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Abatract

The paper addresses control of distillation columns at open-
loop unstable operating points. The fact that ideal two-product
distillation columns may have right half plane poles has only
recently been recognized. The paper provides evidence for the
observed instability. It is shown that the columns may be sta-
bilized by use of one-point control, i.e., feedback control of a
composition or a temperature inside the column. Finally, the
impact of the right half plane pole on achieveable control per-
formance is discussed.

1 Introduction

Distillation is undoubtly the most studied unit operation in the process
control literature. Two-point (dual composition) control of distillation
columns is a difficult task due to several complexities like strong inter-
actions (ill-conditioning), sluggish responses and strong non-tincarities.
However, all work so far has assumed the columns to be open-loop sta-
ble (with level and pressure loops closed). The main reason for this is
that most authors have considered dynamic models with inputs (cg.,
reflux and boilup) given on a molar basis.

For the casc of molar inputs there exists several papers on unique-
ness and stability of the operating points. Rosenbrock [4], [5] showed
that binary distillation columns with constant relative volatility (ideal
VLE}) and constant molar flows always exhibit unique and asymptol-
ically stable solutions. Doherty and Perkins (1] extended this result
to the case with non-ideal VLE, but still assumed binary mixture and
constant molar flows (i.e., neglected the energy balance). Sridhar and
Lucia [6] include the energy-balance in the model and conclude under
certain assumptions that also in this case binary distillation column
will exhibit unique and stable solutions. They do however only study
a limited set of specifications (cg. QpQp and LB).

However, Jacobsen and Skogestad [3] argue that real columns only
in rare cases have all the manipulaled inputs on a molar basis. For
instance, fixing the valve position will normally correspond closely to
fixing the geometric average of mass and volumetric flow-rate. As they
show, the transformation from mass- or volume flows to molar flows is
nonlinear due to the composition dependence and may in some cases
become singular. A singularity in the transformation will imply that
there exists multiple solutions, one of which will be unstable.

The previous paper (3] treats the multiplicity only from a steady-
state point of view. In this paper we study the dynamics of colunins
with multiple solutions, and consider the implications of open-loop
instability for feedback control. The last point is important as previous
work on distillation control has assumed open-loop stability. The most
important question to be answered is wether the achieveable closed-
loop performance is significantly influenced by the possible right half
plane pole.

We start the paper with a brief summary of the previons resuits
on steady-state multiplicity in distillation columns. We then prove the
instability observed in [3] and consider the overall dynamics of columns
with right half plane (RHP) poles. Finally, we consider wether any
fundamentally new control problems are introduced by the multiplicity
and instability.

We will limit ourselves to discuss mainly one control configuration
(set of specifications), namely the L, V- configuration where mass re-
flux L, and molar boilup V (corresponds closely to heat input Q) are
used a independent variables. This is the most widespread configura-

tion in the industry, and it is the configuration for which multiplicity
and instability is most likely [3].

2 Results on Steady State Multiplicity in Ideal
Distillation

We give here a brief review of the results presented in [3].

Consider the two-product distillation column in Fig.1. If the feed to
the column is given there are at least four flows that may be specified:
rellux L, boilup V, distillate D and bottoms flow B. However, for a
given column there are only two degrees of freedom at steady-state,
that is, only two of these flows may be specified independently. In
the following we will denote a specific choice of these two independent
variables as a "configuration™.

Jacobsen and Skogestad [3] provide a simulation example of steady-
state multiplicity in a column separating a mixturc of methanol and
n-propanol. The column has mass reflux and molar boilup as indepen-
dent variables, ie., L, V-configuration. Data for the column are given
in Table 1. Note that the energy-balance is excluded, ie., constant
molar flows are assumed. The simulation results are given in Table 2,
and the multiplicity is graphically illustrated in Figure 2.

