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Abstract

In the paper we use as an example the control of identi-
cal processes operating in parallel. Such systems are quite
common in industry, for example in distribution networks
or when parallel units (reactors, heat exchangers, ete.) are
used. When performance is measured in terms of the /.-
norm then the optimal single-loop P1- or PID-tunings are
nol necessarily equal for the individual loops. The same
applics when model uncertainty is included and the strue-
tured singluar value g is used as a performance measure.
‘This is contrary to what one intuitively would expect, and
also implies that the optimal solution is non-unique.

1 Introduction

In this paper we use as an example the control of identical pro-
cesses in parallel which interact with each other. It is quite com-
mon in industry that a system is composed of identical subsystems
which are symmetrically interconnected. In chemical industrics
parallel inits nre used to aded Aexibility or becase one mingle unit
would be too large. Typical examples of parallel units are ehem-
ical reactors, heat exchangers or compressors. Another example
of symmetrical systems are distribution networks. Lunze {1], [2]
studies stability of this type of systems, which he denotes “syin-
melric composile systems”.  Skogestad et al. [3] use the term
“identical parallel process” and study some of the general prop-
erlics, in particular, the value of the Relative Gain Array (RGA).

[n this paper we are not primaly interested in this specific
type of system, instead we have choosen this example hecausc of
its symmetric properties. With n identical parallel processes the
n-x n transfer matrix of the plant al a given frequency may he
written

L a(jw) a(jw) a(jw)
(l(j:w) | a(jw) a(jw)
Gljw) = g(ju) | @Uw) a(jw) 1 a(jw) (1)
a(]:w) a(]:w) a(jw) 1

where g(jw) denotes the diagonal transfer function elements, and
a(jw) the degree of interaction at a given frequency.

One example of this lype of a process is the control of flow
in parallel streams from a single source as shown in Fig.1 [1].
Opening valve | causes ¢, (flow 1) to increase and q; (flow 2) to
decrease because of the consequent reduction in pressure head.
Il there are two parallel steams the steady-state value of a is
expected to lie between 0 and -1. The value of 0 would be obtained
il the source was a large tank such that the pressure head was
maffected by an increase in flow 1. The value of -1 would be
obtained if the source was a pump with constant total flow q. For
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n parallel streams from a single source similar arguments yicld
—1(n-1)<a<0 2)

The lower bound is obtained by considering constant total flow.
lu this case a change Aqq in flow ! would yield Aq, = Agy =
o= Agqy = —Aq/(n —1). A value less than the lower bound
—1/(n—1) would imply that the total flow is reduced by opening a
valve and does not seem to be possible in a practical situation. For
a reactor/cooling example the same lower bound for a is oblained,
but the upper bound equals 1 [3].

Our interest in this kind of processes was initiated by resulis
obtained hy Skogestad et al. [5] for a simplified distillation column
model. The model used in that paper is

G"'V(.S)

1 ( 0.878 (3)

3 —0.864)
T 755 +1 \-1.082

1.096

Here the inputs are reflux (L) and boilup (=V) and the outputs
are product compositiona, This is of course not an example of
ldentieal parallal procesaen, but the eolurn meodel s well approx-
imated by Eq.1 with a = —0.986. Skogestad et al. [5) studied
robust control using Iq.3. They considered uncertainty with re-
spect to the actual value of the inputs L and V, and used the
Heo-norm of the weighted sensitivity as a performance criterion.
Note that the uncertainty and performance specifications in this
example were identical for the two chaunels. With the uncer-
tainty and performance weights fixed, the problem of optimizing
the worsl-case response is solved mathematically by finding the
controller C thal minimizes the value of the structured singu-
lar value jipp [6]. A value of upp less than 1 inplies that the
worst-case response satisfies the robust performance ohjective. A
multivariable controller with jipp = 1.06 was obtained for the
process in Eq.3 [5] (a later refinement, [7], have pushed jipp down
Lo 0.978). Skogestad el al. [5] also studied _the use of single-loop
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Figure 1. Splitting into parallel streams.



