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Abstract. Temperatures and flows arc often used as secondary measurements to estimate the product com-
positions (outputs) in distillation columns. The problem is characterized by strong collinearity (correlation)
between the temperature measurements, and often between the effects of the inputs on the outputs. In a
linear study three different estimator methods, the Kalman-Bucy Filter, Brosilow’s inferential estimator,
and Principal Component Regression (PCR) are tested for performance with mu-analysis. It is found that
use of input flow measurement has a damaging effect on the estimator performance for this ill-conditioned
plant (with high RGA-elements). This is the main reason why the Brosilow inferential estimator is found
to perform poorly. It is found that the static PCR-estimator performs remarkable well compared with the
dynamic Kalman filter. Contrary to some claims in the literature, it is found that the performance of the
estimate generally is improved by adding temperature measurements.

Keywords. Estimation; Distillation columns; Large-scale systems; Data reduction; Kalman filters; Inferential

control; Multivariate Calibration; Input uncertainty; Robust control; Temperature control.

1 Introduction

This paper addresses estimation of unmeasured process outputs
based on multiple secondary measurements. The application
chosen here is the use of temperature and flow measurements to
estimate the product compositions in a distillation column. This
is an interesting application which features: i) a large number
of strongly coupled measurements, and ii) several disturbances
and inputs with similar effects on the outputs.

Problem definition. The objective is to obtain the best esti-
mate j of the outputs (product compositions in our application)
using all available information, . In terms of deviatjon variables
the linear estimator may be written

#(s) = K()b(s) (1)

This estimate should be obtained based on a description of
the process (nominal model and expected uncertainty), the ex-
pected noise and disturbances, and a more precise definition of
what we mean by “best”. In the general case § should include
all measured dependent variables (primary measurements, y,
and secondary measurements, 8), and all known independent
variables (manipulated inputs, «, and measured disturbances,
d). In this paper we usually have § = @, that is, the estimate
is based on only secondary measurements (temperatures in our
application). The reason is that we assume no primary mea-
surements, no measured disturbances, and we shall show for our
case that the additional information contained in u is of limited
value. This estimation problem is usually called “inferential”
estimation in process control litterature.

Use of separate estimator. A control scheme for a distil-
lation column based on an estimator is shown in Fig.1. Note
that we are implicitly assuming that the controller should be
separated into two parts: one estimator which condenses al the
measurements into a few estimated outputs, and a “small” (in
terms of number of inputs) controller which uses these estimates
for [eedback control. The motivation for doing this is reliability,
design simplicity and robustness.

In this paper we consider three different approaches to the
problem: i) The Kalman-Bucy Filter, ii) Brosilow’s Inferen-

tial Control Method, and iii) Principal Component Regression
(PCR). In the last two cases we shall base the analysis on the
steady-state, and use a constant gain matrix K.

Use all available measurements ? The statement in the prob-
lem definition above that the best estimate should be based on
all available measurements is not as obvious as one should think.
Actually, a large number of authors (cg. Joseph and Brosilow,
1978, Morari and Stephanoplous, 1980, Patke et al,, 1982, Yu
and Luyben, 1986, Moore et al., 1987, Keller and Bonvin 1987)
have suggested that one should only use a few of the temperature
measurements to avoid the poorly conditioned problem of ob-
taining information from the strongly correlated temperatures.
For example, our example column has 41 temperature measure-
ments. That is, we need to determine 41 parameters in X for
each output if all temperatures are used. However, the tem-
peratures are of course strongly coupled and the 41 parameters
must also be strongly coupled. In fact, our distillation column
has only three degrees of freedom at steady state. This implies
that, at least for the linear case with small perturbations from
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Figure 1: Control scheme based on LV configuration.



the nominal operating point, we may determine at most three
of these 41 parameters independently. This points out the nced
for a robust way of obtaining the matrix K which avoids this
overparameterization.

One such method is the Principal Component Regression
(PCR), where the available data are smoothened by obtaining
a smaller number, k, of “latent variables”, 1, which are less
coupled and contain most of the original information. These are
subsequently used for estimation. In the lincar case these latent
variables may be written t = P, where P, is the projection
matrix. The estimator then becomes § = Kt where K is a
“small™ matrix with k parameters for each output (typically
k = 3 in our examples), and the overparametrization in the
regression step is avoided.

Another “method”, but certainly not the oplimal one, ia
to delete measurements in 8, and use, for example, only three
temperatures. This approach is implicit in some of the papers
mentioned above.