The multiplicity is caused by the transformation between the actual
flow-rates (mass) and the molar flow-rates which determines separa-
tion. For a binary mixture the transformation between mass reflux,
L., and molar reflux, L, is given by

L=1L,/M;M=ypM +(1-yp)M, (1)

Here AM; denotes the mole weight of the individual components. One
might expect the molar reflux to increase monotonically with the mass
reflux, that is, (8L/dL,)y > 0. However, because M is a function
of composition, yp, and thereby of L, this might not be the case.
Assuming molar boilup V fixed and differentiating L, = LM on both
sides with respect to L yields
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Figure 1. Two product distiliation column.




Tnble 1. Data for Mcthanol Propanol Columnn.

ZF F 8 N NF A’| A’g
050 1 355 8 4 320 60.1
Constant molar flows
Feed is saturated liquid
Tolal condenser with saturated reflux
Liquid holdups are Mpi/F = 0.5 min, including reboiler and condenser.

For A, < M3, which is the most common case (the most volatile
component has the smallest molecnlar weight), the second term on the
right hand side of (2) will be negative and the total difTerential may
take either sign. The transformation from L, to L will be singular
when (8Ly/8L)y = 0. The singular point corresponds to a pitchfork
bifurcation point, ie., the number of solutions change from one to three.
Jacobsen and Skogestad [3] state that solutions with a negative slope
between L and L,, corresponds to unstable operating points, but they
do not prove this rigorously.

3 Open-Loop Dynamics

The maximum eigenvalue in different operating points for the methanol-
propanol column with constant molar flows and the L, V-configuration
arc shown in Fig.2. From the figure we observe that the eigenvalues
at the upper and lower branches are negative, implying stability, while
those at the intermediate branch (negative slope) are positive, imply-
ing instability of the operating points. The eigenvalues at the singular
points are zero as expected since they correspond to bifurcation points.

The purpose of the rest of this section is to prove the observed
instability at the intermediate branch and to compare the dynamics
of columns with mass or volume inputs with those found for models
with molar inputs.

3.1 Stability

Although the dynamic model of a distillation column is of high order,
it is well known that the overall composition dynamics in distillation
columns inay be well approximated by a first order response (eg., [8]).
This implies that we may approximate the transfer-function from mo-
lar reflux to top composition with (assuming constant molar flows)

dyp _ _ 5
(32), - 1i @

where gy ( = (%j‘tl)v in (2)) is the steady-state gain and 7 is the

dominant time-constant. We want to derive the transfer function
(0yp/dLy)v(s). We have, with V constant

dyp
d = —— 4
yp(s) ( 3L )V (s)dL(s) (1)
Here L = L,/M is a function of both L, and yp and we get

dL(s) = (;TLw),,, ()dLu(s) + (5%)“ dyp(s)  (5)

Table 2. Steady-state solutions for methanol-propanol column with
V=2.0 kmol/min and L, in the range 48 to 53 kg/min.

L D Ly ¥p g
kmol/min kmol/min kg/min
7 1.064 0.936 48.00 0.531  3.10e -3
I 1.143 0.857 50.00 0.581 3.50e — 3
I 1.463 0.537 50.00  0.9237 7.80e -3
v 1.555 0..115 50,00 0.9969 0.101

14 1.650 0.350 53.00  0.9984 0.233
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Figure 2. Methanol-propanol column: Multiple steady states
for L,.V-configuration. Mass reflux L., is varied while molar
boilup 1 is fixed at 2.0 kmol/min. On the upper plot the corre-
sponding maximum eigenvalue is shown at some of the steady-
state solutions.

Combining (4) and (5) yields:
(312), 9= ()., (3), ©
Py 1= (), (38), @

The Laplace variables have been deleted for (L/3Ly,),, and (3L /dyp)L.,
since the relationship L = L,,/M is purely static:

(6)

(). = vbMs+ (1= vp)t (1)
OLw/ yp

(ﬂ_) _ Lu(My — M) (8)
dyp/ L, (ypMi + (1 - yp)M3)?

From (6) we now find that the dominant pole is given by

Ly gu L(M; — My)

. ypMi+(1-yp)M,
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The pole will be in the right half plane when

guL(My — M)

(10)
ypMy + (1 - yp)M;

This is exactly the same criterion as Jacobsen and Skogestad [3] found
for a negative slope between mass and molar reflux. Thus, a necessary
and suflicient condition for instability for the L, V-configuration is

(3), <



In other words, solution branches with a negative slope between [, and
Ly, represents unstable solutions, provided the column is stable on
molar basis. This result is in accordance with numerical results and
also with what one would expect for a pitchfork bifurcation.