PID-controllers and were able to obtain sipp = 1.34 hy adjust-
ing the six controller parameters (k, 77, 7p for each loop). The
corresponding controller parameters are:

Loop L : k=179, 7y = 28.9 min, 7p = 0.31 min (1)

Loop 2: k=47, 7y = 1.38 min, 7p = 0.27 min (5)

We note that the integral time for loop 1 is much larger than that
of loop 2, and also the gains are very dilferent. Resulls for other
distillation column models which support these findings have also
been obtained (8. Intuitively, one would expect the optimal tun-
ings to be approximately equal for the two loops since the pro-
cess (including Lhe uncertainty and performance specifications)
is almost symmetric. For example, Lunze {2} assumes Lhat de-
centralized controllers should be identical for identical processes
operating in parallel.  However, the result above suggests that
the optimal PT tunings may be differently tuned loops even if the
plant is completely symmetric. In this case the optimal tuning is
not unigue since we may simply interchange the controllers for
the two loops and get thie same overall performance.

The objective of this paper is to use a completely symmetric
plant and examine {or some examples when the optimal tuning of
a decentralized controller is non-identical. We will also give some
explanations to why this is the case.

2 Problem formulation

2.1 Example process

We consider a 2 x 2 parallel process with transfer function

der= () o

where a is a real constant. All elements of G(s) share the same
dynamics, so the condition number and the RGA are constanis
and are nol [unctions of frequency. The condition number, v(G),
cquals (1 + a)/(1 — a) and the 1,1-element. of the RGA is Ay, =
1/(1—a?). We will focus on a plant where @ = 0.949 and 7 = 100.
This corresponds to a plant with strong interactions, as can be
seen from the RGA were Ay = 10, or from the condition number,
() = 38.2. In order to study the effect of interaction and of
plant dynamics, we shall also consider the following values of a
and 7.

¢ a:0,0.827,0.949, 0.984, and 0.995 (corresponding to Ay =
1, 3, 10, 30, and 100)

e 7: 10 and 100 min.

The value of 7 should be compared to the value of the dead time
0 of 1 min allowed by the uncertainty weight (see below). Also
note that for the special case of 2 x 2 plants the sign of a does
not matter, that is, the same results, for example with respect to
optimal tuning parameters, would be obtained with @ = 0.9 or
a = —0.9. The reason is that changing the sign of input 1 and
outpul 1 changes the sign of the off-diagonal elements, but keeps
the diagonal elements unchanged. This is not the case for 3 x 3
plants or higher. '

We will use decentralized Pt- and PID-controllers on the cas-
cade form with derivative action effective over one decade.

Ceip(s) = (CP“())I(S) CPII?Z(S)) "
cpip(s) = pltms _1+ms (8)

s 14+ 0.1rps
The controller parameters k, 7y and 7p, for each loop arc op-

timized with respect Lo an objective function based on the struc-
tured singular value p or the Ho-norm as defined below. For P1D
controllers we require r; > 7p. As a comparision to the decen-
tralized controllers, we will sometimes also use a “full” u-optimal
controller, i.e. a multivarilable controller with no restrictions on
structure or number of states.

2.2 The p-objective formulation

A block diagram of the plant is shown in Fig.2. G is the nominal
process, as defined in Eq.6. C is the controller. Wp and W, are
frequency dependent weighting matrices. Aj is a perturbation
block, used to represent uncertainty.

Any model is subject to some uncertainty, and one sourse of
tmeertainty which always is present is input uncertainty. The
blocks W) and A; are used to model multiplicative input uncer-
tainty. Let the relative input error be € at steady-state, and as-
stme it increases with frequency such that it reaches 1 (100%) at a
frequency of about 1/8. This increase of the error with frequency
is used to take care of unmodelled high frequency dynamics, for
instance valve dynamics or a neglected time delay.

%3+l
$+1

0

) voowi(s)=c¢ 0)]

We assume 20% uncertainty at low frequencies, and high fre-

quency uncertainty corresponding to a 1 minute delay, i.e. € = 0.2
and 0 = 1. Aj is a diagonal matrix,

Ai(s) = diag{8i(s),--,6x(s)},6i(s) €C, (A1) < 1,Vw (10)

i.e. the uncerlainty is structured. G, W; and A, defines a set of
plants G, = G(T + A;W}). The goal of the uncertainty modelling
is lo make the set (7, as small as possible and still ensure that the
“true plant”™ is within the set.

