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H-infinity and «-control methods
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The paper discusses, from a process control perspective,
different approaches to performance weight selection
when using H-infinity objectives. Approach A con-
siders direct bounds on important transfer functions
such as sensitivity and complementary sensitivity.
Approach B considers the output response to sinu-
soidal disturbances, setpoints and noise. We also give
some insight into the practical use of H-infinity and u
methods. wu is the structured singular value (SSV)
introduced by Doyle (1982). p-synthesis is generally not
a convex optimisation problem and is presently not
straightforward. We will discuss some of the problems
we have encountered.

Keywords: Robust control, structured singular value,
ill-conditioned, process control

Nomenclature (also see Fig 3)

A steady-state offset specification (Eqn (13))
C(s) controller

D D-scaling matrix (Eqn (8))

G(s) linear model of process

k controller gain

M =max,o(S(jw)) maximum peak of sensitivity
function (Eqn (13))

NP Nominal Performance
RP Robust Performance
RGA Relative Gain Array
RS Robust Stability

S(s)=(I+ G(s)C(s))"' sensitivity function
T(s) = G()C(s)(I+ G(s)C(s))' complementary
sensitivity function

Xg =y, output 2 in distillation example

yD =y, output 1 in distillation example
performance weight (Eqn (13))

||N||0O =max,o(N(jw)) H-infinity norm of N
complex perturbation matrix

8 complex perturbation scalar

Y7 structured singular value (mu)
#rp=3up,u(Nrp(jw)) (peak mu value)

o maximum singular value

T time constant

Te (maximum) closed-loop time constant

o controller derivative time constant [min]

T controller integral time constant [min]

w frequency (rad min™')

wg closed-loop bandwidth (where asymptote of

o(S) crosses 1)
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1 Introduction

One criticism against the traditional ‘optimal’ control
techniques which use a quadratic cost function (eg,
LQG control, sce Kwakernaak and Siwan (1972)), has
been that the weights (cost matrices and covariance
matrices) have a very indirect effect on the behaviour
of the closed-loop system. One can generalise the cost
function by introducing frequency-dependent weights
and use a more general H, norm minimisation proce-
dure, but even in this case one cannot specify directly
important frequency-domain properties such as band-
width and magnitude of resonance peaks on certain
transfer functions. One natural extension is then to
directly specity performance in the frequency domain
by employing an H-infinity objective. For a stable
transfer function E(s), the H-infinity norm is given by

Il = sup 7 (E () e

where sup,, denotes the peak value over all frequen-
cies. The H-infinity norm may be viewed as a direct
generalisation of the frequency-domain performance
specifications used in classical control for single-input
single-output (SISO) systems. For example, a very
common performance objective is to minimise the
weighted sensitivity function, and select E=wp$
where S=(I+GC)"' (see the block diagram of a
conventional feedback system in Fig 2).

This paper is based on the paper on ill-conditioned
plants by Skogestad et al (1988), and the reader is
referred to that paper for notation and background
material. We shall use the same simplified distillation
column (the LV-configuration) as our example. In the
previous paper, the effect of various uncertainty
descriptions was studied, but here we use the example
to discuss alternative choices for the performance
weight.

Even though much progress has been made in terms
of synthesising H-infinity optimal controllers (eg,
Doyle et al, 1989), the selection of appropriate per-
formance weights is still very much an art. This may
seem somewhat contradictory, as one of the motiva-
tions for introducing the H-infinity norm for perform-
ance has been to introduce weights which are more
meaningful from a physical point of view. There are
several reasons why weight selection is difficult.

@ One obvious reason is that in most real design cases
the specifications are not fixed before the design
starts, and the weights are ‘knobs’ which the
engineer adjusts until he obtains a system which
performs satisfactorily.
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@ Another reason is that there are several ways of
setting up the problem, and each of these yields
different ways of adjusting the weights. There are
several physical interpretations of the H-infinity
norm (Doyle, 1987) which give rise to different
procedures for selecting the performance weights. In
this paper we will, in the main, discuss two of these
procedures:

Approach A The transfer-function or loop-shaping
approach. Here one considers direct bounds on
important transfer functions such as §, 7= GCS and
CS. Often several transfer functions are considered
simultaneously and ‘stacked” on top of each other
when evaluating the H-infinity norm. For example,
Yue and Postlethwaite (1988) consider the transfer
functions S and CS, and use the norm

” W, SW", @
W,oCSW)

Similarly, Chiang and Safonov (1988; 1990) consider
the transfer functions S and 7. In this case the first
transfer function may be used to specify the band-
width to achieve acceptable disturbance rejection,
whereas the latter is used to avoid amplification of
noisc at high frequency. McFarlane and Glover
(1990) use a direct loop-shaping approach.

©

Approach B The signal approach (eg Doyle et al,
1987). Here one considers the response to sinusoidal
signals. In this approach one cannot directly specify
bandwidth etc. However, this approach may be
more appropriate for multivariable problems in
which a number of objectives must be taken into
account simultaneously. Also, in such systems the
concept of bandwidth is often difficult to use.

® There are different ways of handling model uncer-
tainty. Above, we discussed nominal performance
(NP). The ability to address also robust stability
(RS) and robust performance (RP) in a consistent
and rigorous manner is probably the most important
reason for using the H-infinity norm for perform-
ance. However, there are at least two approaches for
taking model uncertainty into account.

