV - Explained Prediction Variance in %. See Eq. 12
F - feed rate

k - number of factors used in estimator

K - estimator constant

L - reflux flow rate

L - logarithmic temperature based on boiling points

Ly - logarithmic temperature based on reference temperatures
t - vector of latent variables

T - matrix of latent variables (t) for calibration runs

T? - boiling temperature of pure component

V - boilup from reboiler

zp - mole fraction of light component in bottom product
yp - mole fraction of light component in distillate

y - output vector (yp,zp)T

Y - matrix of outputs (y) for calibration runs

2 - mole fraction of light component in feed

W1, Wa, W3 - weight functions for measurement (temperature) scaling

Greek symbols

a;, ; - relative volatility between components ¢ and j

v - condition number

o; - 1’th singular value

# - tray temperature or temperature vector

0,0y - reference temperature in top and bottom of column
O - matrix of temperatures () for calibration runs

Subscripts

H - heavy key component
¢ - tray number

L - light key component

Superscripts
> - pseudobinary basis
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Appendix 1:
Linearizing effect of logarithmic transform on profile.

1) Consider a binary mixture and assume constant relative volatility. Then

(1 — i)
e’ 26
zi(l —yi) (26)
At infinite (total) reflux we have y; = z;41 and we get
Tit1 Zy
In—%— _ = 2
nl—.’l?i+1 lnl—-:c,- Ino (27)
Introduce the logarithmic mole fraction
T
X =1 : 28
Then
X,'+1 - X.' = lna (29)

That is, the profile in terms of X; is linear.

2) At finite reflux we derive a similar expression: In the bottom part the material balance is
Lpziy1 = Vy; + Bep (30)
where Lg = L + F is the liquid flow in the bottom part. Eq. 26 then gives:

B
Ti41 — B i VvV
In L+1 Lp 5— —In z = In(a— (31)
1 - 5Bz + $oB 11— Lp

In most cases the first term is approximately equal to lnl%‘zf'—i—l- (The numerator approximation

may not apply to the bottom tray if % is close to 1, the denominator approximation does
usually not apply close to the feed tray where z;4; is not small). We then get

X,'+1 - X,' ~ ln(al) (32)
Lp

(Here a-[% is the ratio between the slope of the equilibrium line and operating line in the bottom

section.) A similar expression but with a% replaced by aTI;- is derived for the top. Around the
feed tray the expression does not apply, and the profile in terms of X; may not be linear.

3) To derive a linearizing transform in terms of temperatures we assume that the boiling tem-
perature is a linear function of z;, that is, for the binary case

0;, = TE:II,' + TIIfI(l — :L‘i) (33)
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