The objective of the controller is to keep the controlled output
vector (y) close to Lhe set-points (y,,) despite the effect of distur-
bances (d). Assume that the following performance specifications
are given: 1) Steady-state offset less than A; 2) Closed-loop band-
width higher than wp; and 3) Amplification of high-frequency
noise less than a factor M. These specifications may be reformu-
lated as a bound on the weighted sensitivity function

F(WpS(jw)) < 1 Vw (11)

(which is equivalent to requiring ||WpS||., < 1) using the follow-

ing weight
Wp(s) = (wm 0 ) (12)

0 wp
where | M )
TelS Lo
wp(s) = Myt A with 74 =1/wg (13)
A
s | Wp e
d
Yp=0

Figure 2. Block diagram of plant with input uncertainty
and with disturbances as external inputs.



We shall for both oulputs use A = 0 (no offsct) and M = 2,
Unless otherwise stated we shall use ry; = 7.2 = 20 min,

Robust Perlormance (RP) is achieved il the above-mentioned
performance criterion is satisfied for all possible plants in the set
(/,. Mathematically, this is tested by computing st of Lhe matrix
an (see [5])

—Wi i,

-W,CS)
WpSG

WpS (14)

Npp = (
1 {(Nnp) is computed with respect to the structure diag{A, Ap},
where Ap is a full 2 x 2 matrix. u(Npp) should be less than one at
all frequencies for RP to be satisfied. The peak value of p{Npp)
will be denoted jipp. The block diagonal elements of Npp are
themsclves important. We denote them
an:N“ =—VV,H, and NNP=N22= WpS (]5)
Robust Stability (RS) is achieved il ji( Nps) is less than one at all
frequencies (computed with respect to A;). Nominal Perlormance
(NP) is achieved if @(Nyp) is less than one at all {requencies.
I this paper we obtain the optimal controller scttings by
considering robust performance (“optimize worst case response™).
There exists several possible choices for the objective function:

¢ In the “standard approach” (denoted “Approach 1* in the
following) ppp is minimized with fixed uncertainty and per-
formance weights (i.e., 74 = 20 min). An optimal jigp-value
different from 1, say 0.7, then means that both the perfor-
mance and the uncertainty weight may be increased by a
factor of 1/0.7 and the system will still achieve the robust
performance requirement,

In many cases it seems more reasonable keep the uncertainty
fized, and to minimize the “worst-case” peak of Npp, =

7(WpS,). In this “Fixed uncertainty approach” we define
i at each frequency as
"y _ /len ,Ule) 16
#jw) /t( Na  Na (16)

At any frequency y' is directly equal to the worst-case G(1WpS)
Since this peak will be infinite if the system is unstable, we
in this case require that there exists a controller which yields
RS. Synthesis using this approach is to obtain the controller
which minimizes the peak, jtjzp, of y/(jw). Relative to the
standard approach, this tends to penalize systems that are
close to instability.

o In the “Achievable performance approach” we adjust the
performance weight such that yugp = 1 (we stilt keep the un-
certainty fixed). This approach is also denoted “Approach
2" [8]. We choose to keep M fixed and adjust 7. in the
weight Wp. That is, the parameters in the controller C(s)
are obtained by solving the following nested loop optimiza-
tion problem:

min [mcin,mp(c, ‘rc,)] _1[ (17
or the lollowing constrained optimization problem:
minfral; st urp(C, 1) <1 (18)
ety

tere “C™ denotes the controller or the adjustable controller
paramelers. Ior a solution to exist, we must require also in
this case that there exist a controller which achieves RS.

The optimal parameters we present in this paper are obtained
using a general optimization routine and since there are local min-
ima there is no guaraniee that the settings presented really are
the true optimal.

2.3 The Hy-objective formulation

As a comparision to the ; optimal tunings, we will also obtain
optimal tunings by minimizing the following H-norm:
WpS Il

WiH; |,

(19)

This is a standard “mixed sensitivity” H,, problem which cor-
responds to simultaneously trying to optimize NP, and RS with
respect to input uncertainty. We shall use the same weights as
defined before (Eq.9 and 13).