(1) The mixed NP-RS approach: Add the robust
stability condition as an additional H-infinity
objective to be minimised. One example is to try
to optimise simultaneously nominal perform-
ance using wpS and robust stability with respect
to relative output uncertainty of magnitude
|w,o(jw)| using w,T. These objectives are com-
bined and the controller is designed to minimise
the combined objective function

WpS)

mgn ”Nmix”oo; Nmix= <W2T

..(3)
Note that this is the same objective as discussed
by Chiang and Safonov (1988), but here the
bound on T follows as an RS-condition and not
as a condition for noise amplification. This
follows, since the same transfer function may be
given both a performance and a stability inter-
pretation. In practice, these considerations are
often combined when selecting the weights, and
Approach A for performance selection is usually
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combined with the mixed NP-RS approach for
model uncertainty.

(2) The RP approach: Use the same H-infinity
performance specification, but require that it is
satisfied (or minimised) not only for the nominal
plant, but for all plants as defined by the
uncertainty description, that is, require robust
performance. For example, when performance
is measured in terms of wpsS, the robust per-
formance objective with output uncertainty
becomes (eg, Skogestad et al, 1988)

wy T w2T>

wpS wpS

minsup 4 (Nir); Ny = ( ()

Comment: For this particular case, with both per-
formance and uncertainty measured at the plant
outputs, there is almost no difference between the
mixed NP-RS approach and the RP approach. (At
each frequency w(Ngp) is by most a factor of V2
larger than o(N,,;)). However, for ill-conditioned
plants with uncertainty at the plant inputs (which is
always present), this is not the case and the mixed
approach may yield very poor RP. For example, this
applies to the example studied by Skogestad et al (1988)
which is also studied in this paper.

The RP approach is used in this paper. It is more
rigorous than the mixed NP-RS approach, but it
requires use of the structured singular value. This
makes controller synthesis rather involved, but analysis
is straightforward. A good design approach may be to
synthesise controllers using the mixed approach, and
analyse them using RP and . It may be necessary to
iterate on the weights in order to obtain acceptable -
values (Actually, as discussed in the next section, the
presently used ‘D-K’ iteration for x-synthesis involves
solving a series of H-infinity problems).

Software to synthesise H-infinity controllers has been
available for some time, for example, through the
Robust Control toolbox in MATLAB (Chiang and
Safonov, 1988). Recently, a u-toolbox for MATLAB
has become available (Balas et al, 1990). This toolbox
includes alternative H-infinity software, and u-analysis
and synthesis is included as outlined above. All
computations presented in this paper have been done
employing this toolbox.

Some important terms:

Nominal stability (NS): the closed-loop system with-
out uncertainty is stable.

Robust stability (RS): the system is stable for all
defined uncertainty (‘worst case is stable’).

Nominal performance (NP): the system satisfies the
performance requirements for the case with no uncer-
tainty.

Robust performance (RP): the system satisfies the
performance requirements for all defined uncertainty
(‘worst case satisfies performance requirement’).

2. Model uncertainty and the structured
singular value

The objective of this section is to give the reader a
short introduction to model uncertainty and the struc-
tured singular value, . A more detailed introduction
EO yz i; given by Doyle (1982; 1987) and Skogestad et al

1988).
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An important reason for selecting the H-infinity
norm for performance, is that also model uncertainty
may be readily formulated using this norm. In parti-
cular, this applies to uncertain or neglected high-
frequency dynamics that are always present, and which
cannot by modelled by parametric uncertainty in a
state-space model with fixed order. In the H-infinity
framework the model uncertainty is modelled in terms
of uncertain perturbations, A;. Using weights they are
normalised such that their H-infinity norm is less
than 1.

[Ail-<1<=>0i(jo)) <1, Yo (5

Unstructured uncertainty. In the simplest approach
all the uncertainty is lumped into one perturbation
matrix, 4, for example at the output. This is an
unstructured uncertainty description, and gives rise to
robust stability conditions in terms of the singular value
(H-infinity norm). For example, for input uncertainty
of magnitude w,, where also ‘cross-channel’ uncer-
tainty is allowed (A is a full matrix) the RS-condition
becomes |w,T;||<1. However, this approach is
generally conservative because it will include a lot of
plant cases that cannot occur in practice. If cross-
channel uncertainty does not occur in practice, then the
correct RS condition is pa(w,Ty) <1, Vo, where A is
a diagonal matrix as given in Eqn (6) below.

Structured uncertainty. To model the uncertainty
more tightly we must consider structured uncertainty,
that is, use several perturbation blocks. Usually each of
these blocks is related to a specific physical source of
model uncertainty: for instance, a measurement uncer-
tainty or an input uncertainty. For example, for the
input uncertainty without cross-channel coupling we
need one perturbation block for each input and we get,
for a system with » inputs,

8, 0
A= ..(6)

0 5,

Robust stability. To test for robust stability, the
system with the uncertainty blocks is rearranged such
that Ngs (which includes the uncertainty weights)
represents the interconnection matrix from the outputs
to the inputs of the uncertainty blocks, A. In the
following we assume that Ngg is stable. Using the small
gain theorem, we know that robust stability will be
satisfied if | Ngs|l <1, or equivalently

RS if o(Ngs)<l; Vo (7

However, this bound is generally conservative unless
the uncertainty is truly unstructured. First, the issue of
stability should be independent of scaling. Thus, an
improved robust stability condition is

RS if mino(DNrsD™')<1; Vo ...(8)
D(w)

where D is a real block-diagonal scaling matrix with

structure corresponding to that of A, such that AD =

DA. A further refinement of this idea led to the

introduction of the structured singular value (Doyle,
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Fig 1 General block structure for « analysis

1982; 1987). We have (essentially, this is the definition
of u)
RS iff ua(Ngs) <1, Vo ...(9)

Thus min, o (DND™) is an upper bound on w(N). It
is usually very close in magnitude. The largest deviation
reported so far is about 10-15% (Doyle, 1982; 1987).
Computationally tractable lower bounds for s also
exist and are in common use.