2 Distillation Column Application

At an exnmple we ane the distillntlon columu A stodied by Sko-
gestad and Morari, 1988. The column separates a binary mix-
ture with relative volatility 1.5, and has 40 theorctical stages,
including the reboiler, plus a total condenser. Column data are
given in Table 1. The liquid holdups are assumed constant,
that is, the flow dynamics are neglected. This gives rise to a
41th order linear model in terms of the mole fraction of the
light component on each tray. For our binary mixture with
constant pressure there is a one-to-one relationship between the
mole fraction and the temperature on each tray, and the model
becomes

¥(3) = Gu(3)u(s) + Ga(s)i(s) @)

6(s) = Fu(s)u(s) + Fy(s)d(s) (3)

where u = [L)V]Tvd = [ZF1F]Tvy = [yDI:B]T and € = tem-
peratures on all trays, The two dominant time constants of the
column are 194 min and 15 min. At steady-state (Skogestad et
al., 1988, Skogestad and Morari, 1988)
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Figure 2: Column temperature profiles. Upper: Profiles for
different feed compositions when yp and zp are held constant.
Lower: Profiles for different top product compositions when zg
and zg are held constant,

a N Np 2 yp 1z DJF L/F
1.5 40 21 0.50 099 0.01 0.500 2.706

o Feed is liquid. e  Const. molar flows.
e Ideal VLE o Pressure 1 atm.
o Holdup on each tray; M;/F = 0.5 min

Antoine parameters: A B C
Light component 15.8366 2697.55 -48.78
Heavy component 15.4311 2697.55 -48.78

Table 1: Data for distillation column example.

Ilere the gain matrix is scaled such that an output of magnitude
1 corresponds to 0.01 mole fraction units, and the inputs are
scaled relative to a fced rate of F = 1. The condition number
of this matrix is 141.7 and the diagonal RGA elements are 35.5.
This plant is consequently illconditioned (Skogestad nnd Morari,
1987). 'The other matrices are alao Hl-conditlonnd nt atendy
Alute,

The difference in boiling points of the two pure compo-
nents is 13°C. In Figure 2 some temperature profiles for the
column are displayed. We note that variations in temperature
are small towards the ends of the columns, and that changes in
feed composition have a large effect on the temperatures inside
the column even though the product compositions are constant.
This demonstrates the limitations of single temperature control
where a temperature measurement at the end of the column will
not be sensitive enough, while a measurement inside the column
(e.g- tray 10) will be biased by changes in feed composition.

3 Estimators

3.1 Kalman filter.

In the Kalman filter scheme (Kalman and Bucy, 1961) a dy-
namic state space model is used in parallel with the process,
and the deviation between the outputs from the process and
the model is used as feedback to the model through a filter gain
K.

The linear state space model for the process is

t = Az 4+ Bu+ Ev (5)
y = CI (6)
8 = Coz+w )

Here z is the state vector, u the manipulated inputs, y the pri-
mary outputs to be estimated, @ the secondary measurements, v
the process noise (disturbances), and w the measurement noise.
vand w are assumed to be white noise processes with covariance
matrices V and W. )

Minimizing the expected variance of # — § yields the esti-
mated states

8
|

Az + Bu + K0 - Cyt) (8)
(A—K/Cg)i+Bu+K/9 (9)

where filter gain K is
K; = xcfw-! (10)

Here X, the covariance matrix of #, is found from the matrix
Riccati equation

X = AX + xXAT — XCTW-'Cyx + EVET (11)
We use constant filter gains which give ¥ = 0, and Eq. (11)is

reduced to an algebraic equation. The overall Kalman estimator
then becomes

§(s) = C(sI - A+ K/Co) ™ (K/8(s) + Bu(s))  (12)



The covariance matrix of the measurement noisa W was set
to 0.04/ for our example column (1 is the identity matrix). This
corresponds to 0.2 °C noise on each temperature. The pracess
noise (disturbance) is here o7 = [L,V, F,zp] (reflux, boilup,
feedrate and feed composition). Its covariance matrix, V, was
assumed diagonal and was varied in order to tune the filter.
Pour different values of the variance on I, and V wore selected
(Table 2) and the corresponding filter gain matrices are denoted
K1 to K4, The assumption of white noise process disturbances
in somewhat unrealiatic in a diatillation colmn, and we might
add an integrator and uae a non-stationary disturbance d =
1v. However, the estimator is not expected to be significantly
improved by such changes, although it would remove some of
the steady-state offset which is apparent in later g-plots.