3 Analytical expressions
The transfer iatrix of a set of identical parallel processes, matrix

G in iq.1, is a circulant matrix. The general form of a circulant
matrix C is:

Cq C2 C3 ++¢ Cn
Cn 1 G Cn—1

C = Choy Cn Cn—2 (20)
Ca Cy €4 ‘- [+

From the theory [9], [10] we know that one property of a circulant
matrix is that its eigenvectors are the same as the vectors result-
ing from a singular value decomposition, and the singular values
equals the modulus of the eigenvalues. (o; =] A; |). Furthermore,
il A and B are circulant matrices and k; a scalar, then AT, AH,
kA 4+ kB, AB, ¥, kA" are circulant and A and B commute,
that is, AB = BA. Note that A~! is also a circulant matrix.
For example, if a process with a circulant transfer function G is
controlled by n equal single-loop controllers (ie., C = cI), the
sensitivity function § = (I + GC)~! and the complementary sen-
sitivity function H = I — S are both circulant matrices.

The structured singular value, g, of a matrix N is bounded in
the following way [6]:

p(N) < u(N) < &(N) (21)

1(N) = p(N)if A =861, and (N) = &(N) if A is unstructured,
i.e. il Ais a full matrix. If N is a circulant matrix, then both
equalities hold and we may compute p exactly. This result im-
plies that for a circulant N there exist a perturbation, A = 61,
which is as bad as any full perturbation matrix. For example,
Nps is circulant if we use identical controllers in all loops, so
P(Nrs) = ptrs = 5(Nns) and pgs is the same for structured and
unstructured uncertainty.

4 Results

4.1 j-optimal designs

As mentioned earlier, one would expect the optimal controller
to be symmetric, since the plant (including the weights) is sym-
metric (this symmetry argument holds both for a “full” multi-
variable controller and for a decentralized controller). We used
the p-toolbox for MATLAB [11] to design a full multivariable p-
optimal controller for the case where 1 = 100 min, a = 0.949



and 14 = 20 min. The controller design method we used is called
“DI-iteration” and it is described by, for instance, Doyle el al.
[12]. "This design method does not impose any restrictions on the
structure of the controller, nor does it limit the number of con-
troller parameters. The resulting optimal controller for our prob-
lem has 30 states and yields 1rp=0.987, i.e. robust performance
is achioved. (The controller is strictly speaking only suboplimal,
since convergence Lo a global optimum is not guaranteed). I'he
most interesting resull is that the controller is almost symimetric.
In fact, we may adjust it to be perfectly symmetric without in-
creasing prpp. This result shows that our intuition was right in
the case of a full multivariable controller.

"The solid curves in Fig.3 shows #(Nrp), i(Nns) and &(Nyp)
as functions of {requency for optimal tuning of two identical I’
controllers. The dashed curves are for non-identical tuning ol
the two loops. Optimization approach 1 is used in both cases
and optimal tuning parameters are shown in Table 1. All curves
are for the case where 7 = 100 min, a = 0.949 and T = 20
min. The curves in Fig.3 demonstrates that identical tuning is
not optimal. If we adjust the tuning to press down peak “A”,
then peak “B” will become higher, and vice versa. However, il we
allow non-identical tuning it is possible to press down both peaks.
#rp is reduced from 1.28 (identical funing) to 1.17 (non identical
tuning). Note that this result implies that the optimal solution
is non unique, we may simply interchange Lhe controllers for the
two loops and get the same overall performance.

Table 1 also presents optimal tuning parameters for identical
and non-identical PID-controllers. Also in this case non-identical
tuning is better than identical.

It is interesting to find out under which circumstanses nor-
identical PI-tuning is optimal. To do this we consider the follow-
ing values of a and 7.

e a:0,0.827, 0.949, 0.984, and 0.995
e 7: 10 and 100 min.

The results of the parameter optimizations for different combina-
tions of the parameters a and r are presented in Tables 2 and 3.
Optimization “approach 2” is used in both cases. The tables give
the best achievable performance (as expressed by the value of 7,
in the performance weight) for the specific plant as well as the
corresponding controller settings. Small values of 7 are good as
they imply that fast response may be achieved, even in presence
of model uncertainty.

T LT

w [rad min.~']
Figure 3. Plots of p(Ngp), #(Nps) and p(Nyp) for plant
with @ = 0.949, r = 100 and 1, = 20. Solid curves: ldenti-
cal Pl-controllers. Dotted curves: Different Pl-controllers.
Controller tunings are given in Table 1.

f)

Table 2 present the optlimal Pl-settings when we require the
lwo single-loop controllers to be identical and Table 3 present
the results when the tunings are allowed to be different. For
the case with r=10 min there is no improvement by allowing the
controllers to be diflerent, so these results are omitted from Table
3. For the case with 7=100 min we note that the achievable
closed-loop time constant, 74, may be significantly reduced for
“intermediate” values of a corresponding to RGA-values between
10 and 30. For example, with 7=100 min and a=0.949 (A;;=10)
the value of 7, may be reduced from 51.4 to 44.2 min.