Robust performance. An additional bonus of using
the H-infinity norm both for performance and uncer-
tainty is that the robust-performance problem may be
recast as a robust-stability problem (Doyle, 1982), with
the performance specification represented as a fake
uncertainty block. To test for robust performance, one
considers the interconnection matrix Ngip from the
outputs to the inputs of all the A-blocks, including the
‘full’ A p-block for performance. Ngp depends on the
plant G, the controller C and on the weights used to
define uncertainty and performance. The condition for
robust performance within the H-infinity framework is
(see Fig 1)

SR

Analysis of robust performance for a given controller
using  is straightforward, but controller design using
w-synthesis is still rather involved. The present ‘D-K
iteration’ uses the upper bound on x, and involves
solving a number of ‘scaled’ H-infinity problems. We
will discuss this further in section 6.

Uncertainty weights. Since uncertainty modelling
using the FH-infinity framework is a worst-case
approach, generally one should not include too many
sources of uncertainty, since otherwise it becomes very
unlikely for the worst case to occur in practice. One
should, therefore, lump various sources of uncertainty
into a single perturbation whenever this may be done in
a non-conservative manner. On the other hand, one
should be careful about excluding physically meaning-
ful sources of uncertainty that limit achievable perform-
ance. From this it follows that selecting appropriate
uncertainty weights is very problem-dependent, and it
is important that guidelines for specific classes of
problems be developed.

Sometimes one might use a smaller uncertainty set
for robust performance than for robust stability. The

RP iff wi(Nep)<1, Vo, A=[
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Fig 2 Block diagram of conventional feedback system

idea is to guarantee stability for a large set of possible
plants, but require performance only for a subset. This
is to avoid very conservative designs with poor nominal
performance.

For the example in this paper we consider only input
uncertainty. The effect of output uncertainty, time-
constant uncertainty and correlated-gain uncertainty
was studied by Skogestad et al (1988). They found that
these sources of uncertainty were less important than
the input uncertainty for this particular ill-conditioned
plant.

3. Performance weights

There are several different physical interpretations of
the H-infinity norm of E (Doyle, 1987, Zhou et al,
1990) and, as mentioned in the introduction, this gives
rise to different methods for weight selection.

Approach A. Consider E as a transfer function. Since
| E|l.. = sup, o (E(jw)) the H-infinity norm may be
viewed as a direct generalisation of classical
frequency-domain bounds on transfer functions
(loop-shaping) to the multivariable case.

Approach B. Alternatively, consider E(jw) as the
frequency-by-frequency sinusoidal response. That is,
for a unit sinusoidal input to channel j with frequency
w, the steady-state output in channel i is equal to
E;;(jw). To consider all the channels combined, we
use the maximum singular value, o(E(jw)), which
gives the worst-case (with respect to choice of
direction) amplification of a unit sinusoidal input of
frequency w through the system.

Approach C. The induced norm from bounded-power-
spectrum inputs to bounded-power-spectrum outputs
in the time domain is equal to the H-infinity norm.

There are also other interpretations of the H-infinity
norm: it is equal to the induced 2-norm (energy) in the

E

time domain; it is equal to the induced power norm;
and it is also equal to induced norm in the time domain
from signals of bounded magnitude to outputs of
bounded power.

The following discussion is mostly relevant to
approaches B and C. A general way to define perform-
ance within the H-infinity framework is to consider the
H-infinity norm of the closed-loop transfer function £
between the external weighted input vector w (disturb-
ances d, setpoints y, and noise n) and the weighted
output vector z (may include y—y;, manipulated
inputs « which should be kept small etc). Weights are
chosen such that the magnitude (in terms of the 2-
norm) of the normalised external input vector is less
than one at all frequencies, ie, ||w(jw)|.=<1, and
such that for acceptable performance the normalised
output vector is less than 1 at all frequencies, ie,
|lz(jw)|l.. <1. With z= Ew the performance require-
ment becomes

I Ell = sup o(E(jw)) <1

..(11)

Introducing the weights W, W, W, W, and W, into
Fig 2 yields the block diagram in Fig 3 where E is given
as shown by the dotted box. We also have introduced
an ‘ideal response” W, from y, to y, and use a "two-
degrees-of-freedom controller’. Except for Wyitis only
the magnitude of these weights that matters; they
should therefore be stable and minimum phase.

3.1 Performance Approach A. Weights on transfer
functions (loop shaping)

Many performance specifications may be translated
into an upper bound 1/|wp| on the frequency plot of
the magnitude of the sensitivity function S=(I+
GOy

a(S(jo)<U|wp(jw)|, Yo ...(12)

This is equivalent to Eqn (11) with E=wpS (weighted
sensitivity). The concept of bandwidth, which is here
defined as the frequency wpz where the asymptote of
o(S) first crosses one, is closely related to this kind
of performance specification, and most classical
frequency-domain specifications may be captured by
this approach.

Classical ~ frequency-domain  specifications.  For
example, assume that the following specifications are
given in the frequency domain:

Fig 3 General feedback system with
weights, a two-degree-of-freedom
controller and input uncertainty. It is
assumed that the outputs are
measured directly. The transfer

function E is used for H-infinity
performance with Approach B
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1. Steady-state offset less than A;

2. Closed-loop bandwidth higher than wy;

3. Amplification of high-frequency noise less than a
factor M.

These specifications may be reformulated in terms of
Eqn (12) using

Lras oM ithra=1/ 13
wp(s) MrsiA’ with 7, wg ..(13)
and the resulting bound 1/|wp(jw)| is shown graphi-
cally in Fig 4.

In many cases a steeper slope on § is desired at
frequencies below the bandwidth to improve perform-
ance. For example, this may be the case if the
disturbances are relatively slow as discussed below
(Section 3.3).

Several transfer functions. As mentioned in the
introduction, one may define similar performance
objectives in terms of other transfer functions, and
consider the combined effect by stacking them together
when computing the H-infinity norm.