3.2 Brosilow estimator.

The following linear steady-state model of the column in terms
of deviation variables is used in the Brosilow estimator (Weber
and Brosilow, 1972, Joseph and Brosliow, 1978):

y=Gad + Guu (13)

6 =Fid+ Fu (14)

Here d denotes the disturbances. The matrices above are of
course related to those used in the state space description in
the Kalman filter. For example, G, = —CA~!B and for the
case v = d we have Fy = —~CyA~'E. Using (14) the estimated
disturbances become

d=F}(8 - F,u) (15)

where the psendoinverse FJ is the optimal inverse in the general
least squarce sense. The inversion in (15) may be impossible, or
at least numerically ill-conditioned, when there are collincar-
arities among the variables. To avoid some of these problems
one should in general case obtain the pseudoinverse, FJ, from a
SVD of Fy by deleting directions with singular values equal to
zero (eg., sce Strang, 1980, p. 142).
Combining (13) and (15) yields the Brosliow estimator

9= Kg8+(Gy — KpF,)u (16)

where

Kp=GyF} 7

In the example column d7 = [zg, F] and uT = [L, V). The
matrices Fy,Fy,G4 and G, were found by linearizing the model
at the nominal operating point.

A modified estimator K'g__, was formed by not using in-
formation about the manipulated inputs u, and instead using
dT = [L,V, zf] as the disturbances to be inferred. The estima-
tor then becomes § = K gmnoqf where

KpBmod = G'F't (18)

and F' and G’ are the process matrices formed by these three
variables. In the linear case with no numerical errors in the
matrices G’ and F/, this estimator is identical to the PCR-
estimator.

3.3 PCR estimator.

We want to estimate p outputs (y) from q known variables ().
The problem is then to obtain the matrix & in

i=ko (19)

To this end obtain n “calibration” runs corresponding values
of y and @, and place these as rows in the matrices Y™™P and
O"X9, respectively. If the estimator was perfect we would have

Y =0KT (20)

Case v

L Vv F 2
K1 diag{ 200 200 0.01 0.0l }
K2 diag{ 0.10 0.10 0.01 001 }
K3 diag{ 0.01 0.01 001 001 }
K4 diag{ 0.0 0.0 0.01 0.01 }

Table 2: Process disturbance covariance matrix of Kalman flter
gains, In all cases W = 0.047

The general least square solution is (e.g. Strang, 1981, p
139)

Kors = YT[0T)t (21)

In addition to minimizing (y — §)? this solution minimizes the
norm of /(. The pseudo inverse ia obtained from a singular value
decomposition (SVD) of ©. Using standard notation from the
statistics literature (sce eg. Wold et. al.), the SVD of O is
written

© = tip] + tap] + -+ + tmpl, (22)

where m < min(n, q) is the rank of ©. Here p, is the eigenvec-
tor corresponding to the largest eigenvalue of 70, (the square
of the largest singular value of ©), and p, is the eigenvector
corresponding to the second largest eigenvalue, and so on. The
loading vectors (p's) give the directions of the principal compo-
nents, while the scores (¢’s) give the magnitude. If all m terms
in ( 22) are retained we obtain the generalized pseudoinverse
in (21). However, in PCR we select only those first k principal
components that can be distinguished from the measurement
noise. Let the matrices PI%* and T™** include only these &
most important directions. Define the new latent variables as
t = PT. Note that PT = P~ gince P’ in orthonormal. The
least square solution to y = Kt becomes K, = Y717,
and the overall estimator gain matrix becomes

Kpcr = YT[OT)t = YTT(7TT)1 PT (23)

In the general case # may be replaced by § which includes also
the inputs and measured disturbances.

The calibration sets for the example column were obtained
from a lincar steady state column model. A factorial design
method was used to select 16 different runs around the operat-
ing point. (The reason for using more runs than strictly neces-
sary, was to better study the eflect of measurement noise and
to get better statistical information.) The specified variables
were chosen as the outputa yp and zg and the feed composi-
tion zp. (Since the column conditions in the simulation model
are independent of the load, it is not necessary to simulate dil-
ferent feed rates). With this approach we may freely vary the
outputs (yp and zg), and are thus able to span all directions in
the output space. This is different from the Brosilow approach,
which is based on an open-loop model in terms of the inpufs
(L,V, F, zg), and where the output space will not be properly
spanned for ill-conditioned plants with strongly coupled out-
puts.