We also note that for the cases where the improvement is
largest, the intcgral time for one loop is at about the open-loop
time constant 7 while the integral time for the other loop is much
smaller. This means that one loop is tuned tighter than the other,
and despite this both Joops achieve shorter closed-loop time con-
stants than for identical tuning.

We now want to see how much speed we have to give up in one
channel in order to get fast response in the other. Fixing 7o, = 20
min and using approach 2 to minimize 7. gives 7. = 45.6 min.
{The tuning parameters are presented as the last entry in Table
3.) Thus, for this specific problem we are able to achieve fast
response in one channel at almost no cost.

Table 1: Optimal tuning parameters for plant with a = 0.949,
7 =100 and 74 = 20. Tuning approach 1,

Controller pupp & ko ™m Tre TDI Tp2

min. min. min. min.

Pl 1.28 81.0 81.0 57.5 575
PI 1.23 73.7 357 103 2.72
PID L17 921 921 726 726 0.318 0.318
PID 1.09 83.7 39.7 100 2.08 0.285 0.836

Table 2: Identical Pl-controllers. Tuning approach 2.

T a To k T
nin. min. min,

10 0.000 2.59 5.57 11.5
10 0.827 121 3.8 527
10 0.949 26.1 2.95 3.06
100 0984 81.7 2.90 3.03
10 0995 263 2.88 3.03

100 0.000 266 54.2 115
100 0.827 163 422 589
100 0.949 514 39.7 65.1
100 0984 119 38.7 39.2
100 0995 203 378 19.5

Table 3: Different PI-controllers. Tuning approach 2.

T a Tol ko ke th T
min. min. min. min.

100 0.000 266 54.2 54.2 115 115
100 0.827 153 401 355 112 4.2
100 0949 442 423 250 101 5.00
100 0.984 119 38.7 387 39.2 39.2
100 0.995 203 37.8 378 195 19.5

100 0.949 45.6/20 41.0 229 100 3.18



Summing up: The closed-loop time constant with equal Luning
in both loops is 51.4 min. Different tunings makes it possible to
improve the time constant to 44.2 min. By allowing one loop Lo
react slightly slower, . = 45.6 min we may improve the response
in Lthe other channel to 74 = 20 min.

The findings above are illustrated in Fig.d4 by simulations of
the response to a unit step disturbance acling on output 1 at time
{ = 0. In the simulation we use a 4 20% gain error and a 1 minute
delay (0 = 1).

0%s* —60s+12 712 o0
u(s) (

T 0% 1685 +12 \ 0 0.8) ue(s) (22)

T'he solid curves shows Lhe response for identical controllers (ra =
31.4), and the dolted curves are for non-identical controllers (T
44.2). The simulation shows that the differently tuned loops re-
ject the disturbance hetter than identical controllers, in particn-
lar as it approaches steady-state. One should keep in mind that
simulations can only be performed for specific choices of distur-
bances and model errors, and one should not necessa rily expect a
good correlation between a single simulation and the worst-case
response for which g is a measure.
correlation is good.

Comment on uniqueness of decentralized controllers: The fact,
that the value of 7 in the model makes a difference demonstrates
that it is not only the decentralized structure in itself that leads
to different Lunings in this case, bul also the limited number of
degrees of freedom in the PI and PID coutrollers. For example,
consider the optimal identical PI controller cr0 for the plant (7
with 7 = 10 min. Then the idenlical decentralized controller
o0 = c1o(1 + 1005)/(1 + 10s) ' would give the same 7-values
when applied to Gy, as for ¢jq applied to Gyo. Tor example, we
see from Table 2 that it should he possible for the case r = 100
min. a = 0.949 to obtain identical decentralized controller which
achieve 74 = 26.2 min (whereas the best identical PI’s in Table 2
give 51.4 min).

However, in this case the

T T

0 20 4 6 80 100 120 w40 160 180 2m0
time [min.]