Matrix-valued weights. In the multivariable case, the
generalised weighted sensitivity is WpSW'. For
example, one may use different bounds on the sensi-
tivity function for various outputs. Assume that we
want the response in channel 1 to be about 10-times
faster than that in channel 2. Then we might use the
performance specification

wpir 0
IWeSlle<1; Wp= ..(14)
0 Wp2o
with wg; = 10wgy,. Later we shall study the use of
different weights in each channel for the distillation
example.

Introducing matrix-valued weights is necessary if the
disturbances have strong directionality. However, the
direct implications for the shape of the sensivitity
function then become less clear, and it is then probably
better to shift to the more general signal-oriented
approach discussed next.

(1 —— :
3
M -
0
® 100 .
= E
g2 f ]
.E L :‘
of
< I -
= 1071} |
A _
102 — cerrnl —a P swaln % s ehEr i
10 1073 102 wz107! 100 10!
A
T Frequency [rad/min]

Fig 4 Asymptotic plot of 1iwp = M (18 + A)/ (158 + M)
where 7=1/wg. |S(jw)| should lie below 1/|wp| to
satisfy classical frequency-domain specifications in terms of
A, M and wg
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3.2 Performance Approach B. Frequency by
frequency sinusoidal signals

In many cases it is not possible, or at least it is
difficult, to specify directly appropriate weights on
selected transfer functions. A sinusoidal signal-oriented
approach is then more suitable. For example, this
approach is used in the space-shuttle application study
by Doyle et al (1987).

In this approach we consider the effect of persistent
sinusoidal input signals of a given frequency. Consider
again Fig 3, the signal weights W,, W, and W, will be
diagonal matrices which give the expected magnitude
of each input signal at each frequency. Typically, the
disturbance weight, W,, and the setpoint weight, W, do
not vary very much with frequency', while the noise
weight, W,, wusually has its peak value at high
frequency. W, is a diagonal matrix which at each
frequency specifies the inverse of the allowed
magnitude of a specific output error. If we want no
steady-state offset, the weight should include an
integrator such that its magnitude is infinite at steady-
state (we require offset-free response to slow-varying
sinusoids)?. Typically, we let the weight (W,) level off
at high frequencies at a value (1/M) W', The factor of
M limits the maximum peak of § and is a way of
including some loop-shaping ideas from Approach A.
Often the value of M is about 2. The corner frequency
for the weight W, (where it levels off) should be
approximately M/r.,, where 7., is the maximum
allowed closed-loop time constant for that output. The
actuator penalty weight, W, is usually small or zero at
steady-state®. W, may be close to a pure differentiator
() if we want to penalise fast changes in the inputs.

It is important to check that the various performance
requirements arc consistent. This may be done by
evaluating their influence of the required loop shapes
(Approach A), in particular, at low and high
frequencies. Alternatively, one may test if it is possible
to get <1 for NP by performing an H-infinity
synthesis with no uncertainty.

The approach described above tends to give a large
number of weights, and this is a disadvantage. First, the
dimension of the problem grows and the solution takes
more time. Second, with too many independent sources
of noise and disturbances it may become very unlikely
for the worst case to occur in practice (note that the H-
infinity norm represents a worst-case approach as the
singular value picks out the worst direction). For
example, if we have a large number of measurements
(it may be possible to have 100 measurements in a

"That is, in this Approach B we should not add a integrator (1/s) to
the weight even if step changes in disturbances or setpoints are
expected (however, in Approach C this is correct). The reason is that
in Approach B we consider the response frequency-by-frequency,
and a step change cannot really be modelled very well, and certainly
not as a slow-varying sinusoid of infinite magnitude. A more-
reasonable approach is to consider a range of sinusoids and use a
nearly constant weight with the same magnitude as of the step.
>Note that we may not require offset-free response for y — y if the
measurement noise is non-zero at steady-state (w = 0). Therefore,
to get a controller with integral action we should select W, to be zero
at o = 0. Alternatively, we may require no offset for y,, —ys, where
Ym =Yy +n is the measurement.

3The use of actuators inputs of a certain magnitude is often
unavoidable (independent of the controller) in order to reject slow-
varying disturbances, and penalising the inputs at low frequencies
makes little sense in such cases.
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distillation column), it will be very unlikely that the
worst combination of measurement noise will ever
occur in practice. Mejdell (1990) encountered this
problem and found it necessary to reduce the number
of independent noise directions.

3.3 Combining performance weights (going from
Approach B to Approach A)

There are, of course, cases in which Approaches A
and B are identical, but in general there is a significant
difference between considering in A the shape of the
transfer functions (eg in terms of its slope and
frequency where it crosses one), and in B considering
the magnitude of a specific output signal to sinusoidal
disturbances.

To illustrate how specifications on setpoints and
disturbance rejection (Approach B) may be
reformulated as bounds on the weighted sensitivity
(Approach A) consider Fig 3 and evaluate the transfer
function from normalised disturbances and setpoints to
normalised errors. We have

J

z=é.=E<A >=Ew
Vs

With conventional feedback control (one-degree of

freedom), no setpoint filtering (W,=1I) and no uncer-
tainty (A;=0) we have (Fig 3)

E=(W,SG,W, W,SW,). ...(16)

The performance specification is ||E[l.. <1, but we
want to obtain a bound on &(§). To this end we find
a weight wp(jw) such that at each frequency o (wpS)
=o(E). For the SISO (scalar) case we get o(E)=
|W.S| V]G Wy |>+|W,|?> and o (wpS) = |wpS|, and
we have at each frequency

|wp|=|W.| V|G W, |*+| W, ]? ..(17)

Consider the following special SISO case where we
assume: (1) outputs have been scaled such that for
setpoints W, =1; (ii) G, has been scaled such that
disturbances d are less than 1 in magnitude, thus W,
=1; (iii) disturbance model G,=k,/(1+,s); and
(iv) the errors, e, should be less than M in magnitude at
high frequencies, and we want integral action and
require a response time better than about 7., ie,
W, = (oS + M)IMTs.

