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Composition Estimator in a Pilot-Plant Distillation Column Using 
Multiple Temperatures 
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Results are given for the implementation of a static partial least-squares (PLS) regression estimator 
for product compositions on a high-purity pilot-plant distillation column. Temperatures on all 11 
trays are used as inputs to the estimator. Several estimators were tested off line to compare their 
performance, and one estimator was used on line for dual composition control. It was found that 
the estimators perform very well when appropriate logarithmic transforms and scalings are used. 
Since the estimator is static, the implementation is straightforward. An estimator based only on 
experimental data gave excellent performance over a wide range of operating points. Estimators 
based on simulations did not perform quite as well, and the bias had to be adjusted when a change 
was made from one operating point to another. Nevertheless, since it may be difficult to  obtain 
good experimental data in an industrial setting, this estimator is probably most useful in practice. 
In this paper we also discuss how to combine information from simulations (basic modeling) and 
experiments. 

1. Introduction 
Product composition analyzers for distillation columns, 

such as gas chromatographs, have large investment and 
maintenance costs, in addition to unfavorably large mea- 
surement delays. The most popular means of product 
control is therefore temperature control (Kister, 1990), 
which provides an easy, fast, and inexpensive means of 
composition control. 

The temperature selected for control is usually located 
a t  a tray some distance away from the column ends, be- 
cause the products may be extremely pure, and the tem- 
perature variations are then small compared to the noise. 
Furthermore, pressure variations and off-key components 
will interfere with the relationship between product com- 
position and temperature and locating the measurements 
away from the ends is favored (Rademaker et al., 1975, p 
421). However, if the measurement is located too far from 
the end the temperature will be strongly influenced by the 
composition of the feed and of the product at the other 
column end. 

An important issue in conventional temperature control 
is therefore to find the best measurement location by 
making proper compromises between these considerations. 

However, some of the interferences may be handled by 
using more measurements. For example, since the column 
pressure has about the same effect on all temperatures in 
the column, the pressure variation may be compensated 
for using temperature differences. This requires an ad- 
ditional temperature measurement which preferably is 
located at a tray where the composition is almost constant. 
Along the same line of thought are the proposals to use 
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double differential temperatures. Yu and Luyben (1984) 
proposed use of the other differential temperature for 
off-key-component compensation, while Luyben (1969) and 
Boyd (1975) proposed using it for column-pressure-drop 
compensation. However, these ideas do not seem to be 
widely applied. 

On the other hand, for the case of high-purity columns 
with large relative volatility between the components, the 
use of multiple temperatures has found some applications 
because the conventional temperature control is difficult. 
In these columns the main temperature drop will take 
place in a small region consisting of only a few trays. Quite 
small deviations from the normal operating point may lead 
to a control temperature outside this region. On the other 
hand, the location of this temperature front (region) is 
usually closely correlated to the compositions and may 
alternatively be the control objective. Bozenhart (1988) 
located the front by scanning multiple temperatures for 
the maximum temperature drop between two trays. Lu- 
yben (1971) suggested tracking the temperature front by 
using an average of many tray temperatures. Whitehead 
and Parnis (1987) used a weighted average of many dif- 
ferential temperatures in a C2 splitter. 

A more rigorous means of using multiple temperatures 
is to provide an estimator for product compositions. Many 
approaches have been proposed, e.g., by Brosilow and 
co-workers (Weber and Brosilow, 1972; Joseph and Bro- 
silow, 1978), who used temperatures together with stream 
measurements and a linearized process model, and by 
Marquardt (1989), who used a state space observer for the 
location of the temperature front. 

0 1991 American Chemical Society 
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In another paper by Mejdell and Skogestad (1991a) 
three different estimators were compared on a rigorous 
basis using linear data for a 40-tray high-purity binary 
example column with a constant relative volatility of 1.5. 
These estimators were the dynamic Kalman-Bucy filter 
(Kalman and Bucy, 1961), the static Brosilow inferential 
estimator (Weber and Brosilow, 1972; Joseph and Brosilow, 
1978), and the static principal-component-regression 
(PCR) estimator. I t  was found that for feedback control 
the static PCR estimator performed almost as well as the 
Kalman filter. The reason is that the temperatures and 
compositions have similar dynamic responses. The Bro- 
silow estimator was very sensitive to model error for this 
ill-conditioned plant with large relative gain array (RGA) 
values. Mejdell and Skogestad (1991a) therefore recom- 
mended using the simple regression estimator, which is 
obtained simply by considering corresponding values of 
temperatures and composition. 

Mejdell and Skogestad (1991b) further investigated the 
use of regression estimators in a nonlinear simulation 
study of the same column. The impact of different levels 
of temperature noise, pressure variations, and off-key 
components was also studied. The estimators were found 
to yield satisfactory estimates, especially when proper 
weighting (scaling) and logarithmic transforms were used. 
The use of multiple temperatures by the estimators ef- 
fectively counteracted the effect of pressure variations, 
measurement noise, off- key components, and the nonlin- 
earity in the column. The PLS and PCR estimators were 
also compared, and the first was found to be slightly better. 