Figure 4. Response to a unit step disturbanse at ¢ = 0 act-
ing on output 1. Solid curves: Identical PI controllers (re =
51.4). Dotted curves: Different Pl-controllers (74 = 44.2).
Controller tunings are given in Table 2 and 3, respectively.
Uncertainty (Eq.22) is used in both simulations.

!"This is actually a controller of the PID-form in Eq.8, but with no restric-
tions on the parameters rp and 0.17p

4.2 H,-optimal designs

The H,, optimal PI tuning for 7 = 100 min is non-identical, just

like the st optimal tunings. The H,, results are presented in Table
4 and 5.

5 Discussion

Our results demonstrate that the g-optimal single-loop controllers
do not have to be equal for identical parallel processes when we
use decentralized (single-loop) PI- or PID-controllers. However,
for some of these cases it became optimal to have identical con-
trollers if we did not limit the structure of the decentralized con-
trollers to Pl or PID. The reason for this is probably as follows:
Consider e.g. jtpp as a performance objective. There always
secms to be a local minimum around the point of identical con-
trollers. In some cases theve also exists local minimas correspond-
ing to having the controllers differently tuned. The location of the
global minimum may be either of these, and the optimal decen-
tralized control structure (identical or not) may therelore easily
be altered, for example, by going from a PID to a more general
controller strucure as discussed earlier.

The reason why it is optimal to have diflerent tunings in some
cases may be understood intuitively as follows: With identically
tuned controllers the resonance peaks of the individual loops are
al. the same frequency and may be strongly amplified by the in-
leractions (when the parameter a is close to 1). When the loops
are tuned differently the interactions between the loops is much
less (as an extreme consider the case when the controller gain in
loop 1 is zero). Balchen [I3] discuss this effect for the case of
nominal stability. In our case of RP, we see that the peak “A”
in Fig.3 is mainly caused by a peak in &(WpS) for NP, By use
of non-identical tuning the interactions between the loops is less
and the “A”-peak is decreased and flattend out (the fact that it
is flattened out means that the performance at other frequencies
is worse).

Although the problem statement in this paper is identical as
scen [rom any loop, the uncertainty perturbation block, A, does
actually allow the parallel processes not to be identical when the
itrp criterion is used. At a first glance, one may believe the

Table 4: ldentical Pl-controllers. H,,-norm objective function,
Eq.19. Tuning approach 1.

e s Kk om
min. min.
¢
100 0.827 0.706 41.2 74.4
100 0949 1.011 89.5 53.2
100 0.984 1.358 194 37.0
100 0.995 1.667 468 28.8

Table 5: Diflerent Pl-controllers. He.-norm objective function,
Eq.19. Tuning approach 1.

T a ””oo kl kg ™Tm Tr2
min. d min. min.
100 0.827 0.7022 41.3 39.4 133 24.0
100 0949 0.9380 78.9 46.7 104 2.42
100 0984 1273 175 926 924 3.14
100 0995 1.624 414 317 786 3.76



results with different tunings to be related to this fact. However,
this is not the case, since we have seen that also the H. criterion
may lead to different tunings. An other way to make sure that
the different tunings are not related to the perturbation block
is Lo restrict Ay to be a repeated, diagonal, scalar perturbation,
This restriction guarantees the perturbed parallel processes to be
identical. Qur numerical findings show Lhe optimal PI tunings are
not affected when A; is restricted in this way (this is obvious il
we consider Npg, which is a circulant matrix, but not obvious for
Npp).

The fact that the optimal tunings for the loops are nol iden-
tical is of course an interesting resnlt from a theoretical point of
view, but it has practical imnplications ouly if there is a real im-
provement by using different controllers. Even if the objective
[unction is improved by diflerent tuning, we may still prefer iden-
Lical tuning of practical reasons, such as easier maintainence and
tuning. However, our results do show that in some cases we may
make one of the loops significantly faster (by a factor of 2) with
no deterioration in the other loop (compared Lo the performance
with identical tunings). Similar observations have been made for
distillation colwmns, and is probably one of the reasons why dis-
Lillation columns often are tuned with one loop fast and one loop
slow,

Our numerical results for higher-order systems (n > 2) indi-
cate that the advantage of using dilferent tunings is less than for
the 2 x 2 case.