With the exception of at most a factor V2 (at
frequencies where |G,|=~1) we may then use the
following approximation for Eqn (17):

..(15)

| kq| +1
§+——
|kd| S+M/Tcle Td
wp(s) = W(s) +1]=
1+74s Ms s+ 1/,
...{18)

Obviously, if the disturbance gain, |k,|, is small
compared to 1 (the magnitude of the setpoints), then
wp(s) = W,(s), and the disturbance does not affect the
bound on S(jw). However, in general the requirement
of disturbance rejection may require a faster response
than the response time, 7., required by the weight
W,. The most important feature of the performance
weight, wp(s), is its bandwidth requirement, wj,
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Fig 5 Asymptotic plot of 1/wp (Egn (18)) for cases where
oo < Tg{M =2, 7e=20min and 74=100min is used
in the plot)

which we define as the frequency at which the
asymptote of wp(s) crosses 1. Introduce the response-
time constant imposed by disturbances

Td
|ky)+1

A closer analysis of Eqn (18) shows that wj=
max{1l/7e,, l/144}. For ty4<7y,, the bandwidth
requirement is determined by disturbance rejection.
This is illustrated in Fig 5 where we show the bound
1/|wp| on | S| as a function of frequency. The solid
line shows the requirement for setpoint tracking only,
whereas the various dotted lines show the requirement
for increasing magnitude of the disturbance. In this
case with ‘slow disturbances’ (r../M <7,) the weight
in Eqn (18) has a region at low frequencies where
|wp(jw)| has a slope of —2 on a log|wp|—logw
plot.

In the multivariable case we must use matrix-valued
weights, and it is not possible to transform Approach
B into a scalar bound on S. Specifically, o(SG,(jw))
may be significantly smaller than o (S(jw))
o (G (jw)) when G, is in the ‘good’ direction cor-
responding to the large plant gains (see Skogestad
et al, 1988).

Teld = M

...(19)

3.4 Performance Approach C. Power signals
— power spectrum weights

This is not a frequency-by-frequency approach.
Rather, one must consider the entire frequency spec-
trum. One may think of the weights W,, W, and W, as
upper bounds on the power spectral density of the input
signals, whereas W, and W, are equal to the inverse of
the upper bounds on the power spectral density of the
output signals. For example, if we allow for step
changes of the setpoints, we may choose a weight W, =
1/s (but we will also allow a lot of other signals bounded
by this spectral density). We will not discuss this
approach any further, but just note that, compared to
Approach B, it corresponds in many cases to shifting
integrators from the output weights to the input
weights.
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4. Fixed or adjustable weights

One advantage with H-infinity or x-optimal control
is that it is relatively well-defined as to what an
objective function with a value close to 1 means: the
worst-case response will satisfy our performance objec-
tive. If x at a given frequency is different from 1, then
the interpretation is that at this frequency we can
tolerate 1/u-times more uncertainty and still satisfy our
performance objective with a margin of 1/c.

Controller synthesis almost always consists of a series
of steps in which the designer iterates between mathe-
matical formulation of the control problem, synthesis
and analysis. In g-synthesis the designer will usually
redefine the control problem by adjusting some per-
formance or uncertainty weight until the final optimal
w-value is reasonably close to 1. In most cases this is
done in a more or less ad hoc tashion, but it may also be
done systematically. One attractive option is to keep
the uncertainty weight fixed (of course, it must be
possible to satisfy RS) and evaluate the achievable
performance with this level of uncertainty, that
is, adjust some performance weight to make
sup,u(Nrp) =1. There are two obvious options to
adjust the performance weight

(1) Scale the performance frequency-by-frequency
such that x#(Ngp) =1 at all frequencies, that is, at each
frequency find a k(w) which solves

<NRP” NRP|2 >
7 =1
kNgrp, kNgp,

This option is most attractive for analysis with a given
controller. The numerical search for & s
straightforward, since x increases monotonically with
k, and since a solution always exists provided that we
have RS.

(2) Adjust some parameter in the performance
weight such that the peak value of x(Ngp) is 1. This
option is most reasonable for u-synthesis, that is, if the
controller is not given. For example, with the
performance weight of Eqn (13) we may adjust the time
constant 7., such that the optimisation problem
becomes

..(20)

min |74]; s.t.
7. C

/—L(NRP(C, TC[))Sl, Yo (21)
Different plants may then be compared based on their
maximum achievable bandwidth. A disadvantage with
this approach is that it may be impossible to achieve
#(Ngp)=1 by adjusting 7, in the performance
weight if, for example, the high-frequency specification
(value of M) is limiting. Skogestad and Lundstrém
(1990) have used this approach to compare alternative
control structures for a distillation-column example.
An other approach is to keep 7, and M in the weight
Egn (13) fixed, and rather adjust the weight of all
frequencies with the same constant. However,
sometimes this does not make sense from a physical
point of view since we cannot adjust the weight very
much at high frequencies (since $=1 at high frequen-
cies).

In this paper we do not employ these approaches, but
use fixed weights only.

5. Skogestad et a/ (1988) example revisited

We shall use the same plant as studied previously by
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Skogestad et al (1988). The plant model is

_ (X2 _ . -
6= (22) = 60 ue; 60 =
(0.878 —0.864> 2
1.082 —1.096/

which has a condition number of 141.7 and a RGA-
value of 35.5 at all frequencies. The unit for time is
minutes. This is a very crude model of a distillation
column, but it is an excellent example for
demonstrating the problems with ill-conditioned plants.
Freudenberg (1989) and Yaniv and Barlev (1990) also
used this model to demonstrate design methods for
robust control of ill-conditioned plants.