Equation (9) gives an approximate way of calculating the domi-
'nnting pole for the I, V-configuration from data computed for molar
inputs. The expression gives a correct value of zcro Amaz at the sin-
gular points. From (9) we sce that large internal flows . L and V. (to
make L large we must increase both I and V since 1, < V) will mast
probably yicld instability. This is dicnssed in more detail in (3]-

In the general case with more complex dynamics, (3) may be re-
placed by

(m) (8): g”(l+b|s+b257+4...+b"_|s""')
14

aL 1+as+as?+...+a,s" (12)

This follows since distillation column dynamics generally have a pole
excess of | [8]. We may now use the Routh-Hurwitz stability criterion
(all coefficients in the pole polynomial should have the same sign) to
conclude that in the general case (10) and (11) are sufficient conditions
for instability.

3.2 Overall Dynamics

The analysis above showed that the dominant pole, and thereby the
low-frequency dynamics are strongly influenced by the transformation
between mass and molar reflux. The multiplicity and instability is
caused by this pole crossing the imaginary axis. However, the effect
on the high frequency dynamics is unclear. Figure 3 shows the magni-
tude and phasc of the transfer-functions from molar and mass reflux
respectively on top composition yp (keeping boilup V fixed) in op-
erating point //I of the methanol-propanol column. From the figure
we see that the phase of the two transfer-functions difTers with 180
degrees at low frequencies as expected since the transfer function from
mass-reflux is non-minimum phase due to the RHP pole. Towever, the
phiases approach each other at interinediate frequencles and becomes
identical at high frequencies. The magnitudes of the two systems are
almost identical at all frequencies. The fact that the magnitudes arc
similar also at low frequencies is more a coincidence for this operat-
ing point; the dominant poles are equal in magnitude (—0.0078 and
0.0086). However, the dynamics of the two systems are different in the
region where the phases differ.

The most important conclusion to draw from Fig.3 is that it is
mainly the dominant pole that is influenced by the transformation
from mass to molar flows. The initial response (high-frequency) is
unaffected. Similar results are obtained for the threc other transfer-
functions of the 2x2 system.
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Figure 3. Frequency response for transfer-function from re-
flux to top composition yp for operating point /1T of methanol-
propanol column. The magnitude for mass-reflux L, is scaled
by M.

4 Feedback Control

4.1 Limitations imposed by RHP poles and zeros

As we have seen, columns operating with mass or volume inputs may
be open-loop nnstable, and will require feedback control (in addition
to level and pressure control) for stabilization. From control theory
it is well known that unstable poles by themselves do not represent
any bandwidth limitations; on the contrary they put a lower limit on
allowable bandwidth of the closed-loop system. Problems wiil therefor
only arise if there are banwidth limitations like right half plane zeros
at frequencies comparable to the right half plane pole ("The system
goes unstable before we are able to observe what is happening”™) or if
there are constraints ("we can not counteract the instability™).

Freudenberg and Looze (2] have extended the Bode Integral The-
orem valid for minimum phase systems to systems containing RIIP
zeros and RHP poles. The integrals are for scalar systems, but similar
relations are obtained if one considers the maximum singular value of
the sensitivity function for multivariable systems.

For a system with a real RHP zero at z and a RHP pole p the
following restriction applies to the sensitivty function, S, of the closed-
loop system

00
[ 10015 W (2,0)dw = wloglE2Z) (13)
A _
(With no RIIP pole (p = 0) the integral equals zero). Here
2z
W(z,w) = ot (14)

We see that the weighted area of log|S| for | S| > | must be larger than
the equivalent area for | S| < 1. The form of the weight W (equals 2/z
at low frequency and falls off with a —2 slope from w = z) implies that
cssentially all the positive area has to be at frequencies lower than 2,
and there have to be a peak |S| > 1. The peak will become increasingly
large as the crossover frequency approaches z. We see from (13) that
as the RIIP zero approaches the RHP pole, the peak goes to infinity.
This implies that we in general must require

p<z (15)
For the distillation column p = Ayqr, and RHP zeros are most likely
caused by dcad-times, 84, in mecasurements and actuators. Using a
Padé approximation for 84 results in a RIIP zero at z = 2/6,.