When stated random noise of magnitude 0.1 °C was added
on all temperatures in the calibration sets, but the default is
no noisc. The temperature data were reduced to the desired
number of principal components and K pcr was computed from
(23).

4 Analysis of the Estimators.

4.1 Evaluation criteria

Open-loop evaluation (OL). One obvious criteria for evaluating
the different estimalors is the estimation error eo;, = y — #.
This is the difference between the real (y) and the estimated
output (§). The system is assumed to operate under feedback,
since this is closer to a real situation than a pure open loop test
where it may “drift away”. The term “open loop” is still used



since the controller uses Lthe actual y, Lhat is, there is no feedback
from the estimate §. We use single-loop PI1D controllers since
this is the most common choice in practice. The tunings vield
optimal robust performance (minimize 1) when the estimate is
exact. To make our results less dependent on the controllor
used, we shall nsually consider the nominal performance in this
test, i.e., without any uncertainty. This makea the comparison
independent of the rohust stability eequirement of (he RyRtem
which depends atrongly on the controtler.

Closcd-loop cvaluation (CIL). The main objective of the estima-
tor is to replace (he primary measurement of ¥, that is, use the
estimate 7 for feedback control. The error of interest to be min-
imized, is then the contral error egy, = y — ¥s Nere y, is the
seipoint (reference signal). We consider robust performance of
ecy in this case, i.e. uncertainty is included. We usc the same
controller as for the open-loop comparison, that is, a LD con-
troller tuned optimally for perfect estimates. Using the same
P'1D controller for all estimators will bias the comparison some-
what, as the optimal controller in cach case will depend on the
eslimator used.

4.2 jp-analysis.

Our tool is the Structural Singular Value (1¢) analysis (Doyle,
1982). In this framework we rearrange our system to fit the
general form shown in Fig. 3. Ilere the interconnection ma-
trix N includes the plant, the controller, the estimator and the
weights. d denotes external inputs (disturbances, noise and set-
point changes), and e is the "error” we want to keep small. We
have a separate A-block loop to represent the model uncertainty.
In the u-analysis we evaluate the maximum amplification from
d to e at each frequency. Weights are used to scale the signals,
d and e, and the uncertainty A to be less than I.

# expresses the worst-case error at a given frequency, and the
performance requirement for the error eor, or ecy, is satisfied il
# is less than one at all frequencies. Nominal performance (with
A = 0) for the estimation error egy, is satisfied ifl #(Na2) < 1,
and robust performance (for all allowed A's) for the control
error ecy, is satisfied iff (V) < 1. In the paper we plot u as
a function of frequency, and cstimators with small p-values are
prefered. The weights used for external inputs, performance and
uncertainty are given in Mejdell and Skogestad (1989). Noise
was gencrated by adding a constant vector of random values
with normal distribution and a standard deviation of 0.2 °C to
all 41 temperatures. The noise is icluded in the p-analysis only
if stated.

5 Results.

5.1 Comparison of Kalman filter and static PCR
estimator.

In Fig. 4 we compare the p-plols of the Kalman and PCR esti-
mators, using 41 temperatures. The first Lhing to note is how
well the simple static estimator § = Kpcpl performs. The main
reason is that the dynamic responses of the temperatures § and
the compositions y are very similar. This will be the case for
most distillation columns, at least for sections of the column,
but may of course not be the case for other applications.

In the Open Loop analysis the Kalman filter is significantly
better at higher frequencies. This is due to the dynamics in-
cluded in this estimator. On the other hand, the “Closed Loop”
test shows that the estimators will perform about equally well
when used for feedback, and also as well as using perfect mea-
surements. Actually, for some frequencies, the PCR estimator
is even better than using perfect measurements. The reason
is that the temperatures in the middle of the column gencrally
change slightly faster than at the ends, and the steady state csti-
mator will therefore have a small inherent "feedforward” effect.
The simulation responses in Figure 5 confirm that the PCR-
estimate is almost equal to the true value. One exception is for
feed composition disturbances, where it shows a small jnverse
response.
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Figiure 3: General atructure for studying any linear control
problem.
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Figure 4: Comparison of Kalman (K1) and PCR estimator with
41 temperatures. Upper: without noise in p-analysis, Lower:
with noise.
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Figure 5: Comparison of output y(t) (solid) and PCR-estimate
§(t) (dotted line). Responses under feedback control are shown
for a 20 % increase in feedrate at t=0, a 20 % increase in feed
composition at t=80 min, and a setpointchange in yp at t=120
min. Upper: y used for feedback control, Lower: ¢ used for
feedback control.
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Figure 6: u-plots for different Kalman filter gains (Table 2).
With 41 temperatures and noise included in u-analysis. Upper
left: Nominal estimation error. Upper right: Robust control
error. Lower left: Robust estimation error.