These results are the starting point of the present paper. 
We will present some of the results from an implementa- 
tion of the PLS-regression estimator on a pilot-plant 
distillation column and discuss some issues that may be 
important when the estimator is implemented on industrial 
columns. The pilot column separates a binary mixture of 
ethanol and butanol and has temperature measurements 
on all 11 trays. 

2. Experimental Equipment 
2.1. The Pilot-Plant Column. The experimental 

distillation column (Figure 1) consists of 11 sieve trays and 
has a diameter of 125 mm. The space between the trays 
is 300 mm. A kettle type reboiler is heated by electrical 
elements with a total power of 15 kW. The reboiler con- 
tains 6-7 L of liquid. A water-cooled total condenser is 
placed right in the top of the column and is open to the 
atmosphere. A small accumulator tank is placed a t  the 
floor. It contains about 250 mL of distillate. 

The feed and reflux flows are provided by two metering 
pumps with a capacity of 1 L/min. The pumps have a 
variable stroke length driven by a servo motor. Both flows 
have preheaters with temperature controllers. The dis- 
tillate and bottom-product flows are adjusted to keep the 
reboiler and condenser levels constant (L  V configuration). 
The bottom product will normally have the same compo- 
sition as the liquid from the bottom tray (insignificant 
thermosyphon effect in the reboiler). 

Two solenoid valves are used for sampling the liquid 
from the bottom and top products. They are placed below 
the bottom tray and after the accumulator. Because of the 
small accumulator size, this will imply a composition lag 
of, at most, 1-2 min for the dynamic test runs. The liquid 
samples are analyzed off line by a Chrompack 9000 gas 
chromatograph. 

Each tray in the column is equipped with a cromel- 
alumel thermocouple placed in the liquid. There is also 
a thermocouple in the reboiler. Differential pressure cells 
are used for measuring the pressure drop in the tower and 

Accumulator 

Condenser 
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Figure 1. Pilot-plant distillation column. 

liquid levels in the accumulator and reboiler. 
The column may be run under a wide range of operating 

conditions. Typical flow rates are F = 4.5 and V = 8.0 
mol/min. The vapor and liquid rates may be run from 
about 20 to 100% without flooding, weeping, or serious 
entrainments. 

2.2. Data Sampling and Control. The twelve tem- 
peratures and the two level measurements are sampled 
every second. Every fiith second an average value is stored 
and control signals are sent to the four actuators. They 
are the two controller valves for the product flows, the 
power to the reboiler, and the metering pump for the reflux 
flow. 

Liquid sampling of the distillate and the bottom prod- 
ucts are controlled by the computer and taken precisely 
every second minute. 

The controller loops are implemented as ordinary PID 
controllers with antiwindup. 

2.3. Chemical Components. In the search for a suit- 
able binary mixture, we considered the following criteria: 

(1) The mixture should have a high relative volatility 
in order to get a high-purity distillation column. (The 
column has only 11 trays.) 

(2) The mixture should be reasonably ideal to avoid a 
bias of the results from unusual VLE behavior. 

(3) The mixture should be relatively convenient to 
handle, i.e., it should have low toxicity, relatively low 
flammability, have boiling temperatures around 100 O C, 
and be simple to analyze. 

(4) The mixture should be inexpensive. 
We found the mixture ethanol/ 1-butanol suitable for 

most of these requirements. It has a nearly constant 
relative volatility of 4.3 (Hellwig and van Winkle, 1953). 

3. Data Treatment and Multivariate Regression 
Multivariate calibration (regression) is a statistical ap- 

proach for obtaining a linear estimator based on a 
"training" set of known values of inputs and outputs. For 
the distillation column we want to obtain the matrix K in 

(1) 9 = KO + k, 
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A column with pinch zones around the feed will not have 
a linear profile. 

Instead of using boiling temperatures, one may use the 
transformation 

Here 9 denotes the outputs of the estimator (compositions 
of top product, YD, and bottom product, xB), and 0, the 
inputs (temperatures). The vector ko is the bias or mean 
of the outputs. 

A training set (calibration set) of n runs of corresponding 
values of 0 and y are obtained and lined up in two matrices 
Y and 8 such that measurements of each run are placed 
in one row. Deviation variables are used; that is, all 
measurements are first centered around the mean in the 
calibration set, yo and Bo. The data are in most cases also 
weighted (scaled). Using 2 y variables and 12 0 variables 
we get 

(2) 
where K has the dimension 2 X 12. We search for the 
solution 

where et denotes some pseudoinverse of 8. 
Different regression methods yield different solutions 

for et. Using singular-value decomposition (SVD), we 
obtain the principal-component-regression (PCR) esti- 
mator. Here, in order to avoid collinearity and an ill- 
conditioned estimator, we delete the directions in 8 with 
small singular values (corresponding to noise). The num- 
ber of remaining nonzero singular values, or equivalently 
the number of principal components (factors) used, will 
give the rank, k, of et. In our application on distillation 
columns, k is typically 3-5 (Mejdell and Skogestad, 1991b). 