In Skogestad et al (1988) the following specifications
were used

(1) The relative magnitude of the uncertainty in each
of the two input channels is given by

wi(s) =0.2(5s + 1)/(0.5s + 1). ...(23)

Thus the uncertainty is 20% at low frequencies and
recaches 1 at a frequency of approximately 1rad/min.
Note that the corresponding uncertainty matrix, Ay is a
diagonal matrix since we assume that uncertainty does
not ‘spread’ from one channel to another (for example,
we assume that a large input signal in channel 1 does
not affect the signal in channel 2).

(2) RP-specification (using performance Approach
A): the worst case (in terms of uncertainty) H-infinity
norm of wpS should be less than 1.

wp(s) =0.5(10s+ 1)/10s ...(24)

This requires integral action, a bandwidth of approxi-
mately 0.05rad/min and a maximum peak for o(S)
of 2.

The resulting w-condition for Robust Performance
becomes (see Fig 1):

RP iff wua(Ngpy<1l, Vo ...(25)
where
61 0
—-w;CSG  w;CS .
RP= ; A= )
WPSG _WPS
0 Ap
...(26)

In the following we shall keep the uncertainty
description fixed, but consider alternative performance
specifications.

5.1 Original problem formulation

Approach A)

(performance

Skogestad et al (1988) used a software package based
on the H-infinity minimisation in Doyle (1985)
(denoted ‘the 1984 approach’ in Doyle ef al, 1989) to
design a ‘u«-optimal controller’. Their controller has six
states and gives supwu(Ngp) = prp=1.067 for both
structured and unstructured A;. We will denote this
controller C,,,,. Freudenberg (1989) used another
design method and achieved a controller with five
states giving urp=1.054 for unstructured A;. Yaniv
and Barlev (1990) do not present a x value for their
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Fig 6 u-plots for C,, (solid curves) and C,,, (dashed
curves)
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Fig 7 Simulation of setpoint changes using controlier
C .new- Responses are shown both for nominal case (solid
curves) and with input uncertainty given in Eqn (27) (dashed
curves)
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design. We obtained ugp=2.28 for their controller!
without pre-filter.

New optimal design. With the new H-infinity
software (Balas e al, 1990) based on the state—space
solution of Doyle et al (1989), the u-synthesis (‘D-K
iteration’) performs better than with the 1984
approach. We were able to design a controller which,
compared to C, 4, lowered pgp from 1.067 to 0.978.
The new controller will be denoted C, .- It has 22
states and a state—space representation is given in
Appendix 1.

Fig 6 shows x for RP, NP and RS as a function of
frequency for C,,,, (solid curves) and C, g (dashed
curves). u(Ngp) for the new controller 1s extremely
flat and the peak value, uzp, is substantially lower
than for the old controlier. The nominal performance is
generally worse for the new controller, while robust
stabilty is improved for some frequencies.

Fig 7 shows the time response to setpoint changes for
controller C,,,,. The solid curves show the nominal
response, and the dotted curves the response with model
error. The specific model error we use is

—0.55+1.2
05s+1 0
DS
u(s) = u (s ...(27
(s) . 055108 | 4 @7
0.5s+1

where u is the true input signal and u, the input signal
computed by the controller.

This uncertainty is covered by the uncertainty
description, w;(s). By comparing the time responses to
those presented for the controller C,,, in Skogestad et
al (1988) we see that difference is relatively small.

5.2 Alternative controller designs (Approach A)

Table 1 shows minimised wx-values obtained for
different controller structures. The second row shows
that with a two-degree-of-freedom controller we may
reduce the wu-value for RP from 0.978 to 0.926 (to
avoid numerical problems when obtaining this
controller we had to introduce some measurement
noise). In general, a two-degree-of-freedom controller
yields improved performance when we have
simultaneous disturbance rejection and command
following. In our case the model uncertainty in effect
introduces disturbances (generated internally) and
makes it advantageous to use a controller which shapes
the setpoints differently.

In Table 1 we also show the results using two PI- or
PID-controllers of the form below.

Cls) = (CPID,(S) 0 >;
0 cpin ()
1+7s 1+7ps
s 1+0.17ps

cpp(s) = ki ...(28)
Optimal PI/PID tunings were obtained using a general-
purpose optimisation algorithm to minimise ugp with
respect to the six parameters’. We obtained optimal

'There is a misprint in Yaniv and Barlev (1990); the second order
pole in controller ‘gl of 0.22 should be, with damping, 0.5.

We set up the problem as a min—-max problem
min, max,, «(Nge), and used the routine ‘minimax’ in the
Optimization toolbox for MATLAB (Grace, 1990).
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TABLE 1: Optimal ugpp-values for the original problem formulation, Eqns (25)—(26)

(Approach A)

Controller Hap ks ko Th Tio TH Tp2
type min min min min
C,new One — degree 0.978

C o, Two — degree 0.926

Pl 1.50 142 -25.6 64.4 1.35

PID 1.32 163 —39.1 412 0896 0.342  0.290

wmrp-values of 1.50 for Pl-control and 1.32 for PID-
control. Note that the optimal tunings are very
different for the two channels in spite of the fact that
the problem formulation is nearly symmetric. This is
probably caused by the fixed structure and limited
number of states of PI/PID controllers. This issue is
discussed in more detail by Lundstrém et al (1991).