The PCR estimator in this paper uses only temperatures,
but we did also evaluate the effect of adding inputs. Iowever,
the improvement in estimator performance was very small even
at steady state. Furthermore, the dynamic behaviour of a static
estimator is much worse when inputs are used.

5.2 Different Kalman filters and use of inputs in
estimator.

Figure 6 shows u-plots for the Kalman filters obtained using the
four different levels of process noise on L and V in Table 2. The
best Kalman filter, K1, is the one that was compared with PCR
above. The remarkable thing with this best estimator is the very
large assumed variance on the inputs u (L and V). In effect, this
variance is so large that the transfer function from u to § in
Eq.( 12) is approximately zero, that is, the estimator does not
use the information about the input signals.

The worst Kalman filter, K4, assumes disturbances (noise)
of magnitude 0.1 for F and zF, but assumes no disturbances on
the inputs. This estimator performs reasonably well in the p-test
when there is no uncertainty (left part in Figure 6). However, it
is extremely poor when input uncertainty is added (right).

5.3 Brosilow estimator.

The Brosilow inferential estimator for the system with different
numbers of measurements is shown in Figure 7. It clearly demon-
strates that the estimator as originally proposed performs poorly,
and its performance does not improve with increasing number of
measurements. The “Open-loop” test shows that the estimator
nominally works well at very low frequencies (w < 0.001 min~1),
The poor dynamic performance (intermediate frequencies) is due
to the fact that the estimator uses the input signals u (£ and
V) as shown in Eq. (16); the dynamic behaviour of u and the
compositions y are very different and using a constant matrix
Gy — KgF, docs not work well. This problem could have been
corrected using a low-pass filter on the inputs with a large time
constant, e.g., 194 minutes (that is, add dynamics to Gy and
F.). However, even this estimator would not perform well in
practice, as the “Closed-loop” test shows that the robust perfor-
mance is poor even at low frequencies. This is due to the input
uncertainty, that is, the actual values of L and V are difTerent
from what the estimator thinks they are.
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Figure 7: Brosilow Inferential Estimator for various number of
measurements. No noise.
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Figure 8: Modified Brosilow estimator based on temperatures
only with 41 temperatures and no noise. A: Perfect model.
B: Model when 1% random error is added to process matrix

elements.

We therefore conclude that using the measured input sig-
nals u (which are inaccurate) does not improve the estimate. A
better approach then scems to be to regard the inputs L and
V' as unknown disturbance together with zg. This gives rise
to the modified estimator § = Kpgmoqd’ where &’ = [L,V, zg|T.
This estimator performs much better as seen from curve A in
Figure 8. The estimated values of the variables L,V and zp
may not be correct, but this error is not important as long as
the estimate § is accurate. However, using L,V and zp as dis-
turbance variables has very poor numerical properties because
G’ and F" are ill-conditioned. For example, curve B in Figure 8
shows the drastic deterioration in performance caused by adding
1% random error to the elements of the matrices G’ and F'.

5.4 Number of measurements.

The p-plots in Figure 9 for the PCR estimator shows the el-
fect of using varying numbers of measurements. Note that the
noise in this case is put on the temperatures in the calibration
set and not in the y-analysis. Fig 9 demonstrates that adding
temperature measurements improves the estimates and the con-
trol performance. The main difference is between two and three
measurements. These results also applies for the Kalman fil-
ter. Another benefit of using many temperatures is that the
performance becomes much less sesitive for measurement loca-
tions, which may be very important when dealing with 2 or 3
temperatures,

6 Discussion

Kalman filter.

Model uncertainty is not included explicitly when obtain-
ing the Kalman filter and it may require physically unrealistic
values of the noise weights, V and W, in order to obtain the
best, estimator when uncertainty is included. This is illustrated
by the large value needed for noise (disturbances) on the in-
puts in order to obtain the best Kalman filter, K1. Otherwise,
the Kalman Filter performed well in the y-tests and was un-
doubtedly the best estimator in the open loop p-test. The main
reason is its inherent dynamic model. Furthermore, because
of the weights, it is flexible, and it may be tuned to perform
well for ill-conditioned plants a well. As mentioned above this
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Figure 9: Effect on y of number of temperatures for PCR-
estimator. The temperatures in the calibration set are cor-
rupted with 0.1 °C noise.



is done by adding (artificial) large noise (disturbances) on the
inputs to the process.