The partial least-squares (PLS) regression method used 
in this paper is very similar, but it also takes into account 
the covariance between the 0 and the y variables. This may 
yield an estimator with fewer factors than PCR 
(Hoskuldsson, 1988). However, Mejdell and Skogestad 
(1991b) found that the differences were rather small for 
their distillation column example. The PLS procedure is 
given by Martens and Naes (1989) and is also explained 
by Mejdell and Skogestad (1991b). 

Another useful way to think about the PCR and PLS 
methods is in terms of latent variables: The 12 (in our 
case) 0 variables are reduced ("averaged") to k latent 
variables. These latent variables are subsequently re- 
gressed with the y variables. 

3.1. Use of Transformed Variables. The composition 
and temperature profiles are nonlinear functions of the 
operating variables. Logarithmic transformation of the 
product compositions, for example 

(4) 
has been proposed by several authors (e.g., Joseph et al., 
1976). A more general transformation is (for binary sys- 
tems) 

y n X 2  = enXIZKT 

KT = e+Y (3) 

YD = In (1 - YD); XB = In XB 

x = l n ( L )  l - x  (5) 

which also applies for trays inside the column. Here x is 
the tray composition (the subscript i on x to denote tray 
number has been omitted to simplify notation). This 
transformation linearizes both the dynamic response as 
well as the composition profile (Mejdell and Skogestad, 
1991b). Temperature is often a nearly linear function of 
composition. Mejdell and Skogestad (1991b) therefore 
proposed to use the following transformation on each tray 
temperature 0 

L T  = In (2) 
Here and f i  are the boiling temperatures of pure light 
and heavy components, respectively. We have LT i= -X. 

(7) 

where OL and OH is some reference temperature (usually 
measured) in the top and the bottom of the column, re- 
spectively. For binary mixtures, one may use the tem- 
perature a t  the column end, which is very close to the 
boiling temperature and which does not change very much 
with operating condition. To avoid large effects of noise 
on the temperatures closest to the reference temperatures, 
one should also specify a lower permitted limit on the 
difference temperatures in eqs 6 and 7. 

Using reference temperatures also provides pressure 
compensation for the temperature measurement. 
3.2. Scaling of Variables, Weight Functions. In all 

cases the data were centered around the mean. In most 
cases the temperatures were weighted. Weight 1 is given 
by 

w,i = 1/Sci (8) 
This is the inverse of the standard deviation of tempera- 
ture i in the calibration set and ensures, for example, that 
variable scaling does not bias the results. Weight 3 (the 
numbering follows Mejdell and Skogestad, 1991b) is de- 
fined as 

Here sei is the residual standard deviation ("mismatch") 
between the model predictions and the observations. sei 
takes into account both noise and mismatch due to non- 
linearity. In our example s,. is the residual after three PLS 
factors based on a preliminary calibration without 
weighting. Weight W, is equal to W1 when the model is 
perfect (no noise), but gives zero weight to measurements 
when all the variation is unexplained (sci = sei). 

4. Experiments and Simulations 
4.1. Experimental Steady-State Runs. In order to 

obtain a calibration set, 19 different steady-state runs were 
performed on the experimental column. The runs were 
first checked for consistency and outliers (using the UN- 
SCRAMBLER software package). Two runs were deleted 
from the calibration set during this check. The remaining 
17 runs are listed in Table I. To ensure that the different 
directions should be present in the calibration set, a 
fractional design was adapted. The obtained values of yD 
and XB show some minor deviations from the original de- 
sign. Nevertheless, the runs do have a good spread. We 
stress that it may be very difficult and time consuming to 
obtain such good data on an industrial column. 

The column profile was "stabilized" by controlling the 
temperatures on tray 3 with the reboiler heat input and 
on tray 9 with the reflux pump. When the column tem- 
peratures had been constant for a t  least 10 min, samples 
of the feed and the product streams were taken. In ad- 
dition, the average and the standard deviation of all tem- 
peratures, pressures, and output signals during the last 
5-10 min were calculated and stored. 

4.2. PLS Estimators Based on Experimental Runs. 
Different transforms of the experimental data give three 
different PLS estimators, denoted El ,  E2, and E3. 