4.2 One-point Control

Good control of distillation columns requires two-point control, ie.,
feedback control of both product compositions. However, in order to
stabilize an open-loop unstable column one-point control will suffice.
This is also the way most industrial columns are operated. An unsta-
ble column operating with the L, V-configuration may be stabilized
by controlling cither top or bottom composition, or any other vari-
able related to composition, eg. a temperature inside the column. All
transfer-functions involving composition dependent variables will con-
tain the RHD pole. If the composition measurements involves large
deadtimes that complicates stabilization, faster temperature measure-
ments may be used instead.

With a specified structure of the controller, eg. a Pl-controller,
we must require a larger distance between the RHP pole and the
RHP zero than given by (15) in order to stabilize the column. For
operating point III of the methanol-propanol column the RHP-pole
is at p = 0.086min~! and we get problems stabilizing the column
with a Pl-controller when the deadtime exceeds 11 min. (z = 2/04 =
0.182min~1). Typical composition measurement delays (GC-analysis)
in industrial columns may be up to 30 min. Note also that as the
limit (15) is approached, the closed-loop performance becomes highly
detoriated with a high peak on the sensitivity function, according to
(13).

Nonlinear Simulations. Figure 4 shows nonlinear simulations
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Figure 4. Nonlinear simulation of methanol- propanol colunin
with one-point control of top-composition yp using mass reflux
L. Setpoint changes from operating point /7 to 711 and from
111 to IV. Boilup V = 2.0 kmol/min. Controller parametors:
k= 3.0 and rr = 11.0 min. Gain is for logarithmic composition,
i.e., log(1 - yp).

of the methanol-propanol column using a single-toop Pl-controller! be-
tween top composition yp and mass-reflux L. Molar boilup V is kept
constant at 2.0 kmol/min. The figure shows the responses to setpoint
changes in yp from operating point II (open-loop stable) to operat-
ing point Il (open-loop unstable) and then further on to operating
point IV (open-loop stable) (see Table 2). Logarithmic measurement
Yp = In(1 - yp) was used in the controller as this reduces the non-
lincarity of the initial response between different operating points {8].
From the figure we see that the controller is able to stabilize the open-
loop unstable operating point 111 with a RI[P pole at 0.086 min~'.
The simulations also show that the same controller may be used in
these three widely differing operating points. The reason why the
same controller may be used in all three operating points is simply
that the initial response (high-frequency dynamics) is similar in all
operating points. From the plot of mass-reflux L, against time we
sce that the steady-state change in the input is zero, showing that the
three operating points are multiple solutions.

One should be careful about detuning a controller in an open-loop
unstable process as the bandwidth may become lower than the mini-
mum allowable and the closed-loop system unstable. This is illustrated
in Fig.5. where the controller gain has been reduced by a factor of two
compared to the simulations in Fig.4. Opertaing point [/[ is now
closed-loop unstable, and a small sctpoint change makes the system
start drifting away. However, this does not imply that the column gocs
globally unstable in the sense that physical constraints are violated.

'Tuned to yield reasonably fast response. Note that Ziegler-Nichols tuning rules
resulted in a closed-loop unstable sysiem.

Sinee there exists steady-state solutions above and below the unstable
solution the column goes into a stable limit cycle. If the controller gain
is recluced further the limit cycles will continue, but now with a longer
period of each cycle and with higher peaks in composition. There will
exist cases where there are no solutions either above or below the un-
stable solution (in fact, the solutions would then correspond to one of
the product flows being negative). lu this case the column is likely to
go globally unstable as either the condenser or reboiler would run dry.
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Figure 5. Nonlinear simulation of mecthanol- propanol column
with one-point control of top-composition yp using mass reflux
Ly,. Controller gain reduced by a factor of 2 compared to Fig.4.
Upper plot: Time as independent variable. Lower plot: Phase-
vlane plot. Dashed line shows steady-state solutions.