5.8 Other performance weights (Approach A)

Here we use the same problem formulation as in
the previous section, except for using different
performance weights in each output channel.

wpi(s)=—

wp, 0
We(s) =< 0 >;
ij M TCI,S

Intuitively, we may reduce the ‘interactions’ (this is a
term which is relevant for single-loop control) in the
system by having one channel with a fast response, and
one channel with a slow response. Optimal x-values
for different choices of 7., and 7, are shown in
Table 2. We keep the ‘average’ response time constant
by holding 7. 7., constant. We see that the u-
values are somewhat lower when we allow different
response times in the two channels (of course, this is
only true to a limited extent, since the response time of
the fast channel is limited by the uncertainty weight
which crosses one at a frequency of 1rad/min). The
fourth entry in Table 2 does not have the same
‘average’ response time, but is included to illustrate
that the wgzp-value increases markedly if we require
that one loop is made faster without relaxing the
requirement of the other loop.

As expected, the reduced interaction becomes even
more clear if we study single-loop (decentralised)
control using PID controllers. The tuning parameters
and u gp for different choices of performance weights
are also given in Table 2. The last entry in the table
shows that for these controllers we can increase the
speed of one channel at almost no cost in terms of g p.

1 'TC/’S +M

...(29)

5.4 Performance Approach B

Consider a revised problem that includes disturbance
rejection as shown in the block diagram in Fig 3. We

shall design a two-degree-of-freedom controller using
Approach B. The plant G is given in Eqn (22). G,
describes the effect of disturbances (feed flow, F, and
feed composition, z5) on the two controlled variables
(top and bottom composition, y, and xg).

1 <0.394 0.881)

75s+1\0.586 1.119
We use the following weights to define the problem.

Guls) = ...(30)

0.3
Wd(s) = < 0 02) 5 Ws(s) = 0'01]2x2;
s
W,(s) = 0.01s+—1 L, ...(31
Wi(s) =; Doy Wi(s)=0.2 ﬂ by ...(32)
S5s+1 0.5s+1
W) = 22 W)= 0.0 — L
2 20s 0.0005s +1
...(33)

These weights are plotted in Fig 8.

104 — : —
102} i W, i
2 l |
3100
on L
5}
Lol W, |
07T T e

Frequency [rad/min]

Fig 8 Frequency plot of the weights used in Approach B in
section 5.4

TABLE 2: Optimal ugp-values for different performance weights, Eqn (13), (Approach A)

Controller MRP Ten Teiz ki ka T T2 o1 Tp2
type min min min min min min
Cnews One — degree 0.978 20 20

One — degree 0.970 40 10

One — degree 0.937 80 5

One — degree 1.098 20 10

PID 1.32 20 20 163 —39.1 41.2 0.896 0.342 0.290
PID 1.15 40 10 98.4 -17.7 67.5 0.769 0.385 0.529
PID 1.09 80 5 56.2 -39.3 68.1 1.48 0.332 0.582
PID 1.33 20 10 164 —37.2 39.2 0.674 0.398 0.327
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G and G, were found by linearising a non-linear
model at an operating point where yp,=0.99, xp=
0.01, F=1.0 and zx=0.5 (Skogestad and Morari,
1987). W, shows that we are expecting up to 0.31=
30% variation in F and 0.2/0.5 =40% in zp. Similarly,
W, specifies the setpoint variations, 0.98<y, =<1.00
and 0.00 < xs,, < 0.02. These weights reflect the relative
importance of the external inputs, ie, we consider 30%
variation in F to be comparable to a setpoint variation
of 0.01kmol/kmol. The noise at high frequency is
allowed to be of magnitude 0.01. We see from the
weight W, that the allowed output error y—y; is
2/100 = 0.02 at high frequencies and the required
response time 7., =20min. The factors 0.01 and 100
in the weights for W, W, and W, correspond to an
output scaling and could, alternatively, have been
accomplished by multiplying the elements in G and G4
by 100.

The optimal controller, C,p, gives ugp value for
this problem definition of 1.04, whereas the controller
Cnew (with input y,—y,,), which is essentially tuned
for setpoints only, gives a value of 1863 at high
frequencies and 1.75 at low frequencies. The reason for
the extremely high w-value is that C,,., is tuned
without any direct penalty on manipulated inputs,
while in the new formulation (Approach B) such a
penalty (W,) is included. Conversely, when applied to
the original problem definition, C,p, gives ugp=
1.18, whereas C,,., gives 0.978.

Recall the analysis of Eqn (17) where we analysed
the relative importance of disturbance and setpoint
tracking on performance. If in this example we look at
the disturbance rejection from a scalar point of view,
the performance time constants, 7., in Eqn (19), for
the effect of the two disturbances in IY and z on output
2 are about 2:75/0.3-58.6+1)=8.0min and 2-75/
(0.2-111.9+1) = 6.4 min, respectively, whereas 7.
for setpoints is 20 min. However, this does not take into
account the direction of the disturbances. In our cases
the disturbance condition number (Skogestad et dal,
1988) for the two disturbances are 11.5 and 1.8,
respectively, whereas the ‘disturbance’ condition
number for the two setpoints are 111 and 89 (Skogestad
and Morari, 1987). Thus, the disturbances are in the
‘good’ directions of the plant, and the bandwidth
requirements imposed by the disturbances are not as
hard as computed above. However, the disturbances do
put tighter restrictions at lower frequencies (the ‘slope
two’ requirement) than the setpoint requirement. This
is also clear from the simulations discussed next.

In Fig 9 controller C,,,,,, and C,, are compared with
respect to disturbance rejection. The disturbances are
in F (+30%) at time t=0 and in zp (+40%) at 1=
50 min. Solid curves show the response for controller
C s and dashed curves are for controller C,p. We
note that controller C,,., gives a rather sluggish
return to the setpoint. This dominant (low-frequency)
part of the response is significantly improved with the
controller C,p. The controller, C e for Approach
A, could have been improved by using a performance
weight, wp, with slope two at intermediate frequen-
cies. Also, note that the disturbance in zp is simpler to
reject because it is almost exclusively in the ‘good’
direction.