Estimator E l  uses no logarithmic transformation. The 
temperatures were weighted with weight function W,. The 
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Table I. The 17 Experimental Steadu-State Runs Used for 
Obtaining Estimators El-E3' 
run no. Fl(mo1lmin) L I F  ZF '3% .Yn % XU % 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 

4.12 
4.14 
3.65 
3.64 
4.57 
4.57 
3.65 
3.63 
4.56 
4.55 
3.64 
4.58 
4.22 
4.48 
3.36 
3.35 
3.39 

2.055 45.02 99.20 0.37 
1.782 45.71 99.64 0.64 
0.878 34.63 99.67 0.88 
1.558 34.32 96.82 0.16 
3.317 34.58 98.81 0.16 
3.187 34.53 99.15 0.27 
0.787 34.53 99.50 0.95 
0.734 54.61 96.81 1.10 
2.105 54.61 95.54 0.11 
0.636 54.36 99.10 2.66 
4.148 55.28 99.13 0.22 
0.946 55.60 99.27 2.18 
1.914 50.79 99.01 0.36 
2.204 50.70 97.71 0.22 
1.393 44.03 99.50 0.31 
3.464 42.95 99.14 0.25 
2.020 45.70 99.41 0.33 

Typical results are shown in Table 111. 

1. b 

a. 95. 

E. se 

E. 25- 

b 

1 2  3 4 5 6 7 8 9 l e  11 

Tray no 
Figure 2. Weight W ,  for estimator El .  

weight is shown in Figure 2. The optimal number of 
factors was found to be four. 

Estimator E2 also contains four factors but was obtained 
using the logarithmic transforms of the compositions (YD 
and X,) in eq 4. No weighting was performed. 

Estimator E3 uses, in addition to the logarithmic 
transform of the compositions, also the transform Lo (eq 
7) on the temperatures. The temperature in the reboiler, 
Bo, was not found suitable as a reference temperature, so 
the temperature on tray 1 was used instead. The number 
of inputs to the estimator then became 9 for this estimator 
(compared to all 12 temperatures for El and E2). The data 
were weighted with the weight function W3. The optimal 
number of factors was found to be three. W3 and s, is 
plotted in Figure 3. 

4.3. PLS Estimators Based on Simulation Runs. 
For simulating the experimental column, a steady-state 
simulation program assuming constant relative volatility 
and constant molal flows was employed. To obtain the 
estimators, we used 32 different simulation runs, as listed 
in Table 11. From experimental runs a correlation between 
the column pressure drop AP (atm) and the boilup V 
(mol/min) was found and included in the simulation 
program: 

AP = 0.0166 - 0.00140V + 0.0003482V2 (10) 
From literature data (Helwig and van Winkle, 1953; Gay, 
19271, the relative volatility of ethanol/butanol was esti- 
mated to be 4.3. To obtain a model of the column one 
generally adjusts the number of theoretical trays to match 
the experimental data. We used a constant Murphee tray 

I 1 2 3 1 5 6 9 8 9  

Tray no 

Figure 3. Residual standard deviation s, x 10 and corresponding 
weight W, used for estimator E3. Logarithmic transformed tem- 
peratures are used. 

Table 11. The 32 Simulated Steady-State Runs Used for 
Obtainina Estimators S1 and S2 
F/ (mol/min) ZF YD XB P/atm 

4.5 
4.2 
4.6 
4.0 
4.3 
4.8 
4.7 
4.5 
4.1 
5.0 
4.4 
4.3 
4.9 
4.6 
4.8 
4.2 
5.0 
4.0 
4.0 
5.0 
4.0 
5.0 
5.0 
4.0 
4.25 
4.75 
4.75 
4.25 
4.75 
4.25 
4.25 
4.75 

0.5000 
0.4875 
0.5375 
0.4750 
0.4250 
0.5625 
0.5250 
0.4625 
0.4125 
0.4375 
0.6000 
0.4500 
0.5125 
0.5750 
0.5500 
0.5875 
0.4000 
0.4000 
0.4000 
0.4000 
0.6000 
0.6000 
0.6000 
0.6000 
0.4500 
0.4500 
0.4500 
0.4500 
0.5500 
0.5500 
0.5500 
0.5500 

0.9900 
0.9962 
0.9913 
0.9956 
0.9738 
0.9934 
0.9700 
0.9772 
0.9801 
0.9950 
0.9849 
0.9924 
0.9942 
0.9868 
0.9827 
0.9885 
0.9700 
0.9700 
0.99667 
0.99667 
0.9700 
0.9700 
0.99667 
0.99667 
0.98268 
0.98268 
0.99423 
0.99423 
0.98268 
0.98268 
0.99423 
0.99423 

0.0100 
0.0189 
0.0262 
0.0087 
0.0151 
0.0115 
0.0132 
0.0300 
0.0058 
0.0038 
0.0044 
0.0173 
0.0066 
0.0228 
0.0076 
0.0050 
0.0300 
0.00333 
0.0300 
0.00333 
0.0300 
0.00333 
0.0300 
0.00333 
0.01732 
0.00577 
0.01732 
0.00577 
0.01732 
0.00577 
0.01732 
0.00577 

0.993 
1.000 
1.003 
0.991 
0.990 
0.996 
1.005 
0.998 
0.997 
1.004 
0.995 
0.992 
0.992 
1.007 
0.999 
1.010 
0.993 
0.991 
0.990 
0.998 
1.010 
0.997 
0.990 
0.999 
0.996 
1.005 
0.993 
0.992 
1.005 
0.993 
1.002 
0.990 

efficiency vM throughout the column. Simulations were 
performed (and estimators obtained) for the following two 
cases: estimator S1, using an average Murphee's tray 
efficiency, vM, of 0.82; estimator S2, using a correlation 
between the Murphee efficiency and the boilup V and 
reflux L (mol/min) 

vM = 0.041L - 0.046V + 0.928 (11) 
During the experiments L and V varied in the range 3-15 
mol/min. A typical temperature profile comparison is 
shown in Figure 4. The match with the experimental data 
is slightly better for case 2. 