4.3 Two-Point Control

As pointed out above one-point control is sufficient to stabilize an un-
stable operating point, but high performance control requires control
of both product compositions. There exist a large amount of litera-
ture on two-point control of distillation columns, but all is based on
open-loop stable models. We want to investigate wether the poten-
tial instability for mass-flows will affect the achieveable closed-loop
performance of the column significantly.

In order to compare achieveable performance for the stable model
with molar refllux and the unstable process with mass reflux we design
controllers with optimized performance for both cases. As a design
objective we use the structured singular value, u (see e.g., [7]). This
implies that we may include model uncertainty in the design, which is
of outmost importance when designing controllers for ill-conditioned
plants [7]. In the design we use an uncertainty on each channel given
by the weight



90,8 + | :
w(a) = 0.20 " (16)
0.59{.“ + 1
This means that we allow for a deadtime 84 in addition to 20 % wun-
certainty in cach input, The performance weight used is given by
Lras+ P =
wp(s) = — 2T (17)
I’ TelS

This implies that the worst case peak of @(S§) should be less than I,
and that the closed-loop time-constant should be less than 4. \Ve
will design controllers for different values of 84, and for each design we
adjnst the peformance weight untill a se-value of 1 is achieved. This
is done by first increasing o and then increasing P if necessary. A
je-value of | implies that we can guarantee the specified performance
for all plants within the model uncertainty.

We will again consider operating point /7 of the methanol-propanol
column with a RIP pole at 0.086 min='. We use two single-loop PID-
controllers as this is the preferred controller structure in the industry,
and design controllers for deadtimes between 1 and 5 min. The results
are given in Table 3.

Table 3. Robust performance parameters (see Eq.17) obtained for
stable LV-confignration and unstable £, V-configuration in op-
erating point IT1 of the methanol-propanol column. All parain-
cters for minimized prp=1.00 using two single-loop PID con-

trollers.
LV L,V
8q(min] P ra(min) P ry(min)
1.0 2.5 25 2.5 32

2.0 2.5 59 2.5 110
3.0 2.5 100 3.0 227
4.0 2.5 161 5.0 315
5.0 3.0 175 6.0 455

For a deadtime of 1 min. we see from Table 3 that there is only
a small difference between the achieved robust performance of the
two systems. However, as the deadtime is increased we must allow
for higher peaks in the sensitivity function for the open-loop unsta-
ble model than for the open-loop stable model. This is also as cx-
pected from (13). With a deadtime of 5 minutes (RHUP zero at 0.4
min=1) the response for the LV-configuration is poor (7. = 175 min.
with a maximum peak P = 3.0), while the response for the L,V
configuration is unacceptable (ry = 455 min. and P = 6.0). This
implies that when the operating point is open-loop unstable (with the
L,V-configuration) and the system in addition has significant dead-
time one should consider using a different configuration (see Discus-
sion).

Nonlinear Simulations. Figure 6 shows responses tn sctpoint
changes in top composition yp using two single loop PID-controllers
for the LV -configuration and the L, V-configuration. The simulations
include 5 minutes deadtime (using a Padé approximation) and 20 %
input uncertainty. The controller parameters were obtained from the
ji-optimal design above, and are given in Table 4. The simulalions
demonstrate the fact that the performance for the case with mass-
reftux is clearly worse than for the case with molar reflux. The L,.V-
configuration has a much larger overshoot as well as a longer scttling
period.

Table 4. Controller parameters for closed-loop simulations in Fig. 6.

(Correspond to last entry in Table 3.)

ky Tly TDy kg Tir T™Dr
LV — configuration  0.0687 6.55 2.33 0.0680 5.29 0.180
L.V — configuration 4.064 32.27 291 0.0280 4.79 0.209

Gains are for logarithmic compositions, ie. log(1 — yp) and log(x ).
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Figure 6. Nonlinear simulation of methanol- propanol column
at operating point [JI with two-point control using LV- and
L,V -configuration. Response to a setpoint change in yp using
two single-loop PID controllers. Deadtime 4 = 5min. PID-
settings from Table 4,

5 Discussion

Other Configurations. We have in this paper only considered the L,,V-
configuration. This is also the most widespread configuration in in-
dustry. However, there are many different configurations that may
be used, and using reflux and boilup for composition control is not
necessarily the best choice (see e.g., [9]).