6 Conclusions

The resulls above demonstrated that when robust performance
(1trr) is nsed as a performance measure, the optimal Pl and
PID-tunings for single-loop controllers are not necessarily eqnal
even though the problem statement, js completely symmetric. The
same result is obtained when an M, criterion is used. We have
not obtained similar results with an 113 objective lunction. The
result imply that the solution is not unique since we may simply
interchange controller 1 and 2 without changing the value of the
objective functuion.

NOMENCLATURE (also sce Fig.2)

A - steady-state oflset specification (Eq.13)

a - degree of interaction (Eq.1 and 6)

C(s) - controller

((s) - linear model of process

Hi(s) = C(s)G(s)(T + C(3)G(s))~" - input complementary sensi-
Livily Tunction

k - controller gain

M = max, 5(S)(jw) - maximum peak of sensitivity function
(Eq.13)

Nrp,Nps, Nnp - sce Eq. 14 and 15

NP - Nominal Performance

RGA - Relative Gain Array, elements are Aij

RP - Robust Performance

RS - Robust Stability

S(s) = (1 4+ G(s)C(a)) 1 - sensitivity function

wr - input uncertainty weight (Eq.9)

wp - performance weight (Eq.13)

Greek symbols

[lA]loe = max, G(A(jw)) - He-norm of A
¥ =&/ - condition number

A - block diagonal perturbation matrix
¢ - relative input error at steady-state

0 - time delay

Ai - eigenvalue . ‘

A(jw) = (1 = %‘J’—Z%}j—:‘})" - 1,1-element in RGA.
#t - structured singular value

i - see Eq.16

p - spectral radius

& - maximum singular value

g - minimum singular value

7 - plant time constant

T - (maximum) closed-loop time constant,
0 - controller derivative time constant

71 - controller integral time constant

w - frequency (rad min=!)

References

[1] Lunze, J., 1986, “Dynamics of strongly coupled symmetric
composile systems”, Int. J. Control, 44, 6, 1617-1640.

{2

Lunze, J., 1989, “Stability Aunalysis of Large-scale Sysiems
Composed of Strongly Coupled Similar Subsystems”, Auto-
matica, 25, 4, 561-570.

(3] Skogestad, S., P. Lundstrém and M. Hovd, 1989, “Control
of identical parallel processes”, Paper 167Ba, 1989 AIChE
Annual Meeting, San Francisco.

[4] Shinskey, F. G., 1979, p.201, Process Control Systems, 2nd
Edition, McGraw-Hill, New York. :

[5] Skogestad, S., M. Morari and J.C. Doyle, 1988, “Robust
Control of 1}-Conditioned Plants: High-Purity Distillation”,
IEEE Automatic Control, 33, 12, 1092-1105 (Also see cor-
rections to j-optimal controller in 34, 6, 672).

[6] Doyle, J. C., 1982, “Analysis of Feedback Systems with
Structured Uncertainties”, IEEE Proc., 129, D, 242-250.

Lundstrém, P., S. Skogestad and Z-(). Wang, 1991, “Weight
selection for H-infinity and mu-control methods - Insights
and examples from process control”, Symposium on “Robust
Control System Design Using H-infinity and Related Meth-
ods”, Cambridge, UK.

(7

—

8

e

Skogestad, S. and P. Lundstrém, 1990, “Mu-optimal LV-
control of Distillation Columns”, Computers chem. Engng.,
14, 4/5, 401-413.

[9] Davis, P.J., 1979, Circulant Malrices, Wiley, New York.
v

(10] Bellman, R., 1970, Introduction to Matriz Analysis, McGraw-
Hill, New York.

(11] Balas, G.J, J.C. Doyle, K. Glover, A.K. Packard and R.
Smith, 1990, Manual to “s-Analysis and Synthesis Toolbox,
Beta Test Version”, MUSYN Inc.

[12] Doyle, J.C., K. Lenz and A.K. Packard, 1987, “Design exam-
ples using pi-synthesis: Space shuttle lateral axis FCS during
reentry”, NATO ASI Series, vol. FF34, “Modelling, Robust-
ness and Sensitivity Reduction in Control Systems”, R.F.
Curtin, Editor, Springer-Verlag, Berlin-Heidelberg,

(13] Balchen, J.G., 1990, “The stability of 2 x 2 multivariable
control systems”, MIC, 11, 2, 97-108.