Both estimators S1 and S2 are based on logarithmic 
transforms on both compositions and temperatures and 
use weight function W3. The residuals sei for W ,  in eq 9 
were found by first corrupting the data with 0.1 "C random 
noise and performing a preliminary calibration. Afterward 
the weight function from this calibration was used with 
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Figure 4. Comparison of temperature profiles for experimental run 
16. 

the original uncorrupted data in a new calibration step to 
obtain S1 and S2. 

4.4. Dynamic Test Runs. Two test runs with large 
composition variations were performed for comparing the 
different estimators. At  distinct times, usually every 
second minute, a liquid sample was taken and analyzed 
off line. Various feed and composition disturbances and 
set-point changes were introduced during these tests. The 
column was controlled using the LV configuration, i.e., the 
top composition was controlled by the reflux L and the 
bottom composition by the boilup V. 

In the first test run, denoted DYN1, the column was 
operated by temperature control on trays 3 and 9. The 
column was switched between one-point control and two- 
point control. In one-point control large changes in reboiler 
power were made, while in two-point control large set-point 
changes were performed. The column was also subjected 
to disturbances in feed rate, F,  and feed composition, zF, 
of about 30%. 

In the second test run, DYN2, the estimator S2 was used 
in the feedback loop, and set-point changes in the esti- 
mated values of Y D  and X B  were performed. In addition 
a 25% increase in feed rate was introduced at time t = 29 
min, a 10% decrease in feed rate, at t = 43 min; and a 30% 
decrease in feed composition, a t  time t = 53 min. The 
estimator S2 was corrected for bias before starting. 

Controller Tunings for Test Run DYN2. Each 
composition control loop was first submitted to a Zie- 
gler-Nichols tuning test, letting the other loop stay in 
manual. These individual Ziegler-Nichols PI parameters 
were then detuned by a factor f to compensate for inter- 
actions between the loops. 

This is similar to the BLT procedure of Luyben (1986). 
On the basis of the results of Skogestad and Lundstrom 

(1990) who studied PID control of a similar column, we 
first selected f = 2. However, additional detuning was 
found necessary, and f = 2.5 was used. 

5. Results 
5.1. Experimental Steady-State Runs. The results 

of all steady-state runs are given in the thesis of Mejdell 
(1990). In Table I11 the results from a typical run are 
shown. The standard deviations of the temperatures in 

Table 111. Data from a Typical Steady-State Experimental 
Run" 

measurement av std dev 
temp reboiler/OC 
temp of tray l / O C  
temp of tray 2/OC 
temp of tray 3/"C 
temp of tray 4/'C 
temp of tray 5/OC 
temp of tray 6/OC 
temp of tray 7 / O C  
temp of tray 8 / O C  
temp of tray 9/OC 
temp of tray 10/"C 
temp of tray ll/OC 
reboiler level/cm 
accumulator level/cm 
diff pressure/(cm HzO) 
output signals to actuators: 

reboiler duty/V 
distillate pump/V 
bottom valve/V 
distillate valve/V 

119.1208 
117.6565 
115.7841 
112.2051 
107.0069 
99.4882 
92.5084 
85.3724 
80.5095 
79.0260 
77.6493 
77.5407 
7.9115 

12.8806 
16.6909 

3.0499 
2.4296 
8.7820 
5.0953 

"Data taken during 10 min for run 3. 

20.0 1 

s * 100 

0.0145 
0.0312 
0.0498 
0.1026 
0.1371 
0.1676 
0.1531 
0.0987 
0.0516 
0.0295 
0.0203 
0.0123 
0.0551 
0.1015 
0.0476 

0.0000 
0.0337 
0.1436 
0.0994 

0.0 1 1 8 1  I / ,  , , I  , , I , , ,  8 1 5  1 I , ,  , I  I , ? ,  I , ,  , , / I , , , /  I , , ,  1 ,  / I ,  I , ? , , ,  

0 1 2  3 4 5 6 7 8 9 10 1 1  
Tray No 

Figure 5. Comparison of standard deviation of the temperature 
measurements and the temperature difference AB between the trays 
(see Table 111). Experimental steady-state run 3. 

the middle of the column are approximately 10 times larger 
than those at  the ends. They are clearly related to the 
slope of the temperature profile, as seen from the dotted 
line in Figure 5. Consequently, most of the noise on the 
temperatures seems to be related to the liquid flow and 
mixing on the trays and not to the measurement device. 