Jacobsen and Skogestad [3] showed that instability for the D, V-
configuration is very unlikely. Thus, if instability is observed for
the L, V-configuration one may change to the D,V-configuration by
changing condenser level control from distillate to reflux. However, the
D,,V-confliguration may for some columns be a bad choice [9]. Another
confignration which may be a good choice for many columns is the ra-
tio confignration (L/D)(V/B) which is unlikely to be unstable when
all liquid flows are measured in the same units.

Effcct of column design. The methanol-propanol column that we
have studied in this paper is not optimally designed for the product
compositions of operating point /1. In fact it is doubtful that the
column would he unstable if it was optimally designed as the internal
flows then would be significantly smaller. This is probably true for
most separations, ie., an optimally designed column will be open-loop
stable. However, few industrial columns are operated close to an opti-
mal operating point. The main reason is of course that optimal prod-
uct compositions will change with prices. In addition many columns
operate with high internal flows (over-fractionating) in order to assure
that specifications are kept when disturbances enter the column. It is



therefor likely that many industrial colmnus may have problenis with
open-loop right half plane poles. The fact that this have not heen re-
ported previously is probably due to the fact that open-loop instability
has been believed to be impossible, and problems have therefor been
explained by other means.

Multiplicity and instability for molar inputs. We have in this pa-
per only considered models with constant molar flows, i.c., without
the encrgy balances. However, Jacobsen and Skogestad [3] show that
when the energy balances are included in the model, even molar in-
pus ( e.g., molar reflux and molar boilup) may yicld multiple solutions
and unstahle aperating points. This type of instability may also be
experienced in industrial colummns as it is the size of the molar flows
that determines separation in distillation. The control problems assos-
ciated with the RIP pole in this case are similar to the ones discussed
for mass or vloume inputs.

6 Conclusions

1. Two-product distillation columns operating with mass- or vol-
ume inputs may be open-loop unstable. The probability of in-
stability is increased with increased internal flows.

2. An unstable operating may be stabilized by use of onec-point
control provided the bandwidth of the controller is sufliciently
high. If the system becomes closed-loop unstable due to a too
low bandwidth, the column may go into a stable limit cycle pro-
vided there exists stable solutions above and below the unstable
solution.

3. The RIIP pole of an unstahle operating point will degrade the
performance of the closed-loop system. This will become more
marked as the deadtime in the system is increased.
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fully acknowledged.

NOMENCLATURE (sce also Fig.1)

A - State matrix of distillation colnmn.

B - bottoms flow (kmol/min)

D - distillate flow (kmol/min)

F - feed rate (kmol/min)

L - reflux flow rate (kmol/min)

M - mole weight, usually of top product (kg/kmol)

M, - pure component mole weight of most volatile component (kg/kmol)
M3y - pure component mole weight of least volatile component (kg/kmol)
N - no. of theoretical stages in column

Np - feed stage location (1-reboiler)

P - maximum allowed peak on sensitivity function.

p - right half plane pole. (min~1)

(B - heat input to reboiler.

Qp - heat removal in condenser.

S - sensitivity function.

¥ - boitup from reboiler (kmol/min) (determined indirectly by healing
Q)

rp - mole fraction of most volatile component in bottom product

yp - mole fraction of most volatile component in distillate (top prod-
uct)

z - right half plane zero (min~').

zp - mole fraction of most volatile component in feed

Greek symbols

l_y?' Tl'_r. - relative volatility (binary mixture)

Ai(A) - i'th eigenvalue of A,
Amar = max; |A;(A)|- maximum eigenvaluc = dominant pole
jt -structured singular value.
& - maximum singular value

a =

et - required closed-loop time constant (min).
Ay - deadtime (min)
w -lrequency (min=")

Subscripts
w - flow rate in kg/min
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