Brosilow estimator.
As discussed above the Brosilow Inferential estimator as
originally proposed suffers from four main weaknesses:

W1. Forill-conditioned plants with large RGA-values input er-
ror causes poor eslimates when the estimator uses infor-
mation about the manipulated inputs u.

W2. Even for plants which are not ill-conditioncd, the dynamic
behaviour of a static estimalor which dircetly uses inpuls is
often poor. The reason is the dynamic “lag” which usually
exists between the inputs u and the outputs y.

Wa3. It docs not handle collinearity among the variables in an
appropriate way.

W4. For ill-conditioned plants (with large condition numbers
in G or F) the use of inputs and disturbances as latent
variables is numerically ill-conceived.

Weakness W1 has already been discussed in general terms.
Weaknesses W1 and W2 may be corrected using the “modi-
fied” Brosilow estimator, and also W3 may be corrected using
an appropriate pseudoinverse of Fy. That is, instead of using
only selected measurements as proposed by Joseph and Brosilow
(1978), one should rather delete small directions in Fy using the
singular value decomposition.

The key idea of the Brosilow Estimator is to first cstimate
the independent inputs that caused the observed outputs, and
weakness W4 can not be corrected. Drosilows approach may
be satisfactory in some cases, but not for ill-conditioned plants.
For our example column the condition numbers of G’ are F*
are 165 and 321. This explains the sensitivity to small errors
in the matrix elements in Fig.8 (it should be stressed that this
numerical sensitivity is different from the sensitivity to input
errors in W1).

llowever, even for ill-conditioned plants there may slill be
a rather simple direct relationship between various dependent
variables, for example, between temperatures and composition
in a distillation column, and a simple regression estimator, like
PCR, between these variables may work well.

PCR estimator

The PCR-estimator docs not have the same weaknesses as
the Brosilow estimator. First, the estimator used here docs
not use the input values, and does not suffer from uncertainty
with respect to their exact value (W1) and poor dynamic per-
formance (W2). Second, and more important, its numerical
properties are much better. The matrix to invert in PCR, the
score matrix T in Eq. (23), is generally much better conditioned
than F’ used by the modified Brosilow estimator. For example,
for our column the condition number of T is 4.7, whereas the
condition number of F is 321. To get a well-conditioned T one
must ensure that excitations of the weak directions are included
in the calibration set. To ensure such excitations, one should
use data from the column with feedback (that is, with speci-
fied outputs), for example, by specifying the product composi-
tions together with the feed composition in an factorial design,
One should not use open loop data, like step responses etc,,
which will excite only the strong directions (The gain matrices
in Brosilow's scheme will typically result from such excitations).

Obtaining and implementing the estimators.

Both the Kalman filter and the Brosilow estimator require a
linear open-loop model. On the other hand, the PCR approach
only deals with the data. This is an advantage, especially when
experimental data are used, but also when we do have a good
model, as in this paper, since we save a significant effort in
obtaining the linear model matrices.

As for implementation, the static Brosilow and PCR esti-
mators are of course much simpler than the dynamic Kalman
filter.

NOMENCLATURE.

d - disturbances (= [z, F|T in most cases)

D - distillate flow rate

d - external inputs in p-analysis

F - [ced Now rate

Fy, F4, F' - Gain matrices from inputs (u and d) to secondary
measurements (@)

Cuy (g, G’ - Gain matrices from inputs to primary outputs.
L - reflux flow rate

PCR - Principal Component Regression.

u - manipnlated inputs (= [£, V]T)

V - process noise covariance matrix.

V - boilup rate from reboiler

W - measurement noise covariance matrix.

w; - input uncertainty weight

wy, - performance weight

zg - mole fraction of light component in bottom product

y - primary output vector = [yp,zg)T

7 - estimated primary outputs

yp - mole fraction of light component in distillate

zg - mole fraction of light component in feed

Greek symbols

a - relative volatility

A - uncertainty block

# - Structural Singular Value

8 - secondary measurements (temperature vector)
6 - vector of all available information

O - data matrix of ¢
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