In Figure 6a the temperature profiles for runs 5-8 are 
displayed. The corresponding logarithmic profiles are seen 
in Figure 6b. The linearizing effect on the profile is clear, 
except for the top section of run 8 which has a pinch zone 
around the feed tray. 

5.2. Experimental Test DYN1. The estimators were 
compared off line using experimental temperature data 
from DYN1. The estimates of the experimentally based 
estimators E l  and E2 are displayed in Figure 7. Estimator 
E l  performs well for Y D  but not as well for XB. Although 
it tracks the main changes, it has a tendency to overdo 
them and also gives negative values of xB.  On the other 
hand, estimator E2 yields excellent bottom-product esti- 
mates, while the top-product estimate shows some 
steady-state offset. Note that the use of logarithmic 
transformed compositions in this case guarantees that the 
estimates of X B  and Y D  stay between 0 and 1. 
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The effect of using logarithmic transforms both for 
compositions and temperatures is shown in Figure 8, where 
estimator E3 is employed. The estimates are excellent 
both for top and bottom compositions. Note that the bias 
term ko was not adjusted from its original value for any 

of the experimental estimators, E l ,  E2, and E3. 
The performances of the estimators based on simula- 

tions, S1 and S3, are shown in Figure 9. The difference 
between S1 and S2 is minimal. In both cases the bias term 
ko in the estimator had to be adjusted for off sets before 
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Figure 10. Control performance in test DYNB. Plot shows how well the estimated compositions (estimator S2) track the set point. 

starting. Although the estimators based on simulations 
are not as good as the experimental estimator, E3, they 
still show reasonably good performance. 

5.3. Experimental Test DYN2. In Figure 10 the set 
points and the estimated outputs are shown for the dy- 
namic test DYN2, where estimator S2 was used on line as 
part of the control loop. This plot shows the control 
performance and not the estimator performance. The 
controller tracks the set points very well, and interactions 
between the loops do not seem to cause problems. In 
Figure 11 the CC-analyzed compositions are compared 
with the estimate. We see that the S2 estimates deviate 
substantially for the bottom composition when moving to 
the new operating point. 

For comparison the estimates of the experimental ob- 
tained estimator E3 is also displayed in Figure 11. We note 
that E3 is much more sensitive to changes in the bottom 
product. Again, it was not subjected to any offset ad- 
justments, whereas the bias for S2 was adjusted. 

The trend of the other estimators E l ,  E2, and S1, was 
similar to those for the test DYN1. 

6. Discussion 
The results confirm that a static estimator is sufficient 

for the distillation column. The estimates are generally 

a little ahead in time compared to the actual compositions. 
This is mainly due to the lag in the accumulator and the 
transport delay from tray one to the solenoid valve for 
bottom-product sampling. This elimination of the lag is 
clearly an additional advantage of using temperature 
measurements for feedback control. 

The accuracy of the estimators is also satisfactory, es- 
pecially for the experimentally based estimators. Even 
without adjusting the bias these estimators gave very little 
steady-state offsets. The experimental calibration runs 
were obtained over an extended period of time (more than 
a month) and about half a year before the dynamic test 
DYN2. This indicates that it may not be necessary to 
update these estimators. 

6.1. Experimental Estimators. A comparison for test 
DYNl between the experimentally obtained estimators El  
and E2 (none of these use logarithmic temperatures) shows 
that E l  performed best for the top composition and E2 
best for the bottom composition. The reason is the dif- 
ference in purety for XB and Y D  in DYN1: XB varies from 
0.15 to 0.40 mol %, while 1 - y D  varied from 1 to 3 mol 
% . The logarithmic transforms of the compositions (E21 
will perform best in the pure range, that is, for xB. 

The estimator with the best overall performance is E3, 
which seems to provide accurate estimates over a wide 
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Figure 11 .  Performance of estimators S2 and E3 in test DYN2. 

range of operations. This is primarily due to the linearizing 
effect of using logarithmic transformed temperatures. This 
confirms the results of Mejdell and Skogestad (1991b) who 
introduced logarithmic transformed temperatures and 
found them to give a substantial improvement in the 
steady-state accuracy. 

6.2. Controller Tuning. Tuning of the control loops 
with the estimator on line was straightforward. The Zie- 
gler-Nichols tuning procedure proved to work, although 
a substantial detuning was necessary. The estimator (and 
thereby also the controller) employs temperatures from 
both sections. One might consequently expect additional 
interactions between the loops. In this column, however, 
the interactions were not a large problem. In case it should 
happen to be a problem, one might consider using tem- 
peratures from the top section of the column for estimating 
yD and only the bottom section for xB. This might also 
be necessary if the column sections have very different 
dynamic responses. 

6.3. Simulation Estimators. A comparison of the two 
simulation-based estimators S1 and S2 shows small dif- 
ferences. Thus, the effect of varying tray efficiency in the 
simulation runs thus seems to be of minor importance for 
this column. 