Fig 10 shows the setpoint response with and without
model error (Eqn (27)) for controller C,z. We note
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Fig9 Simulation of a disturbance in F (+30%) attime t =0
and in z¢ (+40%) at t = 50 min using controller C,,,, (solid
curves) and C,, 5 (dashed curves). The input error in Egn (27)
is used in the simulations
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Fig 10 Simulation of setpoint changes using controller C, .
Responses are shown both for nominal case (solid curves)
and with input uncertainty given in Eqn (27) (dashed curves)
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that in terms of setpoints the response is not better than
with controller C,,,,. (Fig 7).

6. Some comments on «-synthesis

The u-synthesis procedure employed today makes
use of the upper bound of ., trying to ‘solve’

min || DNgp(C) D7 |l (34
Cc.D

The algorithm, often called ‘D-K’ iteration’, is as
follows:

1 Scale the original problem with a stable and
minimum-phase transfer matrix D with appropriate
structure;

2 Find a controller C by minimising the H-infinity
norm of DNgp(C)D™";

3 Compute x4 (Ngp(C)) and obtain at each frequency
the optimal ‘D-scales’ from min,o(DNgpD™);

4 Fit the magnitude of each element of D(w) to a
stable and minimum-phase transfer function; and

5 Test a stop criterion. Stop or go to 1.

The major problem with z-synthesis is that the D-K
iteration is not guaranteed to find the global optimum
of Eqn (34). Both step 2 and step 3 in this algorithm are
convex optimisation problems, but this does not imply
joint convexity for the whole algorithm (Doyle and
Chu, 1985). A second problem is the difficulty in
defining a stop criterion for the optimisation.

Good initial D-scales in step 1 of the algorithm,
reduce the number of iterations, and may even,
because of local minimas, affect the final minimum -
value. For our example problem with the original
problem definition, we observed that a natural physical
scaling of the problem (using ‘logarithmic
compositions’ as discussed by Skogestad and Morari,
(1988)), that corresponds to multiplying all elements in
G (s) by a factor of 100, gave very good initial D-scales.
With this simple scaling, the w-value after the first
iteration was 1.2, as compared to 14.9 without scaling.
Another way to obtain good scalings is to start the
algorithm at step 3 using a ‘good’ controller obtained by
any design method.

The D-K iteration depends heavily on optimal
solutions in step 2 and 3, and also on good fits in step 4.
The H-infinity design (step 2) generally works fine
using the w-toolbox. The u software does sometimes
not compute a sufficiently tight upper bound of .
Thereby the D-scales are not optimal, and the D-K
iteration suffers. We have experienced cases in which,
for some frequencies, the computed w-value has been
larger than the maximum singular value. When this
occurs, the D—K iteration often starts diverging.

The last critical factor is the fitting of the D-scales. It
is important to get a food fit, preferably by a transfer
function of low order. The software for D-scale fitting
in the x-toolbox requires that the user specifies the
order of the transfer function and decides if the fit is
good enough. The optimal order of the transfer
function D varies as the D—K iteration progress. It is
sometimes better to increase the order, and sometimes
the order should be decreased. If it is difficult to obtain
a good fit, it often helps to use a different frequency
range for the fit. Tt may also help to use a finer
frequency grid.

The final problem is to determine when to stop the
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iteration. Two intuitive candidates for criterion for
terminating the iteration are:

(1) An iteration criterion

Mp—) M <€ ...(35)
and
(2) A ‘flatness’ criterion
m;::lX (/“peak _/u/(w)) <€ (36)

(1) In Eqgn (35) the subscript denotes the k —1™ and
the k™ iteration, respectively. This is a standard
criterion, the iteration terminates if the objective
function (x) does not improve. There are two
problems with this criterion. First, we may have found
a local minimum, which means it is possible to improve
# by using a different D. Second, this criterion would
terminate the iteration if & increases. That may sound
reasonable, but we have experienced situations in
which u increases for a number of iterations and then
starts to decrease again. (2) Eqn (36) relies on the
optimal controller giving a flat w-versus-frequency
plot. However, this is not always possible to obtain. For
instance, the optimal solution to the problem in
Skogestad et al (1988) does not give a flat u-plot;
instead, & always goes to 0.5 at high frequencies (since
§ goes to I, and wp goes to 0.51). As the number of
iterations are incrcased one is able to extend the
frequency where x starts dropping down to 0.5, but
the curve never becomes flat at all frequencies.

The results presented in this paper are obtained by
terminating the D-K iteration when the H-infinity
norm equals « and x is totally flat for frequencies less
than 10 rad/min.

7. Conclusions

In this paper we have addressed performance weight
selection when using the H-infinity norm. We have
stressed the difference between an approach by which
we try to shape directly a few important transfer
functions such as § and 7, which gives us the
opportunity, for example, to specify directly minimum
and maximum bandwidth requirements (Approach A),
and an approach by which we consider the magnitude
of signals (Approach B). The difference between the
two performance approaches is probably most clear
when one considers disturbance rejection; in this case
the required bandwidth to achieve acceptable
disturbance rejection is not clear (at least not for
multivariable systems), and Approach B is preferable.
An important advantage with Approach A, is that one
may, to some extent, combine performance and
robustness issues. For example, there may be
bandwidth limitations related to robustness or the
sampling time. With Approach B, robustness is
generally handled by modelling the uncertainty
explicitly and evaluating Robust Performance using the
structure singular value. In practice, most engincers
will probably use a combination of Approaches A and
B when selecting weights, but when doing this it is
important to realise the different ways of thinking that
are involved.
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