The static accuracy of the simulation-based estimator 
S2 was not satisfactory for the bottom product in the test 
DYN2. This estimator must consequently be updated 
when a change is made from one operating point to an- 
other. Since the experimentally obtained estimator E3 
performed better, it may give insight to look at the dif- 
ferences of the K matrix (eq 1) elements between estimator 
E3 and S2, as shown in Figure 12. We see that it is mainly 
the feed-tray element (tray 5 )  that differs. By adjusting 
this element in estimator S2, we found that the estimator 
could give excellent response for DYN2 (as well as for 
DYN1). This illustrates that the estimator may be quite 
sensitive for mismatch between the simulated and the 
experimental data, in particular, a t  trays where the K- 
matrix elements show large changes from one tray to an- 
other. 

For a given estimator, one might use some test runs, such 
as test DYNl and DYN2, to "adjust" a coefficient in the 
K matrix, as discussed above. A more rigorous approach 
would be to get a better estimator in the first place. For 
our column we could possibly have improved the simula- 
tion-based estimator by including (1) different tray effi- 
ciencies VM in different sections; (2) variable temperature 
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Figure 12. Elements in matrix K for ZB. 

noise instead of constant noise in weight W3 for S2, Le., 
base the weight on Figure 5; and (3) constant feed tem- 
perature rather than assuming incorrectly that the feed 
is saturated liquid. For our experimental column the first 
proposal would probably have minor importance since the 
difference in performance between S1 and S2 is very small. 
The second proposal might have improved the estimate 
by giving a weight function W3 that is more similar to the 
one used by E3, which would give the feed tray less weight. 
The last proposal would probably have the largest affect 
on the estimator. In the experimental column the feed 
temperature controller was set to a fixed value of 91 OC. 
This will not give a constant liquid fraction in the feed, 
as was assumed in the simulation runs. 

The reason why we care about the simulation-based 
estimator is of course that experimental calibration runs 
may be difficult and time consuming to perform on in- 
dustrial columns. In particular, it is difficult to ensure that 
all the "directions" in the space of independent variables 
(yD, xB, disturbances) are sufficiently exited. One may 
therefore have to rely also on simulations. 

The problem is then to adapt the simulated estimator 
to  the real column. Experimental data give a good rep- 
resentation of the true system, but it may be difficult to 
obtain reliable data which span the desired range of op- 
eration. On the other hand, simulations may not represent 
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Nomenclature 
B = bottom-product flow rate 
D = distillate flow rate 
F = feed rate 
Ek = residual data matrix of the temperatures after extracting 

k factors 
El-E3 = estimators based on experimental calibration runs 
K, k, = estimator constants 
L = reflux flow rate 
LB = logarithmic temperatures based on reference tempera- 

sei = residual standard deviation of temperature on tray i 
S1, S2  = estimators based on simulations 
V = boilup from reboiler 
X B  = mole fraction of light component in bottom product 
Y D  = mole fraction of light component in distillate 
y = output vector (yD,.xg)T 
ZF = mole fraction of light component in feed 
Greek Symbols 
T ~ M  = Murphree tray efficiency 
8 = tray temperature 
6 = tray temperature vector 
8 = data matrix of 8 
Subscripts 
c = term from calibration set 
e = error term 
i = tray number (ordered from the bottom) 
0 = average (bias) term 
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Figure 13. Block diagram for a combined estimator based on sim- 
ulations vim) and corrected (Ay) using experimental data. 

the true system as accurately, but it is easy to use the 
model to generate changes which are difficult to do ex- 
perimentally. Also, there may be effects or disturbances 
on the real system which are not represented by the sim- 
ulation model. This discussion leads to the conclusion that 
the optimal estimator should combine both simulated and 
experimental data. In some sense, this is already done 
since the simulation model is obtained by adjusting the 
tray efficiency to match the experimental data. However, 
the results in this paper show that this is not sufficient; 
that is, the experimental data contain additional infor- 
mation. One possible approach is shown in Figure 13. 

j j  = Qsim + Ajj,,, = Ks6 + KA8 (13) 
The overall estimator is K = Ks + Kb 

The basic idea is to use the simulation-based estimator, 
Ks, to capture effects ("directions") due to different feed 
compositions and product composition which may be 
difficult to excite in the real column. This estimate is then 
corrected by the experimental "correction estimator", Kb 
The simulation-based estimator Ks is obtained first. This 
gives rise to the estimate jtsim. The correction Ajt,,, is 
found from the available experimental runs. The data 
matrices for the correction estimator corresponding to eq 
2 become 

AY = Y - Yaim = eeX,,KAT (14) 

For directions which are not exited in the experiments, 
the correction is only a constant term (bias), as for esti- 
mators S1 and S2. On the other hand, in directions where 
the experimental data have adequate excitations KA should 
use the entire temperature profile. One important issue 
will be to ensure that the noise and uncertainty in the 
experimentally obtained data runs do not corrupt the 
estimate, by for example using a conservative number of 
factors in the correcting estimator. This off-line approach 
for obtaining K = Ks + KA may include an updating 
procedure for K, to handle changes in the distillation 
column. Instead, to update K, a simple way of on-line 
correction of the estimator is to adjust the bias term, k,,, 
in eq 1. 

7. Conclusions 
This paper addresses the implementation of a partial- 

least-squares estimator on a pilot-scale distillation column. 
An experimentally based estimator, with logarithmically 
transformed temperatures and compositions, gave excellent 
performance over a wide range of operating points. The 
need for updating the estimator was minimal. 

Estimators based on only simulated data showed rea- 
sonable performance. However, when a change was made 
to different operating points, the steady-state bias had to 
be corrected. An important area of future work is to find 
estimators which efficiently combine data based on sim- 
ulations and experiments. 
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Direct and Indirect Model Based Control Using Artificial Neural 
Networks 

Dimitris C. Psichogios and Lyle H. Ungar* 
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The use of artificial neural networks in model based control, both as process models and as controllers, 
is investigated: two nonlinear model based control strategies, internal model control (IMC) and 
multistep predictive control (MPC), are applied to the control of a nonlinear SISO exothermic CSTR. 
Direct inverse control in the IMC framework was found to require appropriate use of feedback for 
adequate performance. An IMC-type neural network controller in which the process model was 
replaced by a nonlinear neural network and inverted on-line to  calculate the control action gave 
very good performance, even when only partial state data were available. An MPC-type neural 
controller using the same neural network model and extended to include feedback also gave excellent 
performance. Performance was significantly better for both control techniques when a nonlinear 
network was used as a process model than when a linear ARMAX model was used. These results 
indicate that neural networks can learn sufficiently accurate models and give good nonlinear control 
when model equations are not known or only partial state information is available. 

1. Introduction 
Multilayered feedforward neural networks represent a 

special form of connectionist model that performs a 
mapping from an input space to an output space. They 
consist of massively interconnected simple processing el- 
ements (neurons or nodes) arranged in a layered structure; 
the strength of each connection is characterized by its 
assigned weight. The input neurons are connected to the 
output neurons through layers of hidden nodes. The 
processing of information in each neuron is performed 
through its activation function: when the hidden units 
have a nonlinear activation function the mapping is non- 
linear. Such networks can approximate any nonlinear 
continuous function arbitrarily accurately. Training of the 
network-essentially adjustment of the weights-is per- 
formed by an appropriate algorithm, such as error back- 
propagation (Werbos, 1974; Rumelhart et al., 1986), and 
through repeated presentation of a set of input-output 
patterns. Neural networks can learn associations-or 
classification-of events, in applications such as fault di- 
agnosis (Ungar et al., 19901, or they can be used, as we will 
do in this paper, to extract the underlying quantitative 
relationships governing the behavior of physical systems. 

Neural nets have been successfully used to identify 
dynamical systems which exhibit complicated behavior, 
such as deterministic chaos (Lapedes and Farber, 1987; 
Ydstie, 1990; Levin, 1990), chaotic chemical systems (Ad- 
moaitis et d., 1990), chemical reactions (Bhat and McAvoy, 
1990), and other nonlinear SISO and MIMO systems 
(Narendra and Parthasarathy, 1990). More recently neural 
nets are starting to be used for control problems such as 
manipulating robot arms (Jordan, 1988,1990; Guez et al., 
1988; Miller, 1989) and controlling chemical processes 
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(Donat et al., 1990; Ydstie, 1990; Hernandez and Arkun, 
1990), in a variety of controller architectures. 

One of the most studied control strategies is model based 
control (MBC), where a process model is explicitly used 
to predict future process behavior, the same process model 
is also implicitly used (essentially inverted) to calculate 
the control action in such a way as to satisfy the controller’s 
design specifications. In this way information about the 
dynamical system is used to give performance superior to 
that of traditional control techniques, such as PID con- 
trollers. Control theory has been extensively developed 
for linear systems, yet linear control strategies have been 
shown to perform poorly when applied to certain nonlinear 
systems (Economou et al. 1986; Parrish and Brosilow, 
1988). Furthermore, we are far from being able to opti- 
mally design controllers that can handle time-varying and 
uncertain dynamical systems; adaptive linear control 
methods can result in suboptimal performance (Mor- 
ningred et al., 1990). It is not surprising, therefore, that 
much of the current research effort is focused on devel- 
oping robust nonlinear control techniques, which give good 
performance in spite of unmodeled or time-varying dy- 
namics. In this context, artificial neural networks promise 
to provide a flexible basis for adaptive nonlinear con- 
trollers. 

In process control applications neural networks can be 
incorporated in the controllers in either direct or indirect 
control methods. In the direct method, a neural network 
is trained with observed input-output data from the sys- 
tem to represent its inverse dynamics. In other words, 
given the current state of the dynamic system and the 
target state (e.g., setpoint) for the next sampling instant, 
the network is trained to produce the control action that 
drives the system to this target state. The resulting inverse 
model neural network can then be used as a controller, 
typically in a feedforward fashion. In the indirect